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The INTEGRALISPI X/gamma-ray spectrometer (20 keV-8 MeV) is an instrument foictvit is
essential to process many exposures at the same time tasedtee low signal-to-noise ratio of
the weakest sources gndlow-surface brightness extended emission. The praugsdiseveral
years of data simultaneously (10 years actually) with tiawial methods of data reduction is
ineffective and sometimes not possible at all. Thanks to the ndesgloped tools, processing
large data-sets from SPI is possible with both a reasonabf@artound time and low memory
usage. We present also techniques that we have developedrtmme dfficulties related to the
intensity variation of sourc@sackground between sources between consecutive exposures
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1. Introduction

Sky imaging, with SPI {[1[]2]), is not direct and relies on a coded-masktage associated to
a specific observation strategy based on a dithering procedlire Tf83)dithering is needed since
a single exposure does not always provide enough information or degedostruct the sky region
viewed through the instrumert30° field-of-View (FoV). The grouping of these exposures allows
to increase the amount of available information on a given sky target thraugrowing set of
independent data. However, sources intensity varies between egpostus, a reliable modeling
of sources variability, of at least the most intense ones, is needed to alypaaper modeling of
the data and an accurate measurement of the source’s intensity.

2. Handling the intensity variations of sources and backgrand

The variation in intensity of a source (or background) is modeled as assion of piecewise
constant segments of time. In each of the segments ("time-bins"), the intefrtbieysmurce is sup-
posed stable. We consider the time-seresx;.| = (X1,...,X,), comprising L sequential elements,
following the model,

xi=ft)+g i=212,...,L (2.2)

X; are the measured data agdtheir measurement errors. The data are assumed to be ordered
in time (may be evenly spaced otherwise), meaning that gaishassociated with a timg, and
contained in atime interval = (t1,...,t.). f(t;) is the model to be determined. We choose to model
this time-series (source light-curve) as a combination of constant pieceémessegments.

m+1 ;
Iy=1 ifte[re1,
f=) sl with " [Mes.md 2.2)
=) Ix=0 otherwise

Hererg = min(T) andrn,1 = max(T) or, equivalently, in point number unitsg =1 andrpy =L+1
(T0<T1< <Tm+1).

2.1 Incorporating the sourcegbackground variability into the system of equations

The relation between the data and the sky model can be expressed, scagmas
y=HXx+e (2.3)

Physically,H corresponds to the transfer function or matgixp the data anc to the unknown
intensity (source plus background) to be determined (a vector of length N)

Let us say that the system of equations with sources of constant intensitibaracterized by
the matrixHp (matrix with No columns) and the solutior, (vector of lengthNo). Equation[2}4
illustrates schematically how to construct the matlixvhen the intensities of sources vary. Each
column of the matrixHp, corresponding to the response of a given soulcis expanded into a
sub-matrix withK; columns. There ar&; intensities or parameters to determine for soukce



Tools for analyzing large data-set and handling intensayiations of sources with SPI L Bouchet

instead of 1. The final systehi is sparser with more unknowns.
h11 hi2 hiz ... hin
h21 hoz hpz . hoy

ha1 hzz h3z . hay

hm1 hwt hvs ... hun (2.4)
hi7 0 0 O hi2 0 0 hig 0 hyy ... O

0 hy O OhpoO0 O O hygghpy.. O
— H= 0 Oh310 0h320 Oh330 h3N

0 O OhMl 0 0h|\/|2 0 h|\/|3 0 ---hMN
Yet, to allow all the sources to vary on the exposure time-scale is not them@fgie strategy be-
cause the problems to solve, for crowded regions of the sky, is again ircases undetermined.
Generally, to deduce coarsely the variability time-scale of sources, & emnd straightforward
technique consists in testing several time-scale values until the reduceduare, of the associ-
ated least-square problem, is around 1 or stops to decrease. Howkegardefining manually the
"time-bins", one might be rapidly overwhelmed with the many time-scales to tesharmtumber
of sources. Furthermore, the of modeling the intensity variation of sotumeces out to be rather

subjective and irksome. To make this step more rational, we propose two rmdthsed on a par-
tition of the data.

