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The INTEGRAL/SPIX/gamma-ray spectrometer (20 keV-8 MeV) is an instrument for which it is

essential to process many exposures at the same time to increase the low signal-to-noise ratio of

the weakest sources and/or low-surface brightness extended emission. The processing of several

years of data simultaneously (10 years actually) with traditional methods of data reduction is

ineffective and sometimes not possible at all. Thanks to the newlydeveloped tools, processing

large data-sets from SPI is possible with both a reasonable turnaround time and low memory

usage. We present also techniques that we have developed to overcome difficulties related to the

intensity variation of sources/background between sources between consecutive exposures.
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1. Introduction

Sky imaging, with SPI ([1, 2]), is not direct and relies on a coded-mask aperture associated to
a specific observation strategy based on a dithering procedure ([3]).The dithering is needed since
a single exposure does not always provide enough information or data toreconstruct the sky region
viewed through the instrument∼ 30◦ field-of-View (FoV). The grouping of these exposures allows
to increase the amount of available information on a given sky target through a growing set of
independent data. However, sources intensity varies between exposures. Thus, a reliable modeling
of sources variability, of at least the most intense ones, is needed to obtaina proper modeling of
the data and an accurate measurement of the source’s intensity.

2. Handling the intensity variations of sources and background

The variation in intensity of a source (or background) is modeled as a succession of piecewise
constant segments of time. In each of the segments ("time-bins"), the intensity of the source is sup-
posed stable. We consider the time-seriesx≡ x1:L = (x1, . . . , xL), comprising L sequential elements,
following the model,

xi ≡ f (ti)+ ǫi i = 1,2, . . . ,L (2.1)

xi are the measured data andǫi their measurement errors. The data are assumed to be ordered
in time (may be evenly spaced otherwise), meaning that eachxi is associated with a timeti , and
contained in a time intervalT = (t1, . . . , tL). f (ti) is the model to be determined. We choose to model
this time-series (source light-curve) as a combination of constant piecewisetime segments.

f =
m+1
∑

k=1

skIk with



















Ik = 1 if t ∈ [τk−1, τk[

Ik = 0 otherwise
(2.2)

Hereτ0=min(T) andτm+1=max(T) or, equivalently, in point number units,τ0= 1 andτm+1= L+1
(τ0 < τ1 < . . . < τm+1).

2.1 Incorporating the sources/background variability into the system of equations

The relation between the data and the sky model can be expressed, schematically, as

y= Hx+ ǫ (2.3)

Physically,H corresponds to the transfer function or matrix,y to the data andx to the unknown
intensity (source plus background) to be determined (a vector of length N).
Let us say that the system of equations with sources of constant intensitiesis characterized by
the matrixH0 (matrix with N0 columns) and the solutionx0 (vector of lengthN0). Equation 2.4
illustrates schematically how to construct the matrixH when the intensities of sources vary. Each
column of the matrixH0, corresponding to the response of a given sourceJ, is expanded into a
sub-matrix withKJ columns. There areKJ intensities or parameters to determine for sourceJ
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instead of 1. The final systemH is sparser with more unknowns.
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(2.4)

Yet, to allow all the sources to vary on the exposure time-scale is not the appropriate strategy be-
cause the problems to solve, for crowded regions of the sky, is again in most cases undetermined.
Generally, to deduce coarsely the variability time-scale of sources, a crude and straightforward
technique consists in testing several time-scale values until the reduced chi-square, of the associ-
ated least-square problem, is around 1 or stops to decrease. However,when defining manually the
"time-bins", one might be rapidly overwhelmed with the many time-scales to test andthe number
of sources. Furthermore, the of modeling the intensity variation of sourcesturns out to be rather
subjective and irksome. To make this step more rational, we propose two methods based on a par-
tition of the data.

3. “Image-space” method

The “image-space” method relies on some already available light-curves (ortime-series) that
could come either from SPI itself or from another instrument; in our applicationmainly INTE-
GRAL/IBIS ([4]), but also Swift/BAT ([5]). The purpose is to simplify an original time-series by
minimizing the number of constant segments necessary to its description, hencethe number of
"time-bins". Those "time-bins" will be used to setup the SPI system of equations. This partitioning
is done, individually, for all the sources in the FoV. Hence, the basic process to set up “time-bins”
characteristics (start, end) is the time series segmentation or partition.

