
P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
1
2

On Bimaximal Neutrino Mixing and GUT’s

Guido Altarelli∗
Dipartimento di Matematica e Fisica, Università di Roma Tre,
INFN, Sezione di Roma Tre, I-00146 Rome, Italy
and
CERN, Department of Physics, Theory Unit,
CH-1211 Geneva 23, Switzerland
E-mail: guido.altarelli@cern.ch

Pedro A. N. Machado
Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC,
Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
E-mail: pedro.machado@uam.es

Davide Meloni
Dipartimento di Matematica e Fisica, Università di Roma Tre,
INFN, Sezione di Roma Tre, I-00146 Rome, Italy
E-mail: meloni@fis.uniroma3.it

We briefly discuss the present status of models of neutrino mixing. Among the existing viable
options we review the virtues of Bimaximal Mixing (that could be implemented by an S4 discrete
symmetry), corrected by terms arising from the charged lepton mass diagonalization. In particular
in a GUT formulation the property of quark lepton "weak" complementarity can be naturally
realized. We discuss in some detail two new versions of particular GUT models, one based on
SU(5) and one on SO(10) and the associated phenomenology. We compare these approaches
based on symmetry to models based on chance, like Anarchy or U(1)FN .

Proceedings of the Corfu Summer Institute 2014 "School and Workshops on Elementary Particle Physics
and Gravity",
3-21 September 2014
Corfu, Greece

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:guido.altarelli@cern.ch
mailto:pedro.machado@uam.es
mailto:meloni@fis.uniroma3.it


P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
1
2
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Figure 1: Top: the experimental value of sin2
θ12 is compared with the predictions of exact Tri-Bimaximal

(TB) or Golden Ratio (GR) or Bi-Maximal mixing (BM). The shift needed to bring the TB or the GR predic-
tions to agree with the experimental value is small, numerically of order λ 2

C , while it is larger, of order λC

for the BM case, where λC ≡ sinθC with θC being the Cabibbo angle. Bottom: the experimental value of
sinθ13 in comparison with λC or λ 2

C .

1. Introduction

A long list of models have been formulated over the years to understand neutrino mixing.
With time and the continuous improvement of the data most of the models have been discarded by
experiment. But the surviving models still span a wide range going from a maximum of symmetry,
as those with discrete non-abelian flavour groups (for reviews, see, for example, Refs. [1, 2, 3]), to
the opposite extreme of Anarchy [4, 5, 6].

Among the models with a non trivial dynamical structure those based on discrete flavour
groups were motivated by the fact that the data suggest some special mixing patterns as good
first approximations like Tri-Bimaximal (TB) or Golden Ratio (GR) or Bi-Maximal (BM) mixing,
for example. The corresponding mixing matrices all have sin2

θ23 = 1/2, sin2
θ13 = 0, values that

are good approximations to the data (although less so since the most recent data), and differ by the
value of the solar angle sin2

θ12 (see Fig. 1). As the corresponding mixing matrices have the form
of rotations with fixed special angles one is naturally led to discrete flavour groups. The relatively
large measured value of sinθ13 has disfavoured TB and GR models because they in general predict
sinθ13 of the same order as the shift of the predicted sin2

θ12 from the observed value, which shift
is small for these mixing patterns. Instead in most models of BM the measured value of θ13 ∼ 9◦

[7] is natural.
After the measurement of a relatively large value for θ13 there has been an intense work to

interpret the new data along different approaches and ideas. Examples are suitable modifications
of the minimal TB models [8, 9], modified sequential dominance models [10], larger symmetries
that already at LO lead to non vanishing θ13 and non maximal θ23 [11], smaller symmetries that
leave more freedom [12], models where the flavour group and a generalised CP transformation are
combined in a non trivial way [13] (other approaches to discrete symmetry and CP violation are
found in Refs. [14]).

Among discrete symmetry models, now that the value of sin2
θ13 has been measured and found
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to be not so small ([15]-[18]) the interest on BM mixing has been boosted [19, 20]. In this case
the neutrino mixing matrix before diagonalization of charged leptons has sin2

θ12 and sin2
θ23 both

maximal and sinθ13 = 0. The BM mixing matrix is in fact:

UBM =


1√
2
− 1√

2
0

1
2

1
2
− 1√

2
1
2

1
2

1√
2

 . (1.1)

The most general mass matrix corresponding to this mixing matrix is:

mνBM =

 x y y
y z x− z
y x− z z

 , (1.2)

where x,y and z are three complex numbers. One can think of a suitable symmetry or of some
other dynamical ingredient that enforces BM mixing in the neutrino sector and that the necessary,
rather large, corrective terms to θ12 and θ13 arise from the diagonalization of the charged lepton
mass matrix. As well known, BM corrected by charged lepton diagonalization can be obtained
in models based on the discrete symmetry S4 [21, 22]. This idea is in line with the well-known
empirical observation that θ12 + θC ∼ π/4, where θC is the Cabibbo angle, a relation known as
quark-lepton complementarity [23]-[26]. Probably the exact complementarity relation becomes
more plausible if replaced by θ12 +O(θC) ∼ π/4 (which we call “weak” complementarity). In
addition the measured value of θ13 is itself of order θC: θ13 ∼ θC/

√
2. The relation of the neutrino

mixing angles with θC could well arise in Grand Unified (GUT) models [26, 27] so that we will
focus on GUT models in this work.

