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Relativistic corrections to Bc mesons pair production in proton–proton collisions A.M. Trunin

1. Introduction

The description of heavy quarkonium represents a well-known and actively developing prob-
lem of the QCD [1]. Consistent progress in experimental studies in this area requires an adequate
theoretical improvements and speculations in attempt to explain the arising puzzles in observed
data. For example, the additional color-octet mechanism [2, 3] was used to achieve the agree-
ment between theoretical predictions and the Tevatron results for pp̄→ ψ ′+X cross section [4].
Analogously, the recent measurements of pair J/ψ production in pp–interaction [5, 6] suggest the
necessity of additional contributions, required to correctly describe cross section spectrum over the
transverse momentum. Due to the overwhelming gluonic density at the LHC, the source of these
contributions can be, at least partially, attributed to the processes of double parton scattering [7, 8].

Another potentially important way of cross section improvement is connected with relativis-
tic effects. Such sort of corrections was found to be crucial for plausible theoretical description
of pair J/ψ and ηc mesons production in e+e− annihilation measured by Belle and BaBar col-
laborations [9]. Particularly, relativistic corrections were showed to be equal about 50% of initial
nonrelativistic result in the framework of nonrelativistic quantum chromodynamics (NRQCD) [10],
representing effecitve field theory for heavy quarkonium [3]. Their significant contribution to the
cross section was also confirmed by calculations in light-cone approach [11] and relativistic quark
model [12]. Following this precedent, the role of relativism has been investigated for the numerous
processes of charmonium production in electron–positron annihilation and proton–proton colli-
sions [13]. Relativistic effects were found to be large not only for exclusive or semi–exclusive
reactions, but also in the case of several inclusive production processes [14].

In this paper we continue our study of double heavy quarkonium production in proton–proton
interaction [15] by considering the pairs of pseudoscalar and vector Bc mesons on the basis of a
relativistic quark model. The description of this process in nonrelativistic approximation can be
found in Ref. [16]. We calculate several types of relativistic corrections to σ(p+ p→ Bc+ B̄c+X)

and then show how they consequently change the nonrelativistic cross section.

2. General formalism

In collinear approximation the cross section of pair Bc mesons production in high energy
proton–proton collisions has the form of the convolution of partonic cross section dσ [gg→ Bc + B̄c]

with the partonic distribution functions of the initial protons [17, 18, 19]:

dσ [p+ p→ Bc + B̄c +X ] =
∫

dx1dx2 fg/p(x1,µ) fg/p(x2,µ)dσ [gg→ Bc + B̄c], (2.1)

where fg/p(x,µ) is the distribution function for gluon in proton, x1,2 are the longitudinal momen-
tum fractions of gluons, µ is the factorization scale. Neglecting the proton mass and taking c.m.
reference frame of the initial protons with the beam along the z-axis we can present the gluon on
mass–shell momenta as k1,2 = x1,2

√
S

2 (1,0,0,±1). In (2.1) we assume that the main contribution to
the cross section comes from the gluon fusion process gg→ Bc + B̄c, as it can be expected at the
high c.m. collision energies

√
S = 7−14 TeV at the LHC [17, 20].

In the quasipotential approach the production amplitude for the gluonic subprocess can be
expressed as a convolution of a perturbative production amplitude of (b̄c) and (bc̄) quark–antiquark
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Figure 1: The leading order diagrams contributing to gg→ Bc + B̄c subprocess. The others can be obtained
by reversing the quark lines or interchanging the initial gluons

pairs T (p1, p2;q1,q2) and the quasipotential wave functions of the final Bc and B̄c mesons Ψ(p,P)
and Ψ(q,Q) [12, 15]:

