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Introduction to SUSY

Part I: Basics of Supersymmetry

1. What is supersymmetry

Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature in-
cluding gravity within a singe framework [1, 2, 3, 4, 5]. Modern views on supersymmetry in par-
ticle physics are based on a string paradigm, though low energy manifestations of supersymmetry
(SUSY) can be possibly found at modern colliders and in non-accelerator experiments.

Supersymmetry emerged from attempts to generalize the Poincaré algebra to mix representa-
tions with different spin [1]. It happened to be a problematic task due to “no-go” theorem prevent-
ing such generalizations [6]. The way out was found by introducing so-called graded Lie algebras,
i. e. adding anti-commutators to usual commutators of the Lorentz algebra. Such a generalization,
described below, appeared to be the only possible one within the relativistic field theory.

If Q is a generator of the SUSY algebra, then acting on a boson state it produces a fermion one
and vice versa

Q̄ |boson〉= |fermion〉, Q |fermion〉= |boson〉.

Since the bosons commute with each other and the fermions anticommute, one immediately
finds that the SUSY generators should also anticommute, they must be fermionic, i. e. they must
change the spin by a half-odd amount and change the statistics. The key element of the SUSY
algebra is

{Qα , Q̄α̇}= 2σ
µ

αα̇
Pµ (1.1)

where Q and Q̄ are the generators of the supersymmetry transformation and Pµ is the generator of
translation, the four-momentum.

In what follows we describe the SUSY algebra in more detail and construct its representations
which are needed to build the SUSY generalization of the Standard Model (SM) of fundamental
interactions. Such a generalization is based on a softly broken SUSY quantum filed theory and
contains the SM as the low energy theory.

Supersymmetry promises to solve some problems of the Standard Model and of Grand Unified
Theories. In what follows we describe supersymmetry as the nearest option for the new physics on
the TeV scale.

2. Algebra of SUSY

Consider the usual Poincaré algebra

[Pµ ,Pν ] = 0,

[Pµ ,Mρσ ] = i(gµρPσ −gµσ Pρ),

[Mµν ,Mρσ ] = i(gνρMµσ −gνσ Mµρ −gµρMνσ +gµσ Mνρ),

(2.1)

where Pµ and Mµν are the four-momentum and angular four momentum, respectively. The Super-
Poincaré Lie algebra contains additional SUSY generators Qi

α and Q̄i
α̇

[3]. On general grounds
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Introduction to SUSY

they might obey the following set of commutator or anti-commutator Lorentz invariant relations:

[Pµ ,Qi
α ] = c1(σµ)αα̇Q̄α̇i,

[Pµ , Q̄i
α̇ ] = c2(σ̃µ)α̇αQαi,

[Mµν ,Qi
α ] = c3(σµν)

β

αQ̄i
β
,

[Mµν , Q̄i
α̇ ] = c4(σ̃µν)

β̇

α̇
Qi

β̇
,

{Qi
α ,Q

j
β
}= c5εαβ Zi j + c̃5(σ

µν)αβ MµνX i j,

{Q̄i
α̇ , Q̄

j
β̇
}= c6ε

α̇β̇
Z̄i j + c̃6(σ̃

µν)
α̇β̇

Mµν X̄ i j,

{Qi
α , Q̄

j
α̇
}= 2c7(σ

µ)αα̇Pµδ
i j,

(2.2)

with arbitrary coefficients c1, ...,c7. However, to satisfy the algebra the operators have to obey the
Jacobi identities

[B1, [B2,B3]]+ [B2, [B3,B1]]+ [B3, [B1,B2]] = 0,

[B,{F1,F2}]+{F1, [F2,B]}−{F2, [B,F1]}= 0,

[B1, [B2,F ]]+ [B2, [F,B1]]+ [F, [B1,B2]] = 0,

[F1,{F2,F3}]+ [F2,{F3,F1}]+ [F3,{F1,F2}] = 0,

(2.3)

where Bi are bosonic and Fi are fermionic generators. Applying Jacobi identities to Eqns.(2.2) one
gets a unique solution

c1 = c2 = c̃5 = c̃6 = 0, c3 = c4 = i, c5 = c6 = c7 = 1, X i j = X̄ i j = 0.