In the present note we discuss two examples of GUT models of BM, one based on SU(5) and
one on SO(10). The SU(5) model discussed here is more complete and indeed is based on a broken
flavour symmetry that contains S4 which imposes the BM structure in the neutrino sector and is then
corrected by terms arising from the diagonalization of charged lepton masses. The present SU(5)
model has the virtue that the quark mixing angles and the shifts from the BM values in the neutrino
sector, all turn out to be naturally of the correct order of magnitude, expressed in terms of powers
of λC = sinθC, a’ la Wolfenstein, modulo coefficients of O(1). The SO(10) model is based on
Type-II see-saw and the origin of BM before diagonalization of charged leptons is in this case left
unspecified. Both GUT theories discussed in the following are variants of models already appeared
in the literature, in particular by our group [22, 28]. We discuss the phenomenology of these
models in the context of the present data and the comparison with other approaches like Anarchy
and U(1)FN models.

On the other hand, the relatively large measured value of θ13, close in size to the Cabibbo
angle, and the indication that θ23 is not maximal both go in the direction of models based on
Anarchy, i.e. the idea that perhaps no symmetry is needed in the neutrino sector, only chance. The
appeal of Anarchy is augmented if formulated in a SU(5)⊗U(1)FN context with different Froggatt-
Nielsen [29] charges only for the SU(5) tenplets (for example 10 ∼ (a,b,0), where a > b > 0 is
the charge of the first generation, b of the second, zero of the third) while no charge differences
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appear in the 5̄ (e. g. 5̄∼ (0,0,0)). In fact, the observed fact that the up-quark mass hierarchies are
more pronounced than for down-quarks and charged leptons is in agreement with this assignment.
Indeed the embedding of Anarchy in the SU(5)⊗U(1)FN context allows to implement a parallel
treatment of quarks and leptons. Note that implementing Anarchy and its variants in SO(10) would
be difficult due to the fact that all left-handed Standard Model (SM) fields of one generation belong
to the same spinoral representation 16. In models with no see-saw, the 5̄ charges completely fix the
hierarchies (or Anarchy, if the case) in the neutrino mass matrix. If RH neutrinos are added, they
transform as SU(5) singlets and can in principle carry independent U(1)FN charges, which also, in
the Anarchy case, must be all equal. With RH neutrinos the see-saw mechanism can take place and
the resulting phenomenology is modified.

The SU(5) generators act vertically inside one generation, whereas the U(1)FN charges differ
horizontally from one generation to the other. If, for a given interaction vertex, the U(1)FN charges
do not add to zero, the vertex is forbidden in the symmetric limit. However, the U(1)FN symmetry
(that one can assume to be a gauge symmetry) is spontaneously broken by the VEVs v f of a number
of flavon fields with non-vanishing charge and GUT-scale masses. Then a forbidden coupling is
rescued but is suppressed by powers of the small parameters λ = v f /M, with M a large mass, with
the exponents larger for larger charge mismatch. Thus the charges fix the powers of λ , hence the
degree of suppression of all elements of mass matrices, while arbitrary coefficients ki j of order 1 in
each entry of mass matrices are left unspecified (so that the number of order 1 parameters largely
exceeds the number of observable quantities). A random selection of these ki j parameters leads to
distributions of resulting values for the measurable quantities. For Anarchy the mass matrices in
the neutrino sector (determined by the 5̄ and 1 charges) are totally random, while in the presence
of unequal charges different entries carry different powers of the order parameter and thus suitable
hierarchies are enforced for quarks and charged leptons by unequal tenplet charges. Within this
framework there are many variants of models largely based on chance: fermion charges can all
be non-negative with only negatively charged flavons, or there can be fermion charges of different
signs with either flavons of both charges or only flavons of one charge. In Refs.[30, 31], given
the new experimental results, a reappraisal of Anarchy and its variants within the SU(5)×U(1)FN

GUT framework was made. Based on the most recent data it is argued that the Anarchy ansatz is
probably oversimplified and, in any case, not compelling. In fact, suitable differences of U(1)FN

charges, if also introduced within pentaplets and singlets, lead, with the same number of random
parameters as for Anarchy, to distributions that are in better agreement with the data.

