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1. Introduction

One of the puzzles of hadron physics is the origin of the hadron masses. The Standard Model
and, in particular, QCD operate only with fundamental particles (quarks, leptons, neutrinos), gauge
and the Higgs bosons. It is not yet clear how to explain the appearance of the multitude of observed
hadrons and elucidate the generation of their masses. Therefore, the calculation of the hadron mass
spectrum in a quality comparable to the precision of experimental data still remains one of the
major problems in QCD.

Actually, even before QCD was set up as the fundamental theory of strong interactions, it was
understood that it is a difficult problem to describe a composite particle within QFT as based on
the relativistic S-matrix. The original Lagrangian describes free fields and their interactions while
the consideration of physical processes requires the renormalization, i.e. the transition from bare
or unrenormalized quantities to the physical or renormalized ones. In particular, the bare field is re-
lated to the dressed one as ϕ0 = Z1/2ϕr through the wave function renormalization constant Z. The
bare field ϕ0 may be eliminated from the Lagrangian by putting Z = 0, that is the compositeness
condition (CC) suggested first by B. Jouvet [1]. He showed that the four-fermion theory is equiva-
lent to a Yukawa-type theory if the renormalization constant of the boson field is set to zero. The
crucial point in comparison of the two theories is the renormalization of the Yukawa-type theory,
i.e. the transition from the bare quantities (boson mass, boson wave function, Yukawa coupling) to
the renormalized ones. Then, the physical boson mass and renormalized Yukawa coupling may be
expressed through the Fermi constant via the CC. Further developments and applications of the CC
may be found in [2, 3, 4, 5, 6, 7].

Relativistic models with specific forms of analytically confined propagators have been devel-
oped to study some aspects of low-energy hadron physics in a series of papers [8, 9, 10, 11].
The role of analytic confinement in the formation of two-particle bound states has been analyzed
within a Yukawa-type model with specific forms of analytically confined propagators of quarks
and gluons [8]. By using a ladder Bethe-Salpeter-type master equation, the masses of conven-
tional mesons have been estimated with relative errors less than 3.5 per cent in a wide energy
range. The calculated weak decay constants of light mesons were also in good accordance with
the experimental data. Additionally, the lowest-state glueball mass has been predicted which is in
reasonable agreement with other theoretical approaches. A phenomenological model with infrared-
confined propagators has been developed to take into account the dependence of the QCD effective
coupling αs = g2/4π on the mass [10]. By fitting the experimental masses of mesons we predicted
the behavior of αs at large distances. A new, specific and finite behavior of αs(M) at the origin
M = 0 has been derived analytically. Note, αs(0) depends on the confinement scale value Λ. We
fixed αs(0) = 0.757 for Λ = 345 MeV [9] and αs(0) = 0.8498 for Λ = 220 MeV [11].

The compositeness condition ZH = 0 is also one of the key ingredients in the relativistic con-
stituent quark model [12, 13]). The model has found numerous applications both in the meson sec-
tor [14] and in baryon physics [15]. The next step in the development of the model has been done
in [16, 17], where infrared confinement was introduced to guarantee the absence of all possible
threshold singularities corresponding to quark production. The implementation of quark confine-
ment allowed to use the same values for the constituent quark masses for different quark systems
(mesons, baryons, tetraquarks, etc.). In the covariant confined quark model (CCQM), the free pa-
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rameters (constituent quark masses, the infrared cutoff parameter λ and the size parameters ΛH)
have been determined by a fit to available experimental data. The parameter λ is taken universal for
all processes. This approach was successfully applied in the calculation of transition form factors
B-mesons and Λb-baryons [18] as well as for strong and radiative decays of X(3872) meson treated
as a tetraquark [19].

Below we apply the CCQM to the meson mass problem. We show explicitly that the four-
fermion theory with the Fermi coupling G is equivalent to the Yukawa-type theory if, first, the
wave function renormalization constant in the Yukawa theory is equal to zero and, second, the
Fermi coupling G is inversely proportional to the meson mass function calculated at the physical
meson mass.