M [gg→ Bc + B̄c](k1,k2,P,Q) =
∫ dp

(2π)3

∫ dq
(2π)3 Ψ̄(p,P)Ψ̄(q,Q)⊗T (p1, p2;q1,q2), (2.2)

where p1,2 are four–momenta of c and b̄ (anti)quarks forming Bc meson, and q1,2 are the appropriate
four–momenta for c̄ and b (anti)quarks in B̄c meson. They are defined in terms of total momenta
P(Q) and relative momenta p(q) as follows:

p1,2 = η1,2P± p, (pP) = 0; q1,2 = η1,2Q±q, (qQ) = 0,

η1,2 =
M2±m2

c∓m2
b

2M2 ,
(2.3)

where M = MBc = MB̄c
is the meson mass, p = LP(0,p) and q = LQ(0,q) are the relative four–

momenta obtained by the Lorentz transformation of four–vectors (0,p) and (0,q) to the reference
frames moving with the four–momenta P and Q of the final mesons Bc and B̄c. In Eq. (2.2) we
integrate over the relative three–momenta of quarks and antiquarks in the final state.

In the leading order in the strong coupling constant αs, there are 31 Feynman diagrams con-
tributing to the described gluon fusion subprocess gg→ Bc + B̄c, which are presented in Fig. 1.
Analytical evaluation of the diagrams and subsequent calculation of traces in the corresponding
expressions were performed by FeynArts for Mathematica [21] and FORM [22]. Then we obtain
the following result for the leading order production amplitude (2.2):

M [gg→ Bc + B̄c](k1,k2,P,Q) =
1
9

Mπ
2
α

2
s

∫ dp
(2π)3

∫ dq
(2π)3 TrM, (2.4)

M= Ψ̄(p,P)γβ Γ
βω

1 Ψ̄(q,Q)γω + Ψ̄(p,P)γβ Ψ̄(q,Q)γωΓ
βω

2

+Ψ̄(p,P)ε̂1
mc− k̂1 + p̂1

(k1− p1)2−m2
c

γβ Ψ̄(q,Q)Γ
β

3 + Ψ̄(p,P)γβ

mc + k̂1− q̂1

(k1−q1)2−m2
c

ε̂1Ψ̄(q,Q)Γ
β

4

+Ψ̄(p,P)ε̂2
mc− k̂2 + p̂1

(k2− p1)2−m2
c

γβ Ψ̄(q,Q)Γ
β

5 + Ψ̄(p,P)γβ

mc + k̂2− q̂1

(k2−q1)2−m2
c

ε̂2Ψ̄(q,Q)Γ
β

6 ,

3
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where ε1,2 are polarization vectors of the initial gluons, the hat symbol means contraction of the
four–vector with the Dirac gamma–matrices, and a number of vertex functions Γi was introduced
to make the entry of the amplitude (2.4) more compact. We explicitly extracted in (2.4) the nor-
malization factors

√
2M of the quasipotential wave functions.

The formation of Bc mesons from quark–antiquark pairs is determined in the quark model
by the quasipotential wave functions Ψ(p,P) and Ψ(q,Q). These wave functions are calculated
initially in the meson rest frame and then transformed to the reference frames moving with the four–
momenta P and Q. The law of such transformation was derived in the Bethe–Salpeter approach in
Ref. [23] and in the quasipotential method in Ref. [24]. We use the last one and obtain the following
expressions:

Ψ̄(p,P) =
Ψ̄0(p)√

ec(p)
mc

ec(p)+mc
2mc

eb(p)
mb

eb(p)+mb
2mb

[
v̂1−1

2
+ v̂1

p2

2mb(eb(p)+mb)
− p̂

2mb

]

×Σ
P(1+ v̂1)

[
v̂1 +1

2
+ v̂1

p2

2mc(ec(p)+mc)
+

p̂
2mc

]
,

Ψ̄(q,Q) =
Ψ̄0(q)√

ec(q)
mc

ec(q)+mc
2mc

eb(q)
mb

eb(q)+mb
2mb

[
v̂2−1

2
+ v̂2

q2

2mc(ec(q)+mc)
+

q̂
2mc

]

×Σ
Q(1+ v̂2)

[
v̂2 +1

2
+ v̂2

q2

2mb(eb(q)+mb)
− q̂

2mb

]
,

(2.5)

where mc,b are quark masses, ec,b(p) =
√

p2 +m2
c,b, v1 = P/M, v2 = Q/M, and ΣP,Q is equal to

γ5 and ε̂P,Q for pseudoscalar (Bc) and vector (B∗c) mesons. The polarization vectors εP,Q of vector
mesons fulfill the relations (εPP) = 0 and (εQQ) = 0.