2. A SUSY SU(5) model with S4 discrete symmetry

This model is a variant of those of Refs.[21, 22] to which we refer the reader for a detailed
discussion and the technical details [32]-[35]. Here we concentrate on the differences, the moti-
vations and the resulting phenomenology. This is a SUSY SU(5) model in 4+1 dimensions with
a flavour symmetry S4⊗Z3⊗U(1)R⊗U(1)FN , where U(1)R implements the R-symmetry while
U(1)FN is a Froggatt-Nielsen (FN) symmetry [29] that induces the hierarchies of fermion masses
and mixings. The particle assignments are displayed in Tab.1.

The formulation in 4+1 dimensions, with coordinate y in the fifth dimension compactified on a
circle, allows a more efficient realization of GUT with less Higgs states, no doublet-triplet splitting
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Field F T1 T2 T3 H5 H5 ϕν ξν ϕ` χ` θ θ ′ ϕ0
ν ξ 0

ν ψ0
` χ0

`

SU(5) 5̄ 10 10 10 5 5 1 1 1 1 1 1 1 1 1 1
S4 31 1 1 1 1 1 31 1 31 32 1 1 31 1 2 32

Z3 ω ω 1 ω2 ω2 ω2 1 1 ω ω 1 ω 1 1 ω ω

U(1)R 1 1 1 1 0 0 0 0 0 0 0 0 2 2 2 2
U(1)FN 0 2 1 0 0 0 0 0 0 0 -1 -1 0 0 0 0

br bu bu br bu bu br br br br br br br br br br

Table 1: Matter assignment of the model. The symbol br(bu) indicates that the corresponding fields live on
the brane (bulk).

problem and a better control of proton decay. In the present model it also introduces some extra
hierarchy for some of the couplings. In fact, as indicated in the table, some of the particles are in the
bulk (the first two generation tenplets T1 and T2 and the Higgs H5 and H5̄) while all the other ones
are on the brane at y = 0. Actually, to obtain the correct zero mode spectrum, one must introduce
two copies, T1,2 and T ′1,2 with opposite orbifolding parity. The zero modes of T1,2 are the quark
doublets Q1,2, while those of T ′1,2 are Uc

1,2 and Ec
1,2. For economy of space only T1,2 appear in table

1. At leading order (LO) the S4 symmetry is broken down to suitable different subgroups in the
charged lepton sector and in the neutrino sector by the VEV’s of the flavons ϕν , ξν , ϕ` and χ`. The
necessary proper alignment of the VEV’s is implemented, in a natural way, by the driving fields
ϕ0

ν , ξ 0
ν , ψ0

` , χ0
` . The VEVs of the θ and θ ′ fields break the FN symmetry. As a result, at LO the

charged lepton masses are diagonal and exact BM is realized for neutrinos. Corrections to diagonal
charged leptons and to exact BM are induced by vertices of higher dimension in the Lagrangian,
suppressed by powers of a large scale Λ. While broken S4 is at the origin of BM, U(1)FN , together
with some higher dimensional effects, fixes the hierarchies of quark and charged lepton masses.

With respect to Ref.[22] here we have modified the FN charges of the tenplets from (3,1,0)
to (2,1,0). With this choice we aim at optimizing the neutrino mixing angles and to implement
the "weak complementarity" relation at the expenses of a less accurate description of the first
generation quark and charged lepton masses. We adopt the definitions:

vϕ`

Λ
∼

vχ

Λ
∼ ε

′ ;
vϕν

Λ
∼

vξ

Λ
∼ ε , (2.1)

〈θ〉
Λ

= t
〈θ ′〉
Λ

= t ′ . (2.2)

and
s≡ 1√

πRΛ
< 1 . (2.3)

where s is the volume suppression factor.
It turns out that the simplest choice of setting all these parameters to be of O(λ ∼ λC):

s = ε = ε
′ = t = t ′ = λC, (2.4)

leads to a good description of masses and mixings, as described below. Indeed by proceeding in
exact analogy with Ref.[22], we have the following results.

5



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
1
2

Bimaximal Mixing and GUT’s Guido Altarelli

2.1 Down quarks and charged lepton mass matrices

For the down quark mass matrix, by only keeping the leading terms for each entry, one finds:

md =

 a11λ 5 a12λ 4 a13λ 4

a21λ 4 −cλ 3 cλ 3

a31λ 2 ...... a33λ

λv0
d . (2.5)

Here all matrix elements are multiplied by generic coefficients ai j of O(1) with the exception of the
(22) and (23) entries where the coefficients given by −c and c are equal and opposite. In the (32)
entry the dots indicate that the lowest order potentially non vanishing is actually zero and the entry
will get a contribution from still higher orders. For example, the entry (11) gets contributions from
terms O(stε ′t ′ε ∼ λ 5). Thus the hierarchies arise from a combination of extra dimension factors,
S4 and U(1)FN breaking. For the mass eigenvalues we have:

mb ∼ v0
dλ

2, ms ∼ v0
dλ

4, md ∼ v0
dλ

6. (2.6)