Note, the CC is used by us to determine the renormalized Yukawa coupling gr as a function
of model parameters, hereby, the experimental values of hadron masses mH are used. Our second
constraint equation allows us to calculate the Fermi coupling G as a function of the physical mass
in a quite large region ranging from the π up to Bc meson. Then, we suggest a smoothness criterion
to generate a continuous behavior of the Fermi coupling G, update slightly the model parameters
and estimate the model meson masses. The mass spectrum obtained in this manner is found to be
in good agreement with the experimental data. We also compare the behavior of the ’smoothed’ G
with the strong QCD coupling αs calculated in the QCD-inspired approach.

2. The compositeness condition ZH = 0 and meson mass equation

1. Historically, the CC first appeared when looking for the bound state in a four-fermion theory
with the Lagrangian

LF = q̄(i ̸∂ −mq)q +
G
2
(
q̄Γq

)2
. (2.1)

Here, for simplicity, we drop all color and flavor indices. For the general Dirac matrix we use
Γ = I, iγ5, i.e. we restrict to bound states with zero spin. We will consider the bound state problem
by using the one-loop (chain) approximation but the result is general and can be proved to all orders
of perturbation theory. In the following, for simplicity, we will not consider the renormalization of
the fermion (“quark”) fields.

Let us consider the generating functional for the Fermi theory

ZF =

∫
D q̄

∫
Dqei

∫
dxLF (x) . (2.2)

By using the Gaussian functional representation for the exponential of the four-fermion interaction

ei G
2 ⟨(q̄Γq)2⟩ = N−1

+

∫
Dϕ exp{− i

2
1
G
⟨ϕ 2⟩+ i⟨ϕ · (q̄Γq)⟩}, ⟨(...)⟩=

∫
dx(...) (2.3)

we rewrite ZF and integrate out the obtained Gaussian path integral over quark fields.
Further we introduce the renormalized mass function of the boson with spin S = 0 as

ΠS=0(x1 − x2) = i⟨T
{[

q̄Γq
]

x

[
q̄Γq

]
y

}
⟩0 =−i tr[ΓSq(x1 − x2)ΓSq(x2 − x1)] . (2.4)

and expand its Fourier transform at the physical boson mass up to the second order:

Π̃S=0(p2) =
∫

dxe−ipxΠS=0(x) = Π̃S=0(m2)+(p2 −m2)Π̃′
S=0(m

2)+ Π̃ren
S=0(p2) . (2.5)
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Then, we collect the terms bi-linear in the boson fields

L(2)
F =

1
2

∫
dxϕ(x)

(
− 1

G
+ Π̃S=0(m2)+(�−m2)Π̃′

S=0(m
2)
)

ϕ(x)

+
1
2

∫
dx1

∫
dx2 ϕ(x1)Πren

S=0(x1 − x2)ϕ(x2) . (2.6)

If we require the condition
GΠ̃S=0(m2) = 1 (2.7)

and rescale the boson field as ϕ → ϕ/
√

Π̃′
S=0(m2) one obtains the free Lagrangian of the boson

field with the mass m and the correct residue of the Green function.
The fully renormalized generating functional of the Fermi-theory is written as

Zren
F =

∫
Dϕ exp

{ i
2

∫
dxϕ(x)(�−m2)ϕ(x)+

i
2

1
Π̃′

S=0(m2)

∫
dx1

∫
dx2 ϕ(x1)Πren

S=0(x1 − x2)ϕ(x2)

−
∞

∑
n=3

in

n

 1√
Π̃′

S=0(m2)

n∫
dx1 . . .

∫
dxnϕ(x1) . . .ϕ(xn) tr[ΓSq(x1 − x2) . . .ΓSq(xn − x1)]

}
. (2.8)

2. The bare Lagrangian of the Yukawa interaction of the boson field ϕ0 with the fermions reads

LY = q̄(i ̸∂ −mq)q +
1
2

ϕ0(�−m2
0)ϕ0 +g0ϕ0

(
q̄Γq

)
, �=−∂ µ∂µ . (2.9)

The vacuum generating functional for the Yukawa theory is

ZY =
∫

Dϕ0

∫
D q̄

∫
Dqei

∫
dxLY (x) . (2.10)

Hereafter, we will drop all irrelevant normalization constants. Integrate out the quark fields and
collect the terms bi-linear in the boson fields by using the expansion (2.5). One finds