3.1 Partition of a time-series basics

The partition of an interval into segments is closely related to the topic of change-points,
widely discussed in the literature. Hence, there aremchange-points definingm+1 segments, such
that the functionf (t) is constant between two successive changes-points.
[6] and [7] have proposed a dynamic programming algorithm to explore all the 2L−1 possible parti-
tions (See Eq. 2.2). These authors proposed a search method that aims atminimizing the following
function (see also [8].

min
τ















m+1
∑

i=1

[

C(x(τi−1+1):τi )+β
]















. (3.1)
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The i-th segment contains the data subsetx(τi−1+1):τi = (xτi−1+1, . . . , xτi ) (in point number units) and
the cost function or effective fitness for this data block isC(x(τi−1+1):τi ). The negative log-likelihood
(the chi-square) is a commonly used cost function in the change-point literature. β is a penalty to
prevent over-fitting. These authors propose a convenient recursive expression to build the partition
in L passes,

F(n) =min
τ∗

{

F(τ∗)+C(x(τ∗+1):n)+β
}

n= 1, . . . ,L (3.2)

This expression enables to calculate the global optimal segmentation using optimal segmentations
on subsets of the data. Once the optimal segmentation for the data subsetx1:τ∗ has been identified,
it is used to infer the optimal segmentation for datax1:τ∗+1.
The optimal partition of the data is found inO(L2) evaluations of the cost function.

3.2 Application

We construct few training data-sets. A SPI data-set consists of all the exposures whose angular
distance, between the telescope pointing axis and the source of interest direction (central source) is
less than 15◦. This procedure gathers the maximum number of exposures containing the signal from
the source of interest, but at the same the data-set span a∼ 30◦ radius FoV sky region containing
numerous sources. As example, we apply the “image-space” algorithm to the27-36 keV data-set
related to GX 339-4 source. For this study, we rely mainly on IBIS existing light curves in the
form of time-series. To illustrate our purpose, we use only the exposurescommon to SPI and IBIS.
The data-set contains 1183 exposures and the sky model has 120 sources. The source 4U 1700-377
is assumed to vary on the exposure timescale (∼2700 s) and the instrumental background on∼6
hours. Assuming that all the other sources are constants in intensity givesa finalχ2

r of 2.46 for
19 308 degrees of freedom (dof). which is not acceptable.

3.2.1 Step 1: Segmentation of an existing time-series

The time-series related to all the sources of the sky model are not available,but at least those
for strong sources. Each available IBIS time-series is segmented to definethe “time-bins”characteristics.
To have roughly similar signal-to-noise ratio per sources between IBIS and SPI random Gaussian
statistical fluctuations are added to the time series below 100 keV since IBIS is more sensitive than
SPI at these energies. Figure 1 shows the application to GX 339-4 time-series.

3.2.2 Step 2: Application to SPI using pre-defined “time-bins”

The SPI related system equations is formed using pre-defined “time-bins” (Equation 2.4) and
solved. Theχ2

r , between the data and its model, is 1.186 (18 880 dof). This is clear improvement
compared to the previous value of 2.46.

4. “Data-space” method

SPI data contain the variable signal of several sources. The contribution, through a transfer
function, of each of the sources to the data, is to be retrieved. For each of the sources, the number
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GX 339−4
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Figure 1: The 26-40 keV IBIS time-series (after scaling of the signal-to-noise ratio) is shown in gray. It
contains 1183 data points (one measurement per exposure). This time-series is segmented into 17 constant
segments or “time-bins” (green). The reduced-chi-square between the time-series and its segmented version
is 1.0006 for 1166 dof. The SPI flux in these segments is shown in red.