For the charged lepton masses we have to take into account the introduction of the copies T ′1,2
of the first two tenplet fields, whose zero modes are different from those of T1,2 and couple with the
charged leptons only. Therefore, all the operators of the form FT3H5 have exactly the same order
1 coefficients whereas all others containing T ′1,2 have different coefficients. This translates in the
following mass matrix:

me =

 a′11λ 5 a′21λ 4 a31λ 2

a′12λ 4 −c′λ 3 ......

a13λ 4 c′λ 3 a33λ

λv0
d , (2.7)

and the charged lepton masses are:

mτ = mb ∼ v0
dλ

2, mµ ∼ v0
dλ

4, me ∼ v0
dλ

6. (2.8)

Note that the b− τ universality is realized: here and in the following we obviously refer to masses
at the GUT scale as for example given in Ref.[36]. Note that the predicted ratio me/mµ ∼ λ 2 is not
perfect, being too large.

The unitary left-handed rotation Ud is obtained diagonalizing md m†
d whereas the right-handed

one U` is the charged lepton rotation. Taking only the largest contribution for each matrix elements,
for U`, which enters in the neutrino mixing matrix, UPNMS =U†

` Uν we have:

U` ∼

 1 u12λ u13λ

−u∗12λ 1 0
−u∗13λ −u∗12u∗13λ 2 1

 , (2.9)

so that θ `
23 = 0 in this approximation.

2.2 Up quarks mass matrix

Similarly the symmetric up quark mass matrix is given by:

mu =

 b11λ 6 b12λ 5 b13λ 3

b12λ 5 b22λ 4 b23λ 4

b13λ 3 b23λ 4 b33

λv0
u , (2.10)
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and the masses are:
mt ∼ v0

uλ , mc ∼ v0
uλ

5, mu ∼ v0
uλ

7. (2.11)

The ratio mb/mt ∼ λv0
d/v0

u∼ λ/ tanβ implies that tanβ ∼ 1/λ . In most of the cases the mass ratios
are correctly reproduced, but, as already announced, there are some cases that need some moderate
fine tuning. For example, we have mu/mc ∼ λ 2 which is too large, mu/md ∼ mc/ms where, in
reality the two sides differ by a factor of about 25. As we already mentioned we have chosen as
a priority to fit the mixings rather than the masses. One can improve the agreement by somewhat
relaxing the strict equalities in eq. (2.4). We now turn to describe the model predictions for the
mixings first in the quark sector and then, after discussing the neutrino mass matrix, in the leptonic
sector.

2.3 The CKM matrix

The CKM matrix is given by VCKM = U†
u Ud . The leading order expressions for Uu and Ud

obtained from the up and down quark mass matrices in eqs.(2.5) and (2.10) are of the form:

Uu ∼

 1 c12λ u13λ 3

−c∗12λ 1 0
−c∗13λ 3 0 1

 (2.12)

and

Ud ∼

 1 d12λ d13λ 3

−d∗12λ 1 d23λ 2

(d∗12d∗23−d∗13)λ
3 −d23λ 2 1

 . (2.13)

From these expressions we obtain the leading order form of the VCKM matrix with a pattern of the
Wolfenstein type:

VCKM ∼

 1 v12λ v13λ 3

−v∗12λ 1 v23λ 2

(v∗12v∗23− v∗13)λ
3 −v23λ 2 1

 . (2.14)

The vi j coefficients are related to the ci j and di j coefficients by:

v12 = d12− c∗12; v13 = (d13− c∗12d23− c∗13); v23 = d23. (2.15)

We see that for λ = λC the correct order of magnitude is derived for each VCKM matrix element
modulo coefficients generically of order 1.

2.4 The neutrino masses and mixings

The neutrino sector of the model is unchanged with respect to Ref.[22]. We therefore limit
ourselves here to recall some important points. First note that in Tab.1 there are no right-handed
neutrinos. So the table refers to a model where the neutrino mass matrix is generated by the
effective dimension 5 Weinberg operator. But a see-saw version is easily obtained by adding 3 right-
handed neutrinos transforming under SU(5)×S4× Z3 as (1,31,1) and with charges U(1)R = +1
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and U(1)FN = 0. The relevant phenomenology is quite similar, in particular the results on neutrino
mixing. However, the neutrino mass spectrum turns out to be of moderate normal hierarchy type,
with a LO lightest neutrino mass |m1| larger than about 0.01 eV and, consequently, values of
mee ≥ 3− 4 10−3 eV. The deviation from a pure BM neutrino mass matrix is responsible for a
softening of the lower bound on |m1| and for an enlargement of the allowed values of the 0νββ

rate. The experimental value of
√

r =

√
∆m2

sol
∆m2

atm
∼ 1/6 needs some fine tuning because in the model

it should be of O(1). This fine tuning appears in most discrete symmetry models because neutrinos
must be in triplet representations of the discrete group in order to obtain BM or TB mixing etc. and
then the mass eigenvalues are all of the same order of magnitude, barring cancellations.