This leads to the following Super-Poincaré Lie algebra

[Pµ ,Pν ] = 0,

[Pµ ,Mρσ ] = i(gµρPσ −gµσ Pρ),

[Mµν ,Mρσ ] = i(gνρMµσ −gνσ Mµρ −gµρMνσ +gµσ Mνρ),

[Qi
α ,Pµ ] = [Q̄i

α̇ ,Pµ ] = 0,

[Mµν ],Qi
α ] = i(σµν)

β

αQi
β
, [Mµν , Q̄i

α̇ ] = i(σ̄µν)
β̇

α̇
Q̄i

β̇
,

{Qi
α , Q̄

j
β̇
}= 2δ

i j(σ µ)
αβ̇

Pµ ,

{Qi
α ,Q

j
β
}= εαβ Zi j,

{Q̄i
α̇ , Q̄

j
β̇
}= ε

α̇β̇
Z̃i j, [Zi j,anything] = 0,

α, α̇ = 1,2 i, j = 1,2, . . . ,N.

(2.4)

Here Zi j are the so-called central charges; α, α̇,β , β̇ are the spinorial indices.
In the simplest case one has one spinor generator Qα (and the conjugated one Q̄α̇ ) that corre-

sponds to the ordinary or N = 1 supersymmetry. When N > 1 one has the extended supersymmetry.
The statement that the relations (2.4) represent the most general extension of the Poincare algebra
(2.1) by means of fermionic generators is referred as the Haag - Lopuszanski- Sohnius theorem
which was proved in 1975 [7].
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Introduction to SUSY

3. Representations of SUSY algebra

A natural question arises: how many SUSY generators are possible, i. e. what is the value
of N? To answer this question, consider massless states. Let us start with the ground state labeled
by the energy and the helicity, i. e. the projection of the spin on the direction of momenta, and let
it be annihilated by Qi

Vacuum = |E,λ 〉, Qi|E,λ 〉= 0.

Then one- and many-particle states can be constructed with the help of creation operators as

State Expression # of states

vacuum |E,λ 〉 1
1-particle Q̄i|E,λ 〉= |E,λ + 1

2〉i N
2-particle Q̄iQ̄ j|E,λ = |E,λ +1〉i j

N(N−1)
2

. . . . . . . . .

N-particle Q̄1 . . . Q̄N |E,λ 〉= |E,λ + N
2 〉 1

The total # of states is:
N

∑
k=0

(
N
k

)
= 2N = 2N−1 bosons + 2N−1 fermions.

The energy E is not changed, since according to (2.4) the operators Q̄i commute with the
Hamiltonian.

Thus, one has a sequence of bosonic and fermionic states and the total number of the bosons
equals to that of the fermions. This is a generic property of any supersymmetric theory. However,
in CPT invariant theories the number of states is doubled, since CPT transformation changes the
sign of the helicity. Hence, in the CPT invariant theories, one has to add the states with the opposite
helicity to the above mentioned ones.

Let us consider some examples. We take N = 1 and λ = 0. Then one has the following set of
states:

N = 1 λ = 0
helicity 0 1

2 helicity 0 − 1
2

CPT
=⇒

# of states 1 1 # of states 1 1

Hence, the complete N = 1 multiplet is

N = 1 helicity −1/2 0 1/2
# of states 1 2 1

which contains one complex scalar and one spinor with two helicity states. The number of bosonic
degrees of freedom equals to the number of fermionic ones as expected.

This is an example of the so-called self-conjugated multiplet. There are also the self-conju-
gated multiplets with N > 1 corresponding to the extended supersymmetry. Two particular exam-
ples are the N = 4 super Yang-Mills multiplet and the N = 8 supergravity multiplet which contain
the states with spin = 1 and spin = 2, respectively

4
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Introduction to SUSY

N = 4 SUSY YM λ =−1

helicity −1 −1/2 0 1/2 1
# of states 1 4 6 4 1

N = 8 SUGRA λ =−2

−2 −3/2 −1 −1/2 0 1/2 1 3/2 2
1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended supersymmetry are very rich and contain a vast number
of particles.

The constraint on the number of the SUSY generators comes from the requirement of con-
sistency of the corresponding QFT. The number of supersymmetries and the maximal spin of the
particle in the multiplet are related by

N ≤ 4S,

where S is the maximal spin. Since the theories with the spin greater than 1 are non-renormalizable
and the theories with the spin greater than 5/2 have no consistent coupling to gravity, this imposes
a constraint on the number of the SUSY generators

N ≤ 4 for renormalizable theories (YM),

N ≤ 8 for (super)gravity.

In what follows, we shall consider the simple supersymmetry, or the N = 1 supersymmetry,
contrary to the extended supersymmetries with N > 1. In this case, one has the following types of
the supermultiplets which are used for the construction of the SUSY generalization of the SM

(φ , ψ) (λ , Aµ)

Spin = 0, Spin = 1/2 Spin = 1/2, Spin = 1
scalar chiral Ma jorana vector

f ermion f ermion

each of them contains two physical states, one boson and one fermion. They are called chiral and
vector multiplets, respectively. To construct the SUSY generalization of the SM one has to put all
the particles into these multiplets. For instance, quarks should go into the chiral multiplet and the
photon into the vector multiplet.