Leading order vertex functions Γi in (2.4) have the following explicit form:

Γ
βω

1 = 18Dµ
β (p1 +q1)Dν

ω(p2 +q2)
[
2ε1ε2gµν − ε

µ

1 ε
ν
2 − ε

ν
1 ε

µ

2

+iDκλ (k1− p1−q1)E
κµ

1 (p1 +q1)E
λν
2 (p2 +q2)+ iDκλ (k1− p2−q2)E

λν
1 (p2 +q2)E

κµ

2 (p1 +q1)
]

−iεβ

1 Dµ
ω(p2 +q2)

mc− k̂1 + p̂1

(k1− p1)2−m2
c

[
γ

µ mc + k̂2− q̂1

(k2−q1)2−m2
c

ε̂2−8ε̂2
mc− p̂2− q̂1− q̂2

(p2 +q1 +q2)2−m2
c

γ
µ

−9iEνµ

2 (p2 +q2)Dνρ(k1− p1−q1)γ
ρ

]
− iεβ

2 Dµ
ω(p2 +q2)

mc− k̂2 + p̂1

(k2− p1)2−m2
c

×
[
γ

µ mc + k̂1− q̂1

(k1−q1)2−m2
c

ε̂1−8ε̂1
mc− p̂2− q̂1− q̂2

(p2 +q1 +q2)2−m2
c

γ
µ −9iEνµ

1 (p2 +q2)Dνρ(k1− p2−q2)γ
ρ

]
+8iDβω(p2 +q2)

mc + p̂1 + p̂2 + q̂2

(p1 + p2 +q2)2−m2
c

[
ε̂1

mc + k̂2− q̂1

(k2−q1)2−m2
c

ε̂2 + ε̂2
mc + k̂1− q̂1

(k1−q1)2−m2
c

ε̂1

]
+9Dν

ω(p2 +q2)
[
E

µν

2 (p2 +q2)Dµ
β (k1− p1−q1)

mc + k̂1− q̂1

(k1−q1)2−m2
c

ε̂1

+E
µν

1 (p2 +q2)Dµ
β (k1− p2−q2)

mc + k̂2− q̂1

(k2−q1)2−m2
c

ε̂2

]
,

4
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Γ
βω

2 =−iεω
1 Dµ

β (p1 +q1)
mb− k̂1 + q̂2

(k1−q2)2−m2
b

[
γ

µ mb + k̂2− p̂2

(k2− p2)2−m2
b

ε̂2−8ε̂2
mb− p̂1− p̂2− q̂1

(p1 + p2 +q1)2−m2
b

γ
µ

−9iEνµ

2 (p1 +q1)Dνρ(k1− p2−q2)γ
ρ

]
− iεω

2 Dµ
β (p1 +q1)

mb− k̂2 + q̂2

(k2−q2)2−m2
b

×
[
γ

µ mb + k̂1− p̂2

(k1− p2)2−m2
b

ε̂1−8ε̂1
mb− p̂1− p̂2− q̂1

(p1 + p2 +q1)2−m2
b

γ
µ −9iEνµ

1 (p1 +q1)Dνρ(k1− p1−q1)γ
ρ

]
+8iDβω(p1 +q1)

mb + p̂1 + q̂1 + q̂2

(p1 +q1 +q2)2−m2
b

[
ε̂1

mb + k̂2− p̂2

(k2− p2)2−m2
b

ε̂2 + ε̂2
mb + k̂1− p̂2

(k1− p2)2−m2
b

ε̂1

]
+9Dµ

β (p1 +q1)
[
E

νµ

2 (p1 +q1)Dν
ω(k1− p2−q2)

mb + k̂1− p̂2

(k1− p2)2−m2
b

ε̂1

+E
νµ

1 (p1 +q1)Dν
ω(k1− p1−q1)

mb + k̂2− p̂2

(k2− p2)2−m2
b

ε̂2

]
,

Γ
β

3 = iDµ
β (k1− p1−q1)

[
8γ

µ mb + k̂2− p̂2

(k2− p2)2−m2
b

ε̂2− ε̂2
mb− k̂2 + q̂2

(k2−q2)2−m2
b

γ
µ

]
,

Γ
β

4 = iDµ
β (k1− p1−q1)

[
8ε̂2

mb− k̂2 + q̂2

(k2−q2)2−m2
b

γ
µ − γ

µ mb + k̂2− p̂2

(k2− p2)2−m2
b

ε̂2

]
,

Γ
β

5 = iDµ
β (k1− p2−q2)

[
8γ

µ mb + k̂1− p̂2

(k1− p2)2−m2
b

ε̂1− ε̂1
mb− k̂1 + q̂2

(k1−q2)2−m2
b

γ
µ

]
,

Γ
β

6 = iDµ
β (k1− p2−q2)

[
8ε̂1

mb− k̂1 + q̂2

(k1−q2)2−m2
b

γ
µ − γ

µ mb + k̂1− p̂2

(k1− p2)2−m2
b

ε̂1

]
, (2.6)

where we introduce the tensors

E
µν

1,2(x) = gµν(k1,2−2x)ε1,2 + ε
µ

1,2(2kν
1,2− xν)+ ε

ν
1,2(k

µ

1,2 + xµ), E
µ

1,2(x) = ε
ν
2,1E

µν

1,2(x) (2.7)

and Dµν(k) is the gluon propagator, which is subsequently taken in the Feynman gauge.
The production amplitude (2.4) and vertex functions (2.6) contain relative momenta p and q

in exact form. In order to take into account relativistic corrections of the second order in p and q
we expand all inverse denominators of the quark and gluon propagators:

1
(p1,2 +q1,2)2 =

1
Z0

[
1∓ 2η1,2(pQ+qP)

Z0
− p2 +2pq+q2

Z0
+ . . .

]
,

1
(p2 +q1 +q2)2−m2

c
=

1
Z1

[
1+

2pQ− p2

Z1
+

4(pQ)2

Z2
1

+ . . .
]
,

1
(k2−q1)2−m2

c
=

1
Z2

[
1+

2k2q−q2

Z2
+

4(k2q)2

Z2
2

+ . . .
]
,

(2.8)

where s=(k1+k2)
2 =(P+Q)2 = x1x2S and t =(P−k1)

2 =(Q−k2)
2 are the Mandelstam variables

for the gluonic subprocess, and leading order expansion denominators are Z0 = sη2
1,2, Z1 = sη1 +

η2
2 M2−m2

c , and Z2 = t η1−η1η2M2−m2
c . The amplitude (2.4) contains 16 different denominators

to be expanded in the manner of Eq. (2.8). Temporarily neglecting the bound state corrections,

5
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we found that expansion denominators have one of the following form: sη1,2, sη2
1,2, η1,2(M2− t)

or η1,2(M2− s− t). Then, taking into account kinematical restrictions for s and t, along with the
nonrelativistic estimate η1 = mc/(mc +mb)≈ 1/4, we conclude that expansion parameters in (2.8)
are at least as small as 4p2/M2 and 4q2/M2.

Preserving in the expanded amplitude terms up to the second order both in the relative mo-
menta p and q, we perform angular integration using the following relations for S-wave mesons:

∫
ΨS

0(p)√
ec(p)

mc

ec(p)+mc
2mc

eb(p)
mb

eb(p)+mb
2mb

dp
(2π)3 =

1√
2π

∞∫
0

p2RS(p)√
ec(p)

mc

ec(p)+mc
2mc

eb(p)
mb

eb(p)+mb
2mb

d p,

∫ pµ pν ΨS
0(p)√

ec(p)
mc

ec(p)+mc
2mc

eb(p)
mb

eb(p)+mb
2mb

dp
(2π)3 =−

gµν − v1µv1ν

3
√

2π

∞∫
0

p4RS(p)√
ec(p)

mc

ec(p)+mc
2mc

eb(p)
mb

eb(p)+mb
2mb

d p, (2.9)

where RS(p) is the radial wave function.
In order to calculate the cross section we average the squared modulus of the amplitude over

polarizations of the initial gluons and also sum it over final particle polarizations in the case of pair
vector mesons production:

∑
λ

ε
µ

1,2 ε
∗ ν
1,2 =

kµ

1 kν
2 + kν

1 kµ

2
(k1k2)

−gµν , ∑
λ

ε
µ

P,Q ε
∗
P,Q

ν = vµ

1,2vν
1,2−gµν . (2.10)

After averaging over 8×8 possible initial gluons color states, we obtain the following expression
for the differential cross section of pair Bc mesons production:

dσ [gg→ Bc + B̄c](s, t) =
πM2α4

s

65536s2 |R̃(0)|
4×[

F(1)(s, t)−4(ω01 +ω10−ω11)F(1)(s, t)−4m−1
c m−1

b (m2
cω 1

2
3
2
+m2

bω 3
2

1
2
)F(1)(s, t)

+6(ω01 +ω10)
2F(1)(s, t)+ω 1

2
1
2
(1−3ω01−3ω10)F(2)(s, t)+ω

2
1
2

1
2
F(3)(s, t)

]
.

(2.11)

The parameter R̃(0) in (2.11) has the following definition

R̃(0) =

√
2
π

∫
∞

0

√
(ec(p)+mc)(eb(p)+mb)

2ec(p)2eb(p)
R(p)p2 d p (2.12)

and represents the relativistic generalization for the value of coordinate wave function at the origin
R(0). The relativistic parameters ωnk are expressed through momentum integrals of the radial wave
function R(p):

Ink =
∫ mc

0
p2R(p)

√
(ec(p)+mc)(eb(p)+mb)

2ec(p)2eb(p)

(
ec(p)−mc

ec(p)+mc

)n(eb(p)−mb

eb(p)+mb

)k

d p,

ωnk =

√
2
π

Ink

R̃(0)
.

(2.13)

The functions F(i)(s, t) in (2.11) represent leading order term in heavy quark velocity expansion
of the cross section and relativistic corrections to it. Their analytical expressions are extremely
lengthy, so we do not present them here.

6
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Table 1: Numerical values of the parameters describing pseudoscalar and vector Bc mesons

Meson n2S+1LJ M, R̃(0), ω10 ω01 ω 1
2

1
2

ω11 ω 1
2

3
2

ω 3
2

1
2

state GeV GeV3/2

Bc 11S0 6.289 0.96 0.0439 0.0054 0.0153 0.00055 0.00020 0.0016
B∗c 13S1 6.323 0.86 0.0462 0.0056 0.0161 0.00057 0.00020 0.0016

3. Numerical results and discussion

The quasipotential wave functions are obtained by numerical solving of the Schrödinger equa-
tion with effective relativistic Hamiltonian based on the QCD generalization of the Breit potential
completed with the scalar and vector exchange confinement terms, as it is described in details in our
previous works [15, 25]. We give the values of Bc meson masses and relativistic parameters (2.12),
(2.13) in Table 1. Note that our definition (2.13) of relativistic integrals Ink contains a cutoff at
the value of c-quark mass Λ = mc. Although the integrals (2.13) are convergent, there are some
uncertainties in their calculation related with the determination of the wave function in the region
of relativistic momenta p & mc in our model.

The numerical results for the total cross section of pair pseudoscalar and vector Bc mesons pro-
duction corresponding to the energies

√
S = 7 and 14 TeV are presented in Table 2. The integration

in (2.1) is performed with partonic distribution functions from CTEQ5L and CTEQ6L1 sets [26].