The neutrino mixing matrix is obtained as Uν = U†
` UBM where U` is given in eq. (2.9) and

UBM is the unitary matrix of BM. The results for the mixing angles are easily derived:

sinθ13 =
1√
2
|u12−u13|λ ≡ |∆|

sin2
θ12 =

1
2
− 1√

2
Re(u12 +u13)λ ≡

1
2
−ReΣ (2.16)

sin2
θ23 =

1
2
+O(λ 2)

The CP phase δCP is
δCP = π +arg(u12−u13)≡ π +arg(∆). (2.17)

where the complex numbers ∆ and Σ are defined as ∆ = 1√
2
|u12−u13|λ and Σ = 1√

2
(u12 +u13)λ .

The results are graphically reported in Fig. 2 and compared with the experimental values of sinθ13

and sin2
θ12. We see that, with λ ∼ λC, the model realizes the "weak" complementarity relation and

the experimental fact that sinθ13 is of the same order than the shift of sin2
θ12 from the BM value

of 1/2, both of order λC. It is interesting to observe that corrections to the BM pattern arising from
next-to-leading order effects in the Yukawa couplings (higher order operators and shifts from LO
flavon vevs) only affect sin2

θ23 at the same O(λ 2) as in eq.(2.16). We also see that, in general, the
CP phase δCP is not predicted, as the data only fix the absolute value of ∆ and not its phase. If one
could neglect u13 then ∆ and Σ would coincide. A very marginal agreement with the data would
then demand that both be aligned along the positive real axis and, in this case δCP = π .

3. Comparison with SU(5)
⊗

U(1) models

It is interesting to compare the previous model, which is rather complicated involving SUSY
SU(5), a non abelian S4 symmetry and extra dimensions, with a much simpler class of models based
on SUSY SU(5)⊗U(1)FN [29]. As we have explicitly discussed a non see-saw version of the S4

model we will compare it with a non see-saw version of the U(1)FN models. In the following, only
U(1)FN models with normal hierarchy are considered because, as shown in Ref.[37], U(1) models
with inverse hierarchy (IH) tend to favour a solar angle close to maximal.

In general we can label the U(1) charges as follows:

10∼ (t1, t2,0) 5̄∼ ( f1, f2,0) (3.1)

8
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Figure 2: The complex numbers ∆ = 1√
2
|u12−u13|λ and Σ = 1√

2
(u12 +u13)λ determine sinθ13 = |∆| and

sin2
θ12 =

1
2−ReΣ. The CP phase is given by δCP = π +arg(∆). The numbers shown approximately indicate

the experimental central values.

where 1, 2 refer to the first and second families. The Higgs field charges are taken as vanishing.
There is also a flavon field θ with charge -1 whose VEV 〈θ〉 breaks U(1)FN . A set of charge values
that lead to a good agreement with the observed masses and mixings are (this is the so-called Aµτ

case in [38]):

10∼ (3,2,0) 5̄∼ (1,0,0) . (3.2)

The following mass matrices are obtained. For the up-type quarks:

mu =

 λ 6 λ 5 λ 3

λ 5 λ 4 λ 2

λ 3 λ 2 1

v0
u . (3.3)

Here λ = 〈θ〉/Λ with Λ the large scale that suppresses the non rinormalizable interactions involving
the field θ and all entries are multiplied by coefficients that are complex numbers with absolute
values of order 1.

The down-type quarks and charged lepton mass matrices are one the transposed of the other
and are given by:

md = mT
e =

 λ 4 λ 3 λ 3

λ 3 λ 2 λ 2

λ 1 1

v0
d . (3.4)

Finally, the neutrino mass matrix transforming as 5̄⊗ 5̄ from the dimension 5 Weinberg oper-
ator is given by:

9



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
1
2

Bimaximal Mixing and GUT’s Guido Altarelli

mν =

 λ 2 λ λ

λ 1 1
λ 1 1

 (v0
u)

2

Λ
. (3.5)

We can now compare the two models starting from quarks and charged leptons. We observe
that the structure of the mass matrices is very similar although not identical. In the S4 model the
suppression factors from the geometry in the extra dimension combine with those from the U(1)FN

charges (which are different from those in the abelian model) to produce a similar pattern in the
two cases. The mass matrices are not precisely the same in the two models but the predictions for
the orders of magnitude of the mass ratios, expressed in terms of powers of λ are identical. For
both models we have in fact:

mu

mc
∼ md

ms
∼ ms

mb
∼ me

mµ

∼
mµ

mτ

∼ λ
2 (3.6)

mc

mt
∼ λ

4 (3.7)