3. “Image-space” method

The “image-space” method relies on some already available light-curvéism@sseries) that
could come either from SPI itself or from another instrument; in our applicatiamly INTE-
GRALUABIS ([]), but also SwiftBAT ([H]). The purpose is to simplify an original time-series by
minimizing the number of constant segments necessary to its description, theneember of
"time-bins". Those "time-bins" will be used to setup the SPI system of eqafidns partitioning
is done, individually, for all the sources in the FoV. Hence, the basicga®to set up “time-bins”
characteristics (start, end) is the time series segmentation or partition.

3.1 Partition of a time-series basics

The partition of an interval into segments is closely related to the topic of chawigts,
widely discussed in the literature. Hence, therera@hange-points definingn+ 1 segments, such
that the functionf (t) is constant between two successive changes-paints.

[B] and [{] have proposed a dynamic programming algorithm to exploreeaftttt possible parti-
tions (See Eq[ 2]2). These authors proposed a search method that miimisrézing the following
function (see alsd]8].

m+1
mgn{z [C(xwl)m)w]}. (3.1)

i=1
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Thei-th segment contains the data subsggt, ;1) = (Xr_1+1,...,Xy) (in point number units) and
the cost function orféective fitness for this data block@(x_,+1);)- The negative log-likelihood
(the chi-square) is a commonly used cost function in the change-pointditerg is a penalty to
prevent over-fitting. These authors propose a convenient regewegspression to build the partition
in L passes,

F(n) = n;jn{F(T*) +C(X@+nyn)+BIn=1,...,L (3.2)

This expression enables to calculate the global optimal segmentation usinglgaimeentations
on subsets of the data. Once the optimal segmentation for the data subd®s been identified,
it is used to infer the optimal segmentation for d&ia-. 1.

The optimal partition of the data is found @(L?) evaluations of the cost function.

3.2 Application

We construct few training data-sets. A SPI data-set consists of all goserses whose angular
distance, between the telescope pointing axis and the source of inteeesibdicentral source) is
less than 1% This procedure gathers the maximum number of exposures containingribéfsom
the source of interest, but at the same the data-set spa&80aradius FoV sky region containing
numerous sources. As example, we apply the “image-space” algorithm 27186 keV data-set
related to GX 339-4 source. For this study, we rely mainly on IBIS existing bginves in the
form of time-series. To illustrate our purpose, we use only the exposaresion to SPI and IBIS.
The data-set contains 1183 exposures and the sky model has 128ssolhie source 4U 1700-377
is assumed to vary on the exposure timescal/Q0 s) and the instrumental background-~dh
hours. Assuming that all the other sources are constants in intensityagfiesl 2 of 2.46 for
19 308 degrees of freedom (dof). which is not acceptable.

3.2.1 Step 1: Segmentation of an existing time-series

The time-series related to all the sources of the sky model are not avababk, least those
for strong sources. Each available IBIS time-series is segmented to thefitiene-bins’characteristics.
To have roughly similar signal-to-noise ratio per sources between IBIS&h random Gaussian
statistical fluctuations are added to the time series below 100 keV since IBISessersitive than
SPI at these energies. Figufe 1 shows the application to GX 339-4 time:serie

3.2.2 Step 2: Application to SPI using pre-defined “time-bins”

The SPI related system equations is formed using pre-defined “time-figsation 2.4) and
solved. They?, between the data and its model, is 1.186 (18 880 dof). This is clear improvemen
compared to the previous value of 2.46.

4. “Data-space” method

SPI data contain the variable signal of several sources. The contripthi@ugh a transfer
function, of each of the sources to the data, is to be retrieved. For é#oh sources, the number



Tools for analyzing large data-set and handling intensayiations of sources with SPI L Bouchet

0025 :I I I I I I I I I I I I I I | I I I | I I I I:

0.020 - GX 339-4 — IBIS time-series 3

. - — IBIS segments based S

0015 = . * ¢ *SP| intensity variations _J

o 0.010 - —

IS - 3

X 0.005 F+ =

0.000 = m d l—:

~0.005F —

— :| 1 | 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 F
0.010 0 200 400 600 800 1000 1200

Exposure number

Figure 1. The 26-40 keV IBIS time-series (after scaling of the sigiwahoise ratio) is shown in gray. It
contains 1183 data points (one measurement per exposums)tifie-series is segmented into 17 constant
segments or “time-bins” (green). The reduced-chi-squateden the time-series and its segmented version
is 1.0006 for 1166 dof. The SPI flux in these segments is showed.

and position of segments are parameters to estimate, but the estimates arpenigede because
the nature the instrument coding. In short, the system of equdfidns 2.4 isfooned directly
using only the data and the transfer function of the instrument. For this geirpe developed a
specific algorithm. While being more complex, it has the great advantage tskd bolely on SPI
data.