4. Superspace and supermultiplets

An elegant formulation of the supersymmetry transformations and invariants can be achieved
in the framework of the superspace formalism [4]. The superspace differs from the ordinary Eu-
clidean (Minkowski) space by adding two new coordinates, θα and θ̄α̇ , which are Grassmannian,
i. e. anticommuting, variables

{θα ,θβ}= 0, {θ̄α̇ , θ̄β̇
}= 0, θ

2
α = 0, θ̄

2
α̇ = 0,

α,β , α̇, β̇ = 1,2.

5
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Introduction to SUSY

Thus, we go from the space to the superspace

Space =⇒ Superspace
xµ xµ ,θα , θ̄α̇

A SUSY group element can be constructed in the superspace in the same way as the ordinary
translation in the usual space

G(x,θ , θ̄) = e i(−xµPµ +θQ+ θ̄ Q̄). (4.1)

It leads to a supertranslation in the superspace

xµ → xµ + iθσµ ε̄− iεσµ θ̄ ,

θ → θ + ε,

θ̄ → θ̄ + ε̄,

(4.2)

where ε and ε̄ are the Grassmannian transformation parameters. From Eqn. (4.2) one can easily
obtain the representation for the supercharges (2.4) acting on the superspace

Qα =
∂

∂θα

− iσ
µ

αα̇
θ̄

α̇
∂µ , Q̄α̇ =− ∂

∂ θ̄α̇

+ iθασ
µ

αα̇
∂µ . (4.3)

To define the fields on a superspace, consider representations of the Super-Poincaré group (2.4)
[3]. The simplest one is a scalar superfield F(x,θ , θ̄) which is SUSY invariant. Its Taylor expansion
in θ and θ̄ has only several terms due to the nilpotent character of Grassmannian parameters.
However, this superfield is a reducible representation of SUSY. To get an irreducible one, we define
a chiral superfield which obeys the equation

D̄α̇Φ = 0, where D̄α̇ =− ∂

∂ θ̄ α̇
− iθ α

σ
µ

αα̇
∂µ (4.4)

is a superspace covariant derivative.
For the chiral superfield Grassmannian Taylor expansion looks like (y = x+ iθσθ̄ )

Φ(y,θ) = A(y)+
√

2θψ(y)+θθF(y) =

= A(x)+ iθσ
µ

θ̄ ∂µA(x)+
1
4

θθθ̄ θ̄ 2A(x)

+
√

2θψ(x)− i√
2

θθ∂µψ(x)σ µ
θ̄ +θθF(x).

(4.5)

The coefficients are the ordinary functions of x being the usual fields. They are called the compo-
nents of the superfield. In Eqn. (4.5) one has 2 bosonic (the complex scalar field A) and 2 fermionic
(the Weyl spinor field ψ) degrees of freedom. The component fields A and ψ are called the su-
perpartners. The field F is an auxiliary field, it has the "wrong" dimension and has no physical
meaning. It is needed to close the algebra (2.4). One can get rid of the auxiliary fields with the help
of equations of motion.

6
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Introduction to SUSY

Thus, the superfield contains an equal number of the bosonic and fermionic degrees of free-
dom. Under the SUSY transformation they convert one into another

δεA =
√

2εψ,

δεψ = i
√

2σ
µ

ε̄∂µA+
√

2εF,

δεF = i
√

2 ε̄σ
µ

∂µψ.

(4.6)

Notice that the variation of the F-component is a total derivative, i. e. it vanishes when integrated
over the space-time.

One can also construct an antichiral superfield Φ+ obeying the equation

DαΦ
+ = 0, with Dα =

∂

∂θ α
+ iσ µ

αα̇
θ̄

α̇
∂µ .

The product of chiral (antichiral) superfields Φ2,Φ3, etc is also a chiral (antichiral) superfield, while
the product of chiral and antichiral ones Φ+Φ is a general superfield.

For any arbitrary function of chiral superfields one has

W (Φi) = W (Ai +
√

2θψi +θθF)

= W (Ai)+
∂W

∂Ai

√
2θψi +θθ

(
∂W

∂Ai
Fi−

1
2

∂ 2W

∂Ai∂A j
ψiψ j

)
. (4.7)

The W is usually referred to as a superpotential which replaces the usual potential for the scalar
fields.