Most of these orders of magnitude are correct if λ ∼ λC but some, involving the first generation
masses, are not, like mu/mc, md/ms and me/mµ . Although the predictions for the mass ratios are
the same, the S4 model is superior, because its extra dimensional formulation solves the doublet
triplet splitting problem and introduces corrections to the relation md = mT

e of the Georgi-Jarlskog
type. Also in the S4 model mt/mb ∼ v0

u/(λv0
d) ∼ tanβ/λ while the factor 1/λ is absent in the

U(1)FN model, so that only a moderate value of tanβ is needed in the S4 model. The CKM quark
mixing angles are also of the same order of magnitude in the two models and match the Wolfenstein
pattern: θ

q
12 ∼ λ , θ

q
13 ∼ λ 3 and θ

q
23 ∼ λ 2.

In conclusion, in the charged fermion sector the two models are rather comparable, with some
advantages for the S4 model. But where the latter is definitely superior is in the neutrino sector. As a
result of the S4 construction, the neutrino mixing pattern is dictated by BM corrected by terms from
the diagonalization of charged leptons as detailed in eq.(2.16). The weak form of complementarity
is realized as the shift of θ ν

12 is of the order of λ ∼ λC and moreover also θ ν
13 ∼ λC while θ ν

23
deviates from the maximal value by terms of order λ 2. As already mentioned the observed value

of
√

r =

√
∆m2

sol
∆m2

atm
∼ 1/6 needs some fine tuning because in the model it should be of O(1). In the

U(1)FN model the neutrino matrix is given in eq.(3.5). The diagonalization of charged leptons
does not alter this pattern. For generic coefficients of O(1) for each matrix entry, we would get
that θ ν

13 ∼ λ , θ ν
23 ∼ O(1) which are good but also r ∼ O(1) and θ ν

12 ∼ λ which are bad. However,
if, by accident, the 22 matrix element of mν is of order λ , then

√
r ∼ λ and θ ν

12 ∼ O(1): with a
single fine tuning one fixes both problems. In any case, even accepting some amount of fine tuning,
clearly there is no realization of weak complementarity. Finally in both models there are far more
parameters than observables. This redundancy is less pronounced for the S4 model but is still large.

4. Bimaximal mixing in a SO(10) GUT model

A challenging problem is that of formulating a natural model of Grand Unification based on
SO(10), leading not only to a good description of quark masses and mixing but also, in addition,

10
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of charged lepton masses and neutrino mixing. In SO(10) the main added difficulty with respect to
SU(5) is clearly that all fermions in one generation belong to a single 16-dimensional representa-
tion, so that one cannot separately play with the properties of the SU(5)-singlet right-handed neu-
trinos in order to explain the striking difference between quark and neutrino mixing. A promising
strategy in order to separate charged fermions and neutrinos in SO(10) is to assume the dominance
of type-II see-saw [39] (with respect to type-I see-saw [40]) for the light neutrino mass matrix.
If type-II seesaw is responsible for neutrino masses, then the neutrino mass matrix (proportional
to) f (see eqs.(4.1,4.3,4.4)) is separated from the dominant contributions to the charged fermion
masses and can therefore show a completely different pattern. This is to be compared with the case
of type-I see-saw where the neutrino mass matrix depends on the neutrino Dirac and Majorana
matrices and, in SO(10), the relation with the charged fermion mass matrices is tighter.

In Ref.[28], when the data suggested approximate TB mixing and a small value of sin2
θ13,

an SO(10) model has been studied based on type-II see-saw dominance. A detailed discussion
of the general structure of this class of models can be found in the above article, together with
a comparison with other approaches to SO(10) GUT’s. Here, given the relatively large value of
sin2

θ13 that has been recently measured, we reconsider this type of GUT model in the case of
approximate BM mixing corrected by the charged lepton diagonalization.

In renormalizable SO(10) models (a non necessary assumption only taken here for simplicity)
the Higgs fields that contribute to fermion masses are in 10 (denoted by H), 126 (∆) and 120 (Σ).
The Yukawa superpotential of this model is then given by:

WY = hψψH + f ψψ∆̄+h′ψψΣ , (4.1)

where the symbol ψ stands for the 16 dimensional representation of SO(10) that includes all the
fermion fields in one generation. The coupling matrices h and f are symmetric, while h′ is anti-
symmetric. The representations H and ∆ have two SM doublets in each of them whereas Σ has four
such doublets. At the GUT scale MGUT , once the GUT and the B−L symmetry are broken, one
linear combination of the up-type and one of down-type doublets remain almost massless whereas
the remaining combinations acquire GUT scale masses. The electroweak symmetry is broken after
the light Minimal Supersymmetric Standard Model (MSSM) doublets (to be called Hu,d) acquire
vacuum expectation values (vevs) and they then generate the fermion masses. The resulting mass
formulae for different fermion masses are given by (see, for example, [41]):

Yu = h+ r2 f + r3h′, (4.2)