We formulate the problem to follow as closely as possible the scheme desbyileeg. [3]1 and
B.2. Then, we make some simplifications amcapproximations to reduce the computation time
and to permit important optimizations of the code, hence to render the prolletaitte ([(Ip]). The
most important ones concern the search path and the computation of tfienotistn. Rather than
exploring the space for all the sources simultaneously, we explore theag@dpace associated to
a single source at once and sequentially. Hence, it is straightforwararadigize the code and
processing several sources simultaneously.

In addition, the cost function must be computed many times, each time that a rigiompés tested.
This is by far, the most time-consuming part of the algorithm since it requiresit@ a system
of equations to obtain the least-square solution. Fortunately, these calasledio be optimized,
at a given iteration, sayn((eq. [2.}), since the fierent partitions involve matrices, which can
be deduced one from each other by suppressing and adding new esoldrharefore, only one
decomposition of the matrix[([10]) is needed and the solution is updated.

4.1 “Image-space” versus “data-space” methods

The “time-bins” obtained with the “data-space” are compared to those obtaiita the
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Figure 2: Comparison of GX 339-4 (27-36 keV) intensity variationsaibed with the “image-space” and
the “data-space” algorithms. The common #BIIS database contains 1183 exposures. The “image-space”
method describes GX 339-4 intensity variations with 17 segs1(Red) for a2 of 1.19. The “data-space”
method uses 15 segments (Blue) and achigyesf 1.20. The GX 339-4 segmented version of the IBIS
(26-40 keV) time-series is shown in green.

“image-space” algorithm, using GX 339-4 data-set (fig. 2). The congraiidone on the SPI and
IBIS common 1183 exposures and the sky model consists of 120 sodressdemonstrates the
effectiveness of the “data-space” algorithm which is fiient as the “image-space” algorithm,
and better takes into account the SPI sensitivity. Note that, the backgimumateled with only
87 segments with the “data-space” algorithm instead of the 286 segmenesineitid a~ 6 hours
time scale.

4.2 Application

An application to the IGR J17464-3213 data-set is shown on fijure 8IGR J17464-3213
data-set corresponds to the central, crowded, region of the GalhrysKy model consists of 132
sources and the background timescale is fixed@dours. The data-set is relatively large (7147
exposures) and is artificially split into three subsets to reduce the compuiatenThe intensity
variations of the central source, IGR 17464-3213, is modeled with 29e@s. We have also
extracted the intensity evolutions of GRS 1758-258, Gp4.1GS 1826-24 and GX 354-0 which
are derived simultaneously (Fig. 3).

5. Handling of large INTEGRAL/SPI data-sets

Processing several years of data simultaneously requires computinglgdhe solution of
a large system of equations, but also the associated uncertainties. Weradnang the compu-
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Figure 3: Intensity evolutions (Red) of IGR J17464-3213, GRS 1758;25X 1+4, GS 1826-24 and
GX 354-0 in the 27-36 keV band. The IGR J17464-3213 datassdivided in 3 subsets (dashed verti-
cal lines show the limits) during the computation. The agethfluxes in SPI “time-bins” are in green. The
IBIS time-series (30-40 keV) is shown in gray and the greemeuorresponds to IBIS flux averaged on SPI
computed segments. The distance of GRS 1758-258, & GS 1826-24 and GX 354-0 to IGR J17464-
3213 are respectively 7.3, 8.1, 12.7 and’3.4

tation time and the memory usage. Since the SPI transfer function is sparkayvevesed some
popular methods for the solution of large sparse linear systems. The iprohle be reduced to
solving a linear system with a square matrix : A linear least-squares problegfir y|| can
be transformed into a square systém= b by use of normal equations (Hered £ H'H and
b=HTy). In the following the term matrix referred té\(= H" H. The characteristics of some of
the sample matrices are described in T4ble 1. We use the MUItifrontal MisBiaeallel Solver
(MUMPS?) to compute the solution of the system of equations. The experiments weeslaaut

1Up-to-date copies of the MUMPS (MUltifrontal Massively Parallel Solyggkage can be obtained from the Web
pages: httg/mumps.enseeiht/for httpy/graal.ens-lyon.fMUMPS). The software provides a stable and reliable factors
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Table 1: Sparsity of the test matrices.