To construct the gauge invariant interactions, one needs a real vector superfield V =V+. It is
not chiral but rather a general superfield with the following Grassmannian expansion:

V (x,θ , θ̄) =C(x)+ iθ χ(x)− i θ̄ χ̄(x)+
i
2

θθ
[
M(x)+ iN(x)

]
− i

2
θ̄ θ̄
[
M(x)− iN(x)

]
−θσ

µ
θ̄ vµ(x)+ iθθθ̄

[
λ (x)+

i
2

σ̄
µ

∂µ χ(x)
]

(4.8)

− i θ̄ θ̄θ
[
λ +

i
2

σ
µ

∂µ χ̄(x)
]
+

1
2

θθθ̄ θ̄
[
D(x)+

1
2
2C(x)].

The physical degrees of freedom corresponding to the real vector superfield V are the vector gauge
field vµ and the Majorana spinor field λ . All other components are unphysical and can be elimi-
nated. Indeed, under the Abelian (super)gauge transformation the superfield V is transformed as

V → V +Φ+Φ
+,

where Φ and Φ+ are some chiral superfields. In components it looks like

C → C+A+A∗,

χ → χ− i
√

2ψ,

M+ iN → M+ iN−2iF,

vµ → vµ − i∂µ(A−A∗), (4.9)

λ → λ ,

D → D,

7
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Introduction to SUSY

and corresponds to ordinary gauge transformations for physical components. According to Eqn.(4.9),
one can choose a gauge (the Wess-Zumino gauge) where C = χ = M = N = 0, leaving one with
only physical degrees of freedom except for the auxiliary field D. In this gauge

V =−θσ
µ

θ̄vµ(x)+ iθθθ̄ λ̄ (x)− i θ̄ θ̄θλ (x)+
1
2

θθθ̄ θ̄D(x),

V 2 =−1
2

θθθ̄ θ̄ vµ(x)vµ(x), (4.10)

V 3 = 0, etc.

One can define also a field strength tensor (as the analog of Fµν in the gauge theories)

Wα =−1
4

D̄2eV Dαe−V , W̄α̇ =−1
4

D2eV D̄αe−V , (4.11)

Here Dα and D̄α̇ are the supercovariant derivatives

Dα =
∂

∂θ α
+ iσ µ

αα̇
θ̄

α̇
∂µ , D̄α̇ =− ∂

∂ θ̄ α̇
− iθ α

σ
µ

αα̇
∂µ . (4.12)

The field strength tensor in the chosen Wess-Zumino gauge is a polynomial over the compo-
nent fields:

Wα = T a
(
−iλ

a
α +θαDa− i

2
(σ µ

σ̄
ν
θ)αFa

µν +θ
2(σ µDµ λ̄

a)α

)
, (4.13)

where
Fa

µν = ∂µva
ν −∂νva

µ + f abcvb
µvc

ν , Dµ λ̄
a = ∂ λ̄

a + f abcvb
µ λ̄

c.

In the Abelian case Eqs. (4.11) are simplified and take the form

Wα =−1
4

D̄2DαV, W̄α̇ =−1
4

D2D̄αV.

5. Construction of SUSY Lagrangians

Let us start with the Lagrangian which has no local gauge invariance. In the superfield notation
the SUSY invariant Lagrangians are the polynomials of the superfields. In the same way, as the
ordinary action is the integral over the space-time of the Lagrangian density, in the supersymmetric
case the action is the integral over the superspace. The space-time Lagrangian density is [3, 4]

L =
∫

d2
θ d2

θ̄ Φ
+
i Φi +

∫
d2

θ
[
λiΦi +

1
2

mi jΦiΦ j +
1
3

yi jkΦiΦ jΦk
]
+h.c. (5.1)

where the first part is the kinetic term and the second one is the superpotential W . We use here the
integration over the superspace according to the rules of the Grassmannian integration [8]∫

dθα = 0,
∫

θα dθβ = δαβ .

Performing the explicit integration over the Grassmannian parameters, we get from Eqn. (5.1)

L = i∂µ ψ̄i σ̄
µ

ψi +A∗i 2Ai +F∗i Fi

+
[
λiFi +mi j

(
AiFj−

1
2

ψiψ j

)
+ yi jk

(
AiA jFk−ψiψ jAk

)
+h.c.

]
.

(5.2)

8
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The last two terms are the interaction ones. To obtain the familiar form of the Lagrangian, we have
to solve the constraints

∂L

∂F∗k
= Fk +λ

∗
k +m∗ikA∗i + y∗i jkA∗i A∗j = 0,

∂L

∂Fk
= F∗k +λk +mikAi + yi jkAiA j = 0.