Yd = r1(h+ f +h′) ,

Ye = r1(h−3 f + ceh′) ,

YνD = h−3r2 f + cνh′,

where Ya are mass matrices divided by the electro-weak vev’s vu,d and ra (a = 1,2,3 and cb (b =

e,ν) are the mixing parameters which relate the Hu,d to the doublets in the various GUT multiplets.
In generic SO(10) models of this type, the neutrino mass formula has a type-II and a type-I

contribution:

Mν = f vL−MD
1

f vR
MT

D , (4.3)
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where vL is the vev of the B−L = 2 triplet in the 126 Higgs field. Note that in general, the two
contributions to neutrino mass depend on two different parameters, vL and vR, and it is possible
to have a symmetry breaking pattern in SO(10) such that the first contribution (the type-II term)
dominates over the type-I term. The possible realisation of this dominance and its consistency with
coupling unification has been studied in the literature [42, 43, 44, 45] and found tricky but not
impossible [46]. The neutrino mass formula then becomes

Mν ∼ f vL . (4.4)

Note that f is the same coupling matrix that appears in the charged fermion masses in eq. (4.2), up
to factors from the Higgs mixings and the Clebsch-Gordan coefficients. Also note that the neutrino
Dirac mass, proportional to YνD in eq. (4.2), only enters in the neglected type-I see-saw terms and
does not play a role in the following analysis. The equations (4.2) and (4.4) are the key relations in
this approach.

The 10 Yukawa couplings contributing to up, down and charged lepton masses in most models
have a large 33 term, corresponding to the large third generation masses, while all other entries are
smaller and lead by themselves to zero CKM mixing (because the 10 contributes equally to up and
down mixing). Quark mixings arise from small corrections due to 126, the same Higgs represen-
tation that determines f which in models with type-II see-saw is dominant in the neutrino sector,
and to 120. Thus, in this approach, in the absence of 120, there is a strict relation between quark
masses and mixings and the neutrino mass matrix. The presence of 120 dilutes this connection
which however still remains important. In particular the deviations from BM mixing induced by
the diagonalization of the charged lepton mass matrix, are typically of the same order as the largest
quark mixing angle i.e the Cabibbo angle. An interesting question is to see to which extent the data
are compatible with the constraints implied by this interconnected structure.

For generic eigenvalues mi, the most general matrix that is diagonalized by the BM unitary
transformation is given by:

f =U∗BMdiag(m1,m2,m3)U
†
BM . (4.5)

where UBM is the BM mixing matrix given in eq.(1.1). In this convention UBM is a real orthogonal
matrix and all phases can be included in the eigenvalues mi. Then the matrix f is symmetric with
complex entries and, from eq. (4.5), one obtains (see eq.(1.2)):

f =

 f2 f1 f1

f1 f0 f2− f0

f1 f2− f0 f0

 , (4.6)

with: m1 = f2 +
√

2 f1, m2 = f2−
√

2 f1 and m3 = 2 f0− f2.
An important observation is that, for a generic neutrino mass matrix f ′, we can always go

to a basis where f ′ is diagonalized by the BM unitary transformation in eq. (1.1) and is of the
form in eq. (4.6), in the same way as discussed in Ref. [28] for TB mixing. In fact, if we start
from a complex symmetric matrix f ′ not of that form, it is sufficient to diagonalize it by a unitary
transformation U : f ′diag =UT f ′U and then take the matrix

f =U∗BM f ′diagU†
BM =U∗BMUT f ′UU†

BM . (4.7)
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As a result the matrices f and f ′ are related by a change of the charged lepton basis induced by the
unitary matrix O =UU†

BM (in SO(10) the matrix O rotates the whole fermion representations 16i).
Since BM mixing is not a very good approximation to the data, in this basis substantial deviations
from BM mixing must be generated by the diagonalization of charged leptons, with terms expected
to be of O(λC). At the same time also the quark mixings must be reproduced in agreement with the
data. As the matrix elements of f enter both in the neutrino mass formula and in the corrections to
the fermion mass matrices, this fact poses a non trivial problem of consistency, especially in view
of the small values of the first generation masses.

As one could decide to work in a basis where the matrix f is diagonalised by the TB matrix or
by BM matrix (or in another suitable basis), this means that, for the measured set of data, the result
of a best fit performed in one basis should lead to the same χ2 than the fit in other basis, because
the only difference is that the set of parameters used in one fit are functions of the parameters of
the other fit. So the χ2 cannot decide whether TB or BM is a better starting point. However, since
the first generation masses are very small some parameters must be precisely fine tuned in order to
reproduce the small values of the masses. It is possible that one needs more fine tuning in one case
than in the other. For a quantitative measure, in a given fit, of the amount of fine-tuning needed a
parameter dFT was introduced in Ref. [28]. This adimensional quantity is obtained as the sum of
the absolute values of the ratios between each parameter pi and its "error", defined, for this purpose,
as the shift from the best fit value that changes the χ2 by one unit, with all other parameters fixed
at their best fit values (this is not the error given by the fitting procedure because in that case all the
parameters are varied at the same time and the correlations are taken into account):

dFT = ∑ |
pari

erri
| (4.8)

It is clear that dFT gives a rough idea of the amount of fine-tuning involved in the fit because if some
|erri/pari| are very small it means that it takes a minimal variation of the corresponding parameter
to make a large difference on the χ2.