and position of segments are parameters to estimate, but the estimates are interdependent because
the nature the instrument coding. In short, the system of equations 2.4 is to beformed directly
using only the data and the transfer function of the instrument. For this purpose, we developed a
specific algorithm. While being more complex, it has the great advantage to be based solely on SPI
data.
We formulate the problem to follow as closely as possible the scheme describedby eqs. 3.1 and
3.2. Then, we make some simplifications and/or approximations to reduce the computation time
and to permit important optimizations of the code, hence to render the problem tractable ([10]). The
most important ones concern the search path and the computation of the costfunction. Rather than
exploring the space for all the sources simultaneously, we explore the reduced space associated to
a single source at once and sequentially. Hence, it is straightforward to parallelize the code and
processing several sources simultaneously.
In addition, the cost function must be computed many times, each time that a new partition is tested.
This is by far, the most time-consuming part of the algorithm since it requires tosolve a system
of equations to obtain the least-square solution. Fortunately, these calculations can be optimized,
at a given iteration, say (n (eq. 2.4), since the different partitions involve matrices, which can
be deduced one from each other by suppressing and adding new columns. Therefore, only one
decomposition of the matrix ([10]) is needed and the solution is updated.

4.1 “Image-space” versus “data-space” methods

The “time-bins” obtained with the “data-space” are compared to those obtained with the

5
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Figure 2: Comparison of GX 339-4 (27-36 keV) intensity variations obtained with the “image-space” and
the “data-space” algorithms. The common SPI/IBIS database contains 1183 exposures. The “image-space”
method describes GX 339-4 intensity variations with 17 segments (Red) for aχ2

r of 1.19. The “data-space”
method uses 15 segments (Blue) and achievesχ2

r of 1.20. The GX 339-4 segmented version of the IBIS
(26-40 keV) time-series is shown in green.

“image-space” algorithm, using GX 339-4 data-set (Fig. 2). The comparison is done on the SPI and
IBIS common 1183 exposures and the sky model consists of 120 sources. This demonstrates the
effectiveness of the “data-space” algorithm which is as efficient as the “image-space” algorithm,
and better takes into account the SPI sensitivity. Note that, the backgroundis modeled with only
87 segments with the “data-space” algorithm instead of the 286 segments needed with a∼ 6 hours
time scale.

4.2 Application

An application to the IGR J17464-3213 data-set is shown on figure 3). The IGR J17464-3213
data-set corresponds to the central, crowded, region of the Galaxy. The sky model consists of 132
sources and the background timescale is fixed to∼6 hours. The data-set is relatively large (7147
exposures) and is artificially split into three subsets to reduce the computationtime. The intensity
variations of the central source, IGR 17464-3213, is modeled with 29 segments. We have also
extracted the intensity evolutions of GRS 1758-258, GX 1+4. GS 1826-24 and GX 354-0 which
are derived simultaneously (Fig. 3).

5. Handling of large INTEGRAL/SPI data-sets

Processing several years of data simultaneously requires computing notonly the solution of
a large system of equations, but also the associated uncertainties. We aim at reducing the compu-
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Figure 3: Intensity evolutions (Red) of IGR J17464-3213, GRS 1758-258, GX 1+4, GS 1826-24 and
GX 354-0 in the 27-36 keV band. The IGR J17464-3213 data-set is divided in 3 subsets (dashed verti-
cal lines show the limits) during the computation. The averaged fluxes in SPI “time-bins” are in green. The
IBIS time-series (30-40 keV) is shown in gray and the green curve corresponds to IBIS flux averaged on SPI
computed segments. The distance of GRS 1758-258, GX 1+4, GS 1826-24 and GX 354-0 to IGR J17464-
3213 are respectively 7.3, 8.1, 12.7 and 3.4◦.

tation time and the memory usage. Since the SPI transfer function is sparse, wehave used some
popular methods for the solution of large sparse linear systems. The problem can be reduced to
solving a linear system with a square matrix : A linear least-squares problem minx ||Hx− y|| can
be transformed into a square systemAx= b by use of normal equations (Here, (A = HTH and
b= HTy). In the following the term matrix referred to (A= HTH. The characteristics of some of
the sample matrices are described in Table 1. We use the MUltifrontal Massively Parallel Solver
(MUMPS1) to compute the solution of the system of equations. The experiments were carried out

1Up-to-date copies of the MUMPS (MUltifrontal Massively Parallel Solver)package can be obtained from the Web
pages: http://mumps.enseeiht.fr/ or http://graal.ens-lyon.fr/MUMPS). The software provides a stable and reliable factors
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Table 1: Sparsity of the test matrices.