(5.3)

Expressing the auxiliary fields F and F∗ from these equations, one finally gets

L = i∂µ ψ̄iσ̄
µ

ψi +A∗i 2Ai−
1
2

mi jψiψ j−
1
2

m∗i jψ̄iψ̄ j

− yi jkψiψ jAk− y∗i jkψ̄iψ̄ jA∗k−V (Ai,A j),
(5.4)

where the scalar potential V = F∗k Fk. We will return to the discussion of the form of the scalar
potential in the SUSY theories later.

Consider now the gauge invariant SUSY Lagrangians. They should contain the gauge invariant
interaction of the matter fields with the gauge ones and the kinetic term and the self-interaction of
the gauge fields.

Let us start with the gauge field kinetic terms. In the Wess-Zumino gauge one has

W αWα

∣∣
θθ

= −2 iλσ
µDµ λ̄ − 1

2
FµνFµν +

1
2

D2 +
i
4

FµνFρσ
εµνρσ , (5.5)

where Dµ λ̄ = ∂µ + ig[vµ , λ̄ ] is the usual covariant derivative and the last, the so-called topological
θ -term, is the total derivative. The gauge invariant Lagrangian now has the familiar form

L =
1
4

∫
d2

θ W αWα +
1
4

∫
d2

θ̄ W̄ α̇W̄α̇

=
1
2

D2− 1
4

FµνFµν − iλσ
µDµ λ̄ .

(5.6)

To obtain the gauge-invariant interaction with the matter chiral superfields, one has to modify the
kinetic term by inserting the bridge operator

Φ
+
i Φi =⇒ Φ

+
i egV

Φi. (5.7)

The complete SUSY and gauge invariant Lagrangian then looks like

LSUSY Y M =
1
4

∫
d2

θ Tr(W αWα)+
1
4

∫
d2

θ̄ Tr(W̄ αW̄α)

+
∫

d2
θ d2

θ̄ Φ̄ia(egV )a
bΦ

b
i +

∫
d2

θ W (Φi) +
∫

d2
θ̄ W̄ (Φ̄i),

(5.8)

where W is the superpotential, which should be invariant under the group of symmetry of the
particular model. In terms of thecomponent fields the above Lagrangian takes the form

LSUSY Y M =−1
4

Fa
µνFaµν − iλ

a
σ

µDµ λ̄
a +

1
2

DaDa

+
(
∂µAi− igva

µT aAi
)†(

∂µAi− igva
µT aAi

)
− i ψ̄iσ̄

µ
(
∂µψi− igva

µT a
ψi
)

−DaA†
i T aAi− i

√
2A†

i T a
λ

a
ψi + i

√
2 ψ̄iT aAiλ̄

a +F†
i Fi

+
∂W

∂Ai
Fi +

∂ W̄

∂A†
i

F†
i −

1
2

∂ 2W

∂Ai∂A j
ψiψ j−

1
2

∂ 2W̄

∂A†
i ∂A†

j

ψ̄iψ̄ j.

(5.9)

Integrating out the auxiliary fields Da and Fi, one reproduces the usual Lagrangian.
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6. The scalar potential

Contrary to the SM, where the scalar potential is arbitrary and is defined only by the require-
ment of the gauge invariance, in the supersymmetric theories it is completely defined by the su-
perpotential. It consists of the contributions from the D-terms and F-terms. The kinetic energy of
the gauge fields (recall Eqn. (5.6) yields the 1

2 DaDa term, and the matter-gauge interaction (recall
Eqn. (5.9) yields the gDaT a

i jA
∗
i A j one. Together they give

LD =
1
2

DaDa +gDaT a
i jA
∗
i A j. (6.1)

The equation of motion reads
Da =−gT a

i jA
∗
i A j. (6.2)

Substituting it back into Eqn. (6.1) yields the D-term part of the potential

LD =−1
2

DaDa =⇒ VD =
1
2

DaDa, (6.3)

where D is given by Eqn. (6.2).
The F-term contribution can be derived from the matter field self-interaction (5.2). For a

general type superpotential W one has

LF = F∗i Fi +
(

∂W
∂Ai

Fi +h.c.
)
. (6.4)

Using the equations of motion for the auxiliary field Fi

F∗i =−∂W
∂Ai

(6.5)

yields
LF =−F∗i Fi =⇒ VF = F∗i Fi, (6.6)

where F is given by Eqn. (6.5). The full scalar potential is the sum of the two contributions

V =VD +VF . (6.7)

Thus, the form of the Lagrangian is practically fixed by the symmetry requirements. The only
freedom is the field content, the value of the gauge coupling g, Yukawa couplings yi jk and the
masses. Because of the renormalizability constraint V ