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The microscopic model of optical potential (OP) is applied for calculations of theπ± inelastic

scattering on the nuclei28Si, 58Ni, 40Ca,208Pb at energies 160, 180, 230 and 290 MeV with exci-

tations of the 2+ and 3− collective states. In so doing we use the nuclear density distributions and

the parameters of theπN-scattering amplitudes earlier obtained by fitting the pion-nucleus elastic

cross sections. Thus for inelastic scattering, the only adjusted parameters are the quadrupoleβ2

and octupoleβ3 deformations of nuclei. The cross sections were obtained bysolving the relativis-

tic wave equation, and thus the relativistic and distortioneffects in initial and final channels of the

process were accounted for exactly. The calculated cross sections were found to be in a fairly well

agreement with the corresponding experimental data. One should underline an important role of

the nuclear in-medium effect on theπN-scattering amplitude that reveals itself in the both elastic

and inelastic scattering.
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1. Introduction

In analysis of the data on inelastic scattering of pions fromnuclei we use the microscopic
folding-like optical potential (OP) derived in [1] for elastic scattering. This OP has been suc-
cessfully applied for elastic scattering of the K- and pi-mesons on nuclei [2], [3], [4], [5]. It is
constructed as a folding integral of a nuclear density form factor and the pion-nucleon amplitude of
scattering. When using this OP at intermediate energies we avoid problems inherent in the models
(see, e.g., [6]) based on the Glauber high-energy approximation for the scattering amplitudey [7].
Instead, for calculations of cross sections we apply the Klein-Gordon equation and thus take into
account the relativistic and distortion effects exactly. Also, the folding-like OP is presented in a
generalized form by introducing the small axiallity of the distance vectorr of motions, and thus
one can obtain the respective optical potentialU(r,{αλ µ}) depended on the deformation variables
αλ µ inherent in the collective motion of a nucleus. This enablesone to consider the inelastic cross
sections with excitations of the low lying 2+ and 3− collective states of nuclei. The object of this
paper is the detailed analysis of inelastic scattering of pions from nuclei at different energies in the
region of the 33-resonance. It was shown in [5] that at these energies, the in-medium effects on the
πN amplitude play an substantial role in the pion-nucleus elastic scattering. So, in this connection
the question arises on the role of this effect in inelastic scattering of pions on the same nuclei and
at the same energies when excitations of their low lying collective states take place.

In section 2, we present the main formulas for construction of the microscopic OP for elastic
and inelastic scattering of pions. In section 3, calculations of the pion-nucleus inelastic cross
sections are presented and the fitting parameters of the nuclear deformation and parameters of the
πN elementary amplitude are discussed.

2. Basic formulas and calculations

We start with the microscopic nuclear OP [1] given in the general form

U(r) = −
(h̄c)βc

(2π)2k

∫

e−iqrρ(q)FπN(q)d3q, (2.1)

whereβc is the ratio of the c.m. pion velocity to the light one1. Below in calculations the pion-
nucleon amplitude of scattering is taken as follows

FπN(q) =
k

4π
σ [i+α ] · f (q), f (q) = e−βq2/2, (2.2)

whereβ is the slope parameter,σ andα are the isospin averagedπN total cross section and the
ratio of the real to imaginary part of the amplitude of scattering FπN(0) at forward angles, while
ρ(q) is the form factor of a density distribution function of barenucleons in a nucleus normalized
to atomic numberA

ρ(q) =
∫

eiqr ρ(r)d3r. (2.3)

1 In eq.(2.1), it is used units MeV and fm, and thenh̄c = 197.327 MeV·fm. In the other cases we employ the natural
system of units wherēh = c = 1, and thusE, T, k, m have the same dimension [MeV].
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Figure 1. Comparisons of calculated differential cross sections ofπ±-mesons scattered on28Si at
Tlab=180 and 226 MeV to experimental data from [13]. Left panel isfor elastic scattering, right
panel - for inelastic scattering with excitations of the respectiveλ = 2+ and (or) 2− states. In
both panels, dashed curves are calculations with parameters σ , α , βπ of the freeπN amplitudes
at respective energies, solid lines are for those fitted in [5] to the data on elastic scattering. The
values of the fitted deformation parameters are shown on the right panel.

Usually in calculations of the pion-nucleus elastic cross sections the nuclear densities are taken as a
spherically-symmetric functionsρ(r) = ρ(r). So, in our preceding study [5] of the pion scattering
on a set of nuclei the nuclear densitiesρ(r) were taken in the form of the fermi functions with the
known fixed parameters of the radiusR and diffusenessa. On the other hand, the parameters of the
amplitude of scattering (2.2) of pions on the bounded nuclear nucleons were fitted by comparisons
of the calculated pion-nucleus cross sections with existing experimental data, and thus the table of
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Figure 2. The same as in Fig.1 but for the target nucleus40Ca, the energy of pionsTlab=180 MeV,
and experimental data are from [14].

the so-called in-medium parametersσ , α , β were established at different collision energies. In
fact, they occur rather different as compared to those obtained from scattering on free nucleons.

In the present study we intend to verify if these in-medium parameters would remain their
values as before but for inelastic scattering of pions at thesame energies on the same nuclei. To
this end we construct the transition potentials for inelastic scattering starting from the standard
prescription [8] to deform ther-surfaces by adding a small axially-symmetric admixture

r ⇒ r + δ (λ)(r), δ (λ)(r) = −r(r/R)λ−2∑
µ

αλ µYλ µ(r̂), λ = 2,3. (2.4)

Hereαλ µ are the collective motion variables of a nucleus.
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Substituting (2.4) into (2.3) and then in (2.1), and terminating their expansions at linear terms in
δ (λ)(r) one obtains the respective density and its form factor

ρ(r) = ρ(r) + ρλ (r) ∑
µ

αλ µYλ µ (r̂), ρλ (r) = −r
dρ(r)

dr
(r/R)λ−2 (2.5)

ρ(q) = ρ(q) + ρλ (q) iλ ∑
µ

αλ µYλ µ(q̂), (2.6)

where
ρ(q) = 4π

∫

j0(qr)ρ(r)r2dr, ρλ (q) = 4π
∫

jλ (qr)ρλ (r)r2dr. (2.7)

Finally, substituting (2.6) in (2.1) we obtain the direct and transition potentials for calculations
of elastic and inelastic scattering

U(r) = U(r) + U (λ)(r), U (λ)(r) = Uλ (r) ∑
µ

αλ µYλ µ (r̂), (2.8)

U(r) = −
h̄v

(2π)2 σNN (αNN + i)
∫

j0(qr)ρ(q) f (q)q2dq, (2.9)

Uλ (r) = −
h̄v

(2π)2 σNN (αNN + i)
∫

jλ (qr)ρλ (q) f (q)q2dq. (2.10)

In so way the obtained microscopic potential (2.9) should beinserted into the Klein-Gordon
equation for the case ofE ≫ U with the neglected terms of the order of(U/E)2 ≪ 1 and thus
presented in the form of the non-relativistic wave equation

(∆ + k2)ψ(r) = 2µ̄ · [U(r) + Uc(r)]ψ(r), (2.11)

where the relativistic velocityβc = vc.m./c = klab/[Elab +m2
π/MA] is expressed through the total

laboratory energyElab = (k2
lab + m2

π)
1/2 = Tlab + mπ and momentumklab and MA, the mass of

a target nucleus. Here the spherically symmetric part of theCoulomb potentialUc(r) is taken
for the charged sphere with the radiusRc = rcA1/3, whererc=1.3 fm. Also,k is the relativistic
momentum in c.m. systemk =MA

√

Tlab(Tlab +2mπ)/
√

(mπ +MA)2+2MATlab and the relativistic
reduce mass̄µ = m̄πMA/(m̄π +MA) with m̄π =

√

k2 + m2
π = Tc.m. + mπ . Finally, the transformed

wave equation (2.11)can be computed using the program DWUCK4 [9], and thus one accounts for
automatically effects of relativization and distortions of the relative motion wave functions in the
field of a target nucleus. In the program, the spherically symmetric part of the optical potential
Uopt(r) =U(r)+Uc(r) provides elastic scattering calculations while theU (λ)(r)+U (λ)

c (r) is the
transition OP used for calculations of inelastic scattering cross sections with excitations of the 2+

and 3− collective states of nuclei. In inelastic processes, the Coulomb interaction is incorporated
in the DWUCK4 program in the form of eq.(2.8) but with the radial part

Uc,λ (r) =
3ZAZπe2

2λ +1
·

Rλ
c

rλ+1
, r > Rc (2.12)

that corresponds to the external multiple decomposition ofthe Coulomb potential for the uniformed
charged sphere. In calculations, the amplitude of inelastic scattering is taken in the framework of
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Figure 3. The same as in Fig.1 but for the target nucleus58Ni, the energy of pionsTlab=162 MeV,
and experimental data are from [15].

the distorted wave Born approximation (DWBA) where the respective matrix element has a linear
dependence on the transition potential while the distortedwaves in initial and final channelsψ(±)(r)
are calculated using theUopt(r) =U(r)+Uc(r) potential, and thus

T λ
BA = ∑

µ
< B|αλ µ |A >

∫

ψ(−)∗
b (r,kb) [Uλ (r)+Uc,λ (r)]Yλ µ (r̂)ψ(+)

a (r,ka)dradrb. (2.13)