L(2)
Y =

1
2

∫
dxϕ0(x)(�−m2

0 +g2
0Π̃S=0(m2)+(�−m2)Π̃′

S=0(m
2))ϕ0(x)

+
1
2

g2
0

∫
dx1

∫
dx2 ϕ0(x1)Πren

S=0(x1 − x2)ϕ0(x2) . (2.11)

Note, the renormalization of boson mass, wave function and Yukawa coupling proceeds as follows:

m2 = m2
0 −g2

0 Π̃S=0(m2), ϕr = Z−1/2ϕ0, gr = Z1/2g0, Z =
1

1+g2
0 Π̃′

S=0(m2)
. (2.12)

The renormalization constant Z may be expressed via the renormalized coupling constant

Z = 1−g2
r Π̃′

S=0(m
2) . (2.13)

Finally, the renormalized generating functional for the Yukawa theory is rewritten as follows:

Zren
Y =

∫
Dϕr exp

{ i
2

∫
dxϕr(x)(�−m2)ϕr(x)+

i
2

g2
r

∫
dx1

∫
dx2 ϕr(x1)Πren

S=0(x1 − x2)ϕr(x2)

−
∞

∑
n=3

in

n
gn

r

∫
dx1 . . .

∫
dxnϕr(x1) . . .ϕr(xn)tr[ΓSq(x1 − x2) . . .ΓSq(xn − x1)]

}
. (2.14)
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We drop the linear boson term because it is absent for pseudoscalar mesons and it can be removed
in the scalar case by a shift of the field.

Comparing both renormalized generating functionals of Eqs. (2.14) and (2.8) we conclude that
the condition for their equality is

gr =
1√

Π̃′
S=0(m2)

(2.15)

or, according to Eq. (2.13),
Z = 1−g2

r Π̃′
S=0(m

2) = 0 . (2.16)

Thus the vanishing of the wave function renormalization constant in the Yukawa theory may be
interpreted as the elimination of the bare field ϕ0 = Z1/2ϕr for a composite boson.

3. Mass function in the covariant quark model

The interaction of the ground-state pseudoscalar and vector mesons with their constituent
quarks is described in the covariant quark model by a Lagrangian which reads

Lint = gHH(x)JH(x) ; JH(x) =
∫

dx1

∫
dx2FH(x;x1,x2)q̄2(x2)ΓHq1(x1) . (3.1)

Here, ΓP = iγ5 and Γµ
V = γµ are chosen for the pseudoscalar and vector mesons, respectively. The

vector meson field ϕ µ has the Lorentz index µ and satisfies the transversality condition

∂µϕ µ = 0 . (3.2)

For the vertex function FH we use the translational invariant form

FH(x,x1,x2) = δ (x−w1x1 −w2x2)ΦH((x1 − x2)
2) (3.3)

where wi = mqi/(mq1 +mq2) so that w1 +w2 = 1. The Fourier transform of the vertex function is
chosen in a Gaussian form

Φ̃H(−p2) =
∫

dxeipxΦH(x2) = ep2/Λ2
H (3.4)

for both the pseudoscalar and vector mesons. The size parameter ΛH is an adjustable quantity.
Since the calculation of the Feynman diagrams proceeds in the Euclidean region where p2 =−p2

E ,
the vertex function decreases very rapidly for p2

E →∞ and thereby provides ultraviolet convergence
in the evaluation of any diagram.

The mass functions for the pseudoscalar (spin S = 0) and vector mesons (spin S = 1) are:

ΠPP(x− y) = + i⟨T
{

JP(x)JP(y)
}
⟩0, (3.5)

Πµν
VV (x− y) = − i⟨T

{
Jµ

V (x)J
ν
V (y)

}
⟩0 . (3.6)

Using the Fourier transforms of the vertex functions in (3.4) and the quark propagator in the
Schwinger representation

Sq(x− y) =
∫ d4k

(2π)4i
e−ik(x−y)

mq− ̸k
. (3.7)

5
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one can easily find the Fourier transforms of the mass functions

Π̃PP(p2) = Nc

∫ d4k
(2π)4i

Φ̃2
P(−k2)tr

(
γ5S1(k+w1 p)γ5S2(k−w2 p)

)
, (3.8)

Π̃µν
VV (p) = Nc

∫ d4k
(2π)4i

Φ̃2
V (−k2)tr

(
γµS1(k+w1 p)γνS2(k−w2 p)