We report here on a comparative study of starting from f in the TB or in the BM basis. For
the TB case the important difference with the detailed, complete discussion in Ref.[28] is that here
we used updated experimental values for the neutrino mixing angles, in particular for sin2

θ13 ∼
0.022±0.001, as most precisely measured by the Daya Bay experiment [17]. The result of a best
fit performed in one basis should lead to the same χ2 than the fit in another basis, because the only
difference is that the set of parameters used in one fit are functions of the parameters of the other
fit. So, as we have already stressed, the χ2 cannot decide whether TB or BM is better. We have
checked that the χ2 is equal within uncertainties in the two cases, and this is true even for values
of sinθ13 somewhat different than the measured value, as can be seen in Fig. 3. However, since
the first generation masses are very small some parameters must be precisely fine tuned in order to
reproduce the small values of the masses. It turns out that, for the physical value of sin2

θ13, dFT is
smaller in the TB case. A study of the fine tuning parameter when the fit is repeated with the same
data except for sin2

θ13, which is moved from small to large, shows that the fine tuning increases
(decreases) with sinθ13 for TB (BM), as shown in Fig. 4.

A closer look at the details of the fine tuning parameter reveals that high dFT values are pre-
dominantly driven by the smallness of the electron mass, combined with its extraordinary mea-
surement precision. Moreover, due to the presence of mixing, the dFT coming from, for instance,
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Figure 3: In the SO(10) model the resulting χ2 when starting in the TB or BM basis are equal within errors.
Note that the minimum χ2 value, χ2 = 0.003, is obtained for sin2

θ13 ∼ 0.015, just a bit below the measured
value sin2

θ13 ∼ 0.022. Nevertheless, as the minimum χ2 is quite shallow for sin2
θ13 < 0.1, the fit does not

exhibit any strongly preferred value of θ13.

the 33 component of h, which is mainly responsible for the top mass, is actually one of the largest
contributions to the global dFT (due to its contribution to the electron mass) in both TB and BM
scenarios. Although this might be surprising at a first glance, we emphasize that the dependence of
the observables on the parameters is highly non trivial due to the off-diagonal elements of the mass
matrices.

In conclusion, as previously shown in Ref. [28], in this class of SO(10) models one can
obtain a reasonable fit to the data. Then one can reinterpret the result as BM corrected by the
charged lepton diagonalization and explicitly determine the corrective terms arising from the fit.
However the model does not imply BM mixing as a starting approximation. In fact, one could as
well focus on TB mixing and make a similar interpretation. To predict, before diagonalization of
charged leptons, exact BM in the neutrino sector one would need additional dynamical ingredients.
Independent of that, with the present value of sin2

θ13, a larger amount of fine tuning is needed
in the BM case, as compared to the TB case, in order to reproduce the small values of the first
generation masses.

5. Summary and Conclusion

Models of neutrino mixing based on discrete flavour groups have been extensively studied.
After the recent measurement of sin2

θ13 many of these models have been disfavoured, in partic-
ular among those aiming at implementing TB mixing. But models based on S4 with BM mixing
corrected by terms arising from the diagonalization of the charged lepton mass matrix remain as a
viable and attractive possibility. In a GUT context, in these theories, it is also possible to implement
the weak form of complementarity i.e. θ12+O(θC)∼ π/4 and to describe quark and lepton masses
and mixings in a all comprehensive approach. Here we have discussed two examples of GUT mod-
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Figure 4: In the SO(10) model the fine tuning parameter dFT increases (decreases) with sin2
θ13 in the TB

(BM) cases. For the physical value sin2
θ13 ∼ 0.022 it is about 4 times larger in the BM case.

els of BM, one based on SU(5) and one on SO(10). The SU(5) model discussed here indeed has
a broken flavour symmetry that contains S4 and imposes the BM structure in the neutrino sector
which is then corrected by terms arising from the diagonalization of charged lepton masses. The
SO(10) model is based on Type-II see-saw and the origin of BM before diagonalization of charged
leptons is in this case left unspecified. We have discussed the phenomenology of these models in
the context of the most recent data and their relative merits. We have then compared these models
based on a large symmetries with models based on a minimum of symmetry where chance plays a
central role, like Anarchy or models based on U(1)FN . The SU(5) model with broken S4 symmetry
emerges as the most viable and predictive theory.
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