N Sparsity (%) Usage

3578 2.96 Central Galaxy (27-36 keV) - 6 years
9437 1.05

22503 0.28 Diffuse emission (25-50 keV) - 6 years
55333 0.09

149526 0.04 Simulation (25-50 keV)
The sparsity is the ratio between the number of non-zero elements in the matrix and the total
number of elements in the matrixN2 for the square matrixA.

on Intel I7-3517U processor with 8 GB main memory machine. For the sake ofthis comparison,
all these methods are executed in sequential mode although the codes are parallel.
The results, in Table 2, confirm that sparse, direct solvers achieved agood scalability on the prob-
lems of our target application whereas dense linear algebra kernels quickly exceed the limit of
modern computing platforms. For the largest problems in Table 2, the dense algorithm cannot be
used as the memory requirements are roughly 23 GB and 167 GB respectively. We can extrapolate
that on this system, the run time would be around 22 h for the largest problem (instead of 6.7 s
using a sparse algorithm). We also need to compute the variance of the solution, which amounts to

Table 2: Times (in seconds) for the computation of the solution.

Matrix size 3578 9437 22503 55333 149526

Sparse 0.2 0.7 1.6 8.0 6.7
Dense 1.2 20.1 169.9 / /

computing selected entries of the inverse of the sparse matrix corresponding to our linear system.
This can be achieved through one of the latest features of the MUMPS software that has been partly
motivated by this work. We present experimental results related to the computation of error bars
or, equivalently, of the diagonal entries of the inverse matrixA−1 (Table 3). As a second term of
comparison we also provide experimental results for a brute force approach with no exploitation
of sparsity of the right-side and solution vectors. For this purpose, we use directly the MUMPS
package and solve several systems of equations in order to compute the inverse matrix. In addition,
we analyze the influence of grouping the computation of the diagonal entries(1 right-hand-side
(RHS) or 128 at a time). More details can be found in [9].

6. Summary

The imaging properties of SPI rely on the coded mask aperture, but also ona dithering

and can process indefinite symmetric matrix
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Table 3: Time (in seconds) to compute the diagonal elements of the inverse of a symmetric matrix.

Matrix size 3578 9437 22503 55333 149526

Left-looking 28.2 376.1 2567.9 489.1 /

MUMPS (1 RHS) 3.77 38.4 204.1 1324.9 8230.5
MUMPS (128 RHS) 1.32 7.34 45.5 245.6 2833.5
MUMPS A−1 0.28 0.9 4.9 36.0 9.5

observation strategy. With only 19 pixels, the SPI detector does not provide enough data to
correctly construct and sample the sky image viewed through the aperture of ∼30◦ FoV. The
dithering technique solves this critical imaging problem, by permitting the accumulation of
independent data on a given sky region, but at the same time, raises important issues of data
reduction and image/data combination through variability of sources. We propose two algorithms
to model the intensity variation of sources in the form of combination of piecewise segments of
time during which a given source exhibits a constant intensity.
A first method (“image-space”) uses existing time series to build segments of time during which a
given source exhibits a constant intensity. This auxiliary information is incorporated into the
“image-space”system of equations to be solved. The main weakness of thismethod is that it
requires, in most cases, information from other instruments and hence depends both on these
instruments characteristics (FoV, sensitivity, ...) and on the level of processing performed on these
available external data.
A second, called “data-space” method, determines these segments from SPI data directly and does
not suffer from dependence on external data. The dependence across segments, through the
transfer function, greatly increases the complexity the problem. We have developed a novel
algorithm to handle this problem and made optimizations that accelerate the computations.
Both algorithms allow to introduce more objective parameters, here the “time-bins”, in the
problem to be solved. They permit to construct an improved sky model whichbetter fit the data
and to optimize the signal-to-noise ratio of the sources. For our purposes,these algorithms solve a
specific difficulty of SPI data processing, which is the variability of sources during observations.
We have shown that, for processing efficiently and accurately years of data, it is critical to use
algorithms that take advantage of the sparse structure of the transfer function (matrix), such as
those implemented in the MUMPS software. It was also demonstrated that errorbars can be
obtained at a relatively inexpensive cost (the same order of magnitude asa simple problem
solution) thanks to a recently developed algorithmic feature that efficiently computes selected
entries of the inverse of a matrix.
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