)
= gµνΠ̃VV g(p2)+ pµ pνΠ̃VV pp(p2) (3.9)

where Nc = 3 is a number of color degrees of freedom. Due to the transversality of the vector field
the second term in Eq. (3.9) is irrelevant in our considerations. The first remaining term in Eq. (3.9)
can be expressed as

Π̃VV g(p2) =
1
3
(
gµν −

pµ pν

p2

)
Π̃µν

VV (p) . (3.10)

By using the calculational technique from Ref. [16] one finds

Π̃H(p2) =
3

4π2

1/λ 2∫
0

dt t
a2

H

1∫
0

dα e−t z0+zH
{nH

aH
+mq1mq2 +

(
w1 −

b
aH

)(
w2 +

b
aH

)
p2
}
, (3.11)

where

z0 = αm2
q1
+(1−α)m2

q2
−α(1−α)p2 , zH =

2sHt
2sH + t

(α −w2)
2 p2 ,

aH = 2sH + t , b = (α −w2)t . (3.12)

Here nP = 2 and nV = 1. We use the result of the fit [17] for the value of infrared cutoff with
λ = 181 MeV. The parameter sH is related to the size parameter ΛH as sH = 1/Λ2

H . Note that in
the case λ → 0 the branching point appears at p2 = (mq1 +mq2)

2. At this point the integral over t
becomes divergent as t → ∞ because of z0 = 0 at α = mq2/(mq1 +mq2). By introducing an infrared
cutoff on the upper limit of the scale integration one can avoid the appearance of the threshold
singularity.

The compositeness condition

ZH = 1−g2
H Π̃′

H(m
2
H) = 0 , (3.13)

where gH is the renormalized Yukawa coupling constant, now has a clear mathematical meaning
because the mass function ΠH in Eq. (3.11) is well defined.

As discussed in the previous section, the Yukawa theory defined by the interaction Lagrangian
of Eq. (3.1) is equivalent to the Fermi theory defined by the interaction Lagrangian

L F
int =

G
2

J2
H(x) (3.14)

if the wave function renormalization constant ZH is equal to zero and the Fermi coupling G satisfies
the equation

GΠ̃H(m2
H) = 1 . (3.15)

Now we are able to investigate the dependence of the Fermi coupling G on the hadron masses.

6
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4. Numerical results

A first fit of the model parameters has originally been performed in Ref. [16], where the above
described method for implementing infrared quark confinement was used for the first time. The
leptonic decay constants which are known either from experiment or, from lattice simulations have
been chosen as input quantities to adjust the model parameters. A given meson H in the interaction
Lagrangian Eq. (3.1) is characterized by the coupling constant gH , the size parameter ΛH and
two of the four constituent quark masses, mq (mu = md , ms, mc, mb). Moreover, there is the
infrared confinement parameter λ which is universal for all hadrons. Note, the physical values
for the hadron masses have been used in the fit. In the beginning we have 2nH + 5 adjustable
parameters for nH number of mesons. The compositeness condition provides nH constraints and
allows one to express all coupling constants gH through other model parameters. The remaining
nH + 5 parameters are determined by a fit to experimental data. As input data the values of the
leptonic decay constants and some electromagnetic decay widths are chosen.

Later on, several updated fits were indicated in Ref. [17]. In this paper we will use one of them
which is slightly different from the published version. The reason is that in the published version
[17] the value of the charm quark mass was found to be mc = 2.16 GeV which is a somewhat
higher than the value needed to describe some observables of in the charm sector. The results of
the (overconstrained) least–squares fit used in the present study can be found in Tables 1 and 2.

Table 1: Input values for the leptonic decay constants fH (in MeV) and our least-squares fit values.