The renormalization and factorization scales are set equal to transverse mass µ =mT =
√

M2 +P2
T .

The leading order result for strong coupling constant with initial value αs(µ =MZ) = 0.118 is used.
In nonrelativistic limit all parameters ωnk are equal zero and only F(1)(s, t) term survives in

square brackets of (2.11). Then, replacing R̃(0) by nonrelativistic value of radial wave function at
the origin R(0) =

√
2/π

∫
p2R(p)d p and assuming that meson mass is equal to the sum of masses

of constituent quarks M0 = mb +mc, we obtain our nonrelativistic predictions for the cross section
presented in third and fifth columns of Table 2. Nonrelativistic result R(0) = 1.18 GeV3/2 from our
model lies close to the value R(0) = 1.23 GeV3/2, which is commonly used in literature [16, 27].
Note that in the described limit our expressions for the cross section (2.11) and function F(1)(s, t)
coincide with the appropriate analytical results presented in Ref. [16] in the framework of NRQCD.

As it shown in Table 2, relativistic corrections decrease the cross section for B∗c mesons vec-
tor pair more than twice. In the case of pseudoscalar pair production their negative contribution
amounts about 25%. Total significant decrease of the cross sections results from cumulative ef-
fect of the several sources of relativistic corrections taken into account in Eq. (2.11). First of all,
there are corrections to quark–antiquark interaction considered by means of the generalized Breit
potential in our model [15, 25]. They lower the appropriate wave functions by 15−30%, but due
to the presence of the forth degree of the generalized relativistic parameter R̃(0) the corresponding
cross sections fall around three times. The second and the following terms in square brackets of
Eq. (2.11) represent perturbative corrections in the values of quark momenta p2 and q2 originating
from the production amplitude (2.4). Such relativistic contributions to the amplitude can be found
in exact form in the quasipotential wave functions transformation law (2.5) and were extracted
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Table 2: Cross sections of the pair pseudoscalar and vector Bc mesons production in proton–proton collisions

Energy
√

S Meson pair CTEQ5L CTEQ6L1
σnonrel , nb σrel , nb σnonrel , nb σrel , nb

√
S = 7 TeV

B∗c + B̄∗c
Bc + B̄c

0.96
0.57

0.46
0.44

0.88
0.52

0.42
0.39

√
S = 14 TeV

B∗c + B̄∗c
Bc + B̄c

2.09
1.24

1.00
0.93

1.83
1.08

0.88
0.81

explicitly in propagator expansions (2.8). These terms manifest themselves in 25% growth of the
cross section. Finally, we consider the effects connected with the non-zero values of the mesons
bound state energy W = M−mc−mb 6= 0. For described S-wave Bc mesons bound energy is nega-
tive, which leads to 30 and 40% cross section increase in the case of vector and pseudoscalar pairs,
respectively.

The total error of the numerical results for the cross section (2.11) is estimated to be 49%. In
order to obtain this value we sum in quadrature the errors from several sources of uncertainty in our
analysis: relativistic wave functions (40%), forth and higher orders perturbative contributions to the
amplitude (25%), and partonic distribution functions accuracy (15%) [15]. In this paper we consid-
ered pair Bc production in leading order in the strong coupling constant αs. Next-to-leading order
calculations for the similar process of pair J/ψ mesons production were performed in Ref. [28]
in nonrelativistic approximation, where the corresponding impact on the cross section is shown to
be about 10% for the LHCb kinematical conditions, covering effectively the whole range in trans-
verse momentum PT . The process gg→ 2J/ψ is described by the same color singlet diagrams
from Fig. 1, so that all analytical results for vector B∗c + B̄∗c pair remains valid for charmonium pro-
duction in the limit mb→ mc. Then, we can assume that NLO αs corrections to the cross section
values presented in Table 2 also will be at the level of 10%. Nevertheless, such corrections become
important in high PT regions realized in the kinematical cuts of the CMS experiment [6, 8, 28].
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