N Sparsity (%) Usage

3578 2.96 Central Galaxy (27-36 keV) - 6 years
9437 1.05
22503 0.28 Difuse emission (25-50 keV) - 6 years
55333 0.09
149526 0.04 Simulation (25-50 keV)

The sparsity is the ratio between the number of non-zero elements in the matrtheutotal
number of elements in the mati¥ for the square matri.

on Intel 17-3517U processor with 8 GB main memory machine. For the sattesofomparison,
all these methods are executed in sequential mode although the codesaied pa

The results, in Tablf] 2, confirm that sparse, direct solvers achiegeddascalability on the prob-
lems of our target application whereas dense linear algebra kerneldygeiaeed the limit of
modern computing platforms. For the largest problems in Tgble 2, the demsétatgcannot be
used as the memory requirements are roughly 23 GB and 167 GB resjyettieecan extrapolate
that on this system, the run time would be around 22 h for the largest probistegd of 6.7 s
using a sparse algorithm). We also need to compute the variance of the sokition amounts to

Table 2: Times (in seconds) for the computation of the solution.

Matrix size 3578 9437 22503 55333 149526
Sparse 0.2 0.7 1.6 8.0 6.7
Dense 1.2 20.1 169.9 / /

computing selected entries of the inverse of the sparse matrix corresgdadiar linear system.
This can be achieved through one of the latest features of the MUMB&asetthat has been partly
motivated by this work. We present experimental results related to the caiopubé error bars
or, equivalently, of the diagonal entries of the inverse mairik (Table[$). As a second term of
comparison we also provide experimental results for a brute force agpreith no exploitation
of sparsity of the right-side and solution vectors. For this purpose, waliisctly the MUMPS
package and solve several systems of equations in order to computediseimatrix. In addition,
we analyze the influence of grouping the computation of the diagonal eftriéght-hand-side
(RHS) or 128 at a time). More details can be found]n [9].

6. Summary

The imaging properties of SPI rely on the coded mask aperture, but asditmering

and can process indefinite symmetric matrix
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Table 3: Time (in seconds) to compute the diagonal elements of trersevof a symmetric matrix.

Matrix size 3578 9437 22503 55333 149526
Left-looking 28.2 376.1 2567.9 489.1 /
MUMPS (1 RHS) 3.77 38.4 204.1 13249 8230.5
MUMPS (128 RHS) 1.32 7.34 455 2456 2833.5
MUMPS A1 0.28 0.9 4.9 36.0 9.5

observation strategy. With only 19 pixels, the SPI detector does not grevidugh data to
correctly construct and sample the sky image viewed through the apeftu8&oFoV. The
dithering technique solves this critical imaging problem, by permitting the accumulaitio
independent data on a given sky region, but at the same time, raises intjjstees of data
reduction and imagédata combination through variability of sources. We propose two algorithms
to model the intensity variation of sources in the form of combination of pieeesagments of
time during which a given source exhibits a constant intensity.

A first method (“image-space”) uses existing time series to build segments of tirimg dvhich a
given source exhibits a constant intensity. This auxiliary information is parated into the
“image-space”system of equations to be solved. The main weakness widthied is that it
requires, in most cases, information from other instruments and heneadtepoth on these
instruments characteristics (FoV, sensitivity, ...) and on the level of psoweperformed on these
available external data.

A second, called “data-space” method, determines these segments fralat&Birectly and does
not suter from dependence on external data. The dependence acrossgegthrough the
transfer function, greatly increases the complexity the problem. We haetoged a novel
algorithm to handle this problem and made optimizations that accelerate the ctormuta

Both algorithms allow to introduce more objective parameters, here the “timg-hirike

problem to be solved. They permit to construct an improved sky model vieitthr fit the data
and to optimize the signal-to-noise ratio of the sources. For our purgbsss, algorithms solve a
specific dificulty of SPI data processing, which is the variability of sources duringrebtions.
We have shown that, for processinj@ently and accurately years of data, it is critical to use
algorithms that take advantage of the sparse structure of the transféofumatrix), such as
those implemented in the MUMPS software. It was also demonstrated thabarsocan be
obtained at a relatively inexpensive cost (the same order of magnitwadsieple problem
solution) thanks to a recently developed algorithmic feature tiaiently computes selected
entries of the inverse of a matrix.
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