Fit Values Data Ref.

fπ 128.4 130.4±0.2 [20, 21]

fK 156.0 156.1±0.8 [20, 21]

fD 206.7 206.7±8.9 [20, 21]

fDs 257.5 257.5±6.1 [20, 21]

fB 189.7 192.8±9.9 [22]

fBs 235.3 238.8±9.5 [22]

fηc 386.6 438±8 [23]

fBc 445.6 489±5 [23]

fηb 609.1 801±9 [23]

Fit Values Data Ref.

fρ 221.2 221±1 [20]

fω 204.2 198±2 [20]

fϕ 228.2 227±2 [20]

fJ/Psi 415.0 415±7 [20]

fK∗ 215.0 217±7 [20]

fD∗ 223.0 245±20 [24]

fD∗
s

272.0 272±26 [24]

fB∗ 196.0 196±44 [24]

fB∗
s

229.0 229±46 [24]

fϒ 661.3 715±5 [20]

The agreement between the fit and input values is quite satisfactory. We do not include decay
results for the η(η ′)-mesons because the primary goal of our present study is to understand the
origin of the meson masses in the framework of the CCQM. The η(η ′)-mesons have the additional
features like the mixing angle and an possibly important gluon admixture to the conventional qq̄-
structure of the η ′.

Some aspects of the nonleptonic Bs-meson decays with η(η ′) in the final states were recently

7
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Table 2: Input values for some basic electromagnetic decay widths and our least-squares fit values (in keV).

Process Fit Values Data [20]

π0 → γγ 5.07×10−3 (7.7±0.4)×10−3

ηc → γγ 3.47 5.0 ± 0.4

ρ± → π±γ 76.3 67 ± 7

ω → π0γ 687 703 ± 25

K∗± → K±γ 57.7 50 ± 5

K∗0 → K0γ 129 116 ± 10

D∗± → D±γ 0.59 1.5 ± 0.5

J/Ψ → ηcγ 1.90 1.58 ± 0.37

discussed in Ref. [25]. The results of the fit for the values of the quark masses mqi , the infrared
cutoff parameter λ and the size parameters ΛHi are given in (4.1) and in Table 3, respectively.

The constituent quark masses and the values for the size parameters fall into the expected
range. The size parameters show the expected general pattern: the geometrical size of a meson,
which is inversely proportional to ΛHi , decreases when the mass increases.

mu/d ms mc mb λ

0.235 0.442 1.61 5.07 0.181 GeV
(4.1)

Table 3: The fitted values of the size parameters ΛH in GeV.

π K D Ds B Bs Bc ηc ηb

0.87 1.02 1.71 1.81 1.90 1.94 2.50 2.06 2.95

ρ ω ϕ J/Ψ K∗ D∗ D∗
s B∗ B∗

s ϒ

0.61 0.50 0.91 1.93 0.75 1.51 1.71 1.76 1.71 2.96

The present numerical least-squares fit and the values for the model parameters supersede the
results of a similar analysis given in [16], where a different set of electromagnetic decays has been
used. In the present fit we have also updated some of the theoretical/experimental input values.

Our prime goal is to study the behavior of the Fermi coupling G in Eq. (3.15) as a function
of the hadron masses by keeping other parameters (infrared cutoff parameter λ , size parameters
ΛH and constituent quark masses mq) fixed. The original dependence of G on the hadron mass is
obtained by directly taking the physical values, resulting in a sawtooth-like behavior. Therefore,
we suggest to change the values of the input hadron masses in such a way to get a relatively smooth

8
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dependence of G on the masses. A smoothness criterion might be considered as a possibility, when
values for the meson masses are computed through Eq. (3.15) as a function of the other model
parameters. The obtained smooth dependence of the dimensionless quantity Gλ 2 on these masses
is shown in Fig. 1 where the calculated values are connected by straight lines.

0 1 2 3 4 5 6 7
m

H
 (GeV)

0

0.5

1

1.5

λ2 G
 (

m
H

)

Figure 1: The dependence of the Fermi coupling on the fitted meson masses.

The estimated values for the meson masses found in this manner are shown in Table 4.
One can see that they are in quite good agreement with the experimental data. For complete-

ness in Table 5 we also present our results for the effective couplings Gλ 2 in the case of exact fit
(when the values of meson masses are taken from data) and in the case of the smooth fit.

It might be interesting to compare the behavior of G with the effective QCD coupling constant
αs obtained in the relativistic models with specific forms of analytically confined quark and gluon
propagators [8, 9, 10]. In these models the nonlocal four-quark interaction is induced by one-gluon
exchange between biquark currents. Since the quark currents are connected via the confined gluon
propagator having the dimension of an inverse mass squared in momentum space, the resulting
coupling αs is dimensionless. In Fig. 2 we compare the mass dependence of the rescaled dimen-
sionless Fermi coupling αmodel

s ≡ 1.74Gλ 2 [solid line] estimated for the model parameters given
by Eq. (4.1) with the effective QCD coupling αs [dashed line] obtained in [9, 10].

The idea of such a comparison by rescaling of one coupling to another, where both of them are
having the plato behavior, looks quite reasonable. Note that this region is almost the same in both
approaches that is actually non-trivial information. After rescaling we are able to compare the be-
havior of two curves in the region of the small masses. They are different due to different dynamics
(confinement, quark propagators, vertex functions, etc.) implemented in these approaches. Note,
the particular choice of the model parameters used in Ref. [9] are mu/d = 0.193,ms = 0.293,mc =

1.848,mb = 4.693 GeV for the constituent quark masses and Λ = 0.345 GeV for the confinement

9
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Table 4: The fitted values for the meson masses in MeV

Model Data [20]

mπ 141.0 139.57018 ± 0.0003

mK 493.0 493.677 ± 0.016

mρ 778.0 775.26 ± 0.25

mω 806.0 782.65 ± 0.12

mK∗ 893.0 891.66 ± 0.26

mϕ 1011.0 1019.45 ± 0.02

mD 1915.0 1869.62 ± 0.15

mDs 1998.0 1968.50 ± 0.32

mD∗ 2001.0 2010.29 ± 0.13

mD∗
s

2099.0 2112.3 ± 0.5

Model Data [20]

mηc 2922.0 2983.7 ± 0.7

mJ/Ψ 3067.0 3096.916 ± 0.011

mB 5425.0 5279.26 ± 0.17

mB∗ 5450.0 5325.2 ± 0.4

mBs 5524.0 5366.77 ± 0.24

mB∗
s

5566.0 5415.8 ± 1.5

mBc 6041.0 6274.5 ± 1.8

mηb 8806.0 9398.0 ± 3.2

mϒ 8880.0 9460.30 ± 0.26

Table 5: Values for effective couplings Gλ 2 in cases of exact and smooth fit

Exact fit Smooth fit

π 1.508 1.507

K 0.919 0.920

ρ 0.571 0.560

ω 0.673 0.553

K∗ 0.476 0.472

ϕ 0.377 0.400

D 0.224 0.195

Ds 0.197 0.184

D∗ 0.168 0.180

D∗
s 0.158 0.170

Exact fit Smooth fit

ηc 0.128 0.141

J/Ψ 0.129 0.139

B 0.215 0.125

B∗ 0.237 0.124

Bs 0.192 0.122

B∗
s 0.232 0.121

Bc 0.0905 0.118

ηb 0.0612 0.0986

ϒ 0.0600 0.0984

scale. Despite the different model origins and input parameter values, the behaviors of two curves
are very similar to each other in the intermediate and heavy mass regions above ∼ 2 GeV. Their
values at the origin are mostly determined by the confinement mechanisms realized in different
ways in these models. This could explain why they have different behaviors in the low-energy
region below 2 GeV.

In conclusion, we have represented a brief sketch of an approach to the bound state problem
in quantum field theory which is based on the compositeness condition ZH = 0. By using the
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Figure 2: The comparison of the effective coupling αs(mH) obtained in [9, 10] (dashed line) with our
calculated dimensionless coupling λ 2G(mH) (solid line) scaled to the curve αs(mH) in the region of large
masses.

functional integral we have demonstrated explicitly that the four-fermion theory with the Fermi
coupling G is equivalent to the Yukawa-type theory if, first, the wave function renormalization
constant in the Yukawa theory is equal to zero and, second, the Fermi coupling G is inversely
proportional to the meson mass function calculated for the physical meson mass.

We have given details for the calculation of the mass function for pseudoscalar and vector
mesons in the framework of the covariant quark model. We updated the fit of the model parameters
and calculated the Fermi coupling G as a function of physical masses in a quite large region from
the π up to Bc mesons.

We have suggested a smoothness criterion for the curve just varying the meson masses in such
a way to obtain the smooth behavior for the Fermi coupling G. The mass spectrum obtained in
this manner is found to be in good agreement with the experimental data. We have compared the
behavior of G with the strong QCD coupling αs calculated in the QCD-inspired approach.
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