Here the structure matrix element< B|αλ µ |A > provides the(λ µ)-transition from the ground to
excited state of a nucleus. In the case of the even-even nuclei one has|A >= |IA,MA > (IA = MA =

0),< B|=< IB,MB| (IA = λ ,MA = µ), and the transition matrix element is [8]

< B|αλ µ |A >= (IA λ MA µ |IB MB)< IB||αλ0||IA >= (2.14)

= (0λ 0µ |λ µ)< λ ||αλ0||0>= (1/
√

2λ +1)βλ
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Figure 4. The same as in Fig.1 but for the target nucleus58Ni, the energy of pionsTlab=291 MeV,
and experimental data are from [16].

whereβλ (λ = 2,3) is a deformation parameter to be fitted in our study.

3. Results and discussion

In Figs.1-5 we present the experimental and calculated differential elastic and inelastic cross
sections for scattering ofπ±-mesons on the even-even nuclei28Si, 40Ca,58Ni, and208Pb at energies
Tlab = 162, 180, 226 and 291 MeV with excitations of the low-lying 2+ and 3− collective states. In
calculations of inelastic scattering we take the same nuclear fermi density parameters for the radius
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Figure 5. The same as in Fig.1 but for the target nucleus208Pb, the energy of pionsTlab=162 and
291 MeV, and experimental data are from [16].

R and diffusenessa as they were used for theπA elastic scattering in [5]. Their values are 3.134 and
0.477 for28Si [10]; 3.593 and 0.493 for40Ca [10]; 4.08 and 0.515 for58Ni [11]; 6.654 and 0.475 for
208Pb [12]. As to the in-medium parametersσ , α , β of the pion-nucleon amplitude (2.2), they were
fitted in [5] when reproducing the respective experimentalπ±A data from [13], [14], [15], [16] on
the elastic scattering of pions on the same nuclei at the sameenergies (see Table 1).

On the left panels of all the Figures we exhibit the curves forthe differential elastic scattering
and on the right panel - the respective inelastic scatteringcross sections. For each nucleus, the
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Table 1: The best-fit in-medium parametersσ , α, β and the free oneσ0, α0, β0 for theπN elastic scattering
amplitude, and the adjusted deformation parametersβ2,3 for inelastic cross sections.

reaction Tlab,Mev σ , fm2 α β , fm2 σ0, fm2 α0 β0, fm2 β2 β3

π−+58Ni 162 10.95 -0.16 1.10 12.135 0.369 1.065 0.18 0.16
π++58Ni 8.86 0.44 0.81 0.175 0.14
π−+208Pb 9.69 0.34 1.02 0.12
π++208Pb 6.18 0.58 1.24 0.12

π−+28Si 180 9.33 0.43 0.28 12.76 0.114 0.994 0.38
π++28Si 7.75 0.76 0.49 0.40
π−+40Ca 9.65 0.23 0.28 0.21
π++40Ca 5.75 1.09 0.69 0.29

π−+28Si 226 7.43 0.6 0.167 9.15 -0.515 0.698 0.35
π++28Si 5.87 1.08 0.42 0.37

π−+58Ni 291 4.79 -0.85 0.279 4.76 -0.95 0.434 0.18 0.141
π++58Ni 5.58 -0.66 0.354 0.163 0.133
π−+208Pb 4.47 -1.07 0.672 0.112
π++208Pb 5.52 -0.46 0.581 0.118

solid curve for elastic scattering is the fitted cross section from [5], and the corresponding solid
curve for inelastic scattering is that calculated using thesame fitted in-medium parametersσ , α ,
β from elastic scattering while the only parameter adjusted to inelastic scattering is theβ2 (or β3)
deformation for the quadruple (or octuple) excitation of a nucleus. For comparisons we show also
the dashed curves calculated by using the "free parameters"for theπN-amplitude of scattering on
free nucleons as they done in [17] and [3]. It is seen, first, that in all the cases we obtain the fairly
well agreement with experimental data for inelastic scattering and that we need not to vary theπN
in-medium parameters responsible to elastic scattering cross sections. Instead, when we take the
"free parameters" then one gets the significant disagreements with the data for both elastic and in-
elastic cross sections. Then, this in-medium effect reveals itself especially at energies in the region
of 33-resonance with its maximum at 180 MeV while at its boundary energy about 291 MeV the
in-medium effect becomes rather weak as is seen in Figs.4,5 where the difference between solid
and dash curves is not too large with an exception theπ+208Pb scattering. As to the obtained values
of the nuclear deformation parameters, for a definite nucleus they occur almost independent of the
energy of scattered pionsπ+ or π−, i.e. they are seem to be the really structure parameters.

The work was partly supported by RFBR (under grant No.13-01-00060a) and the JINR-Egypt
Cooperation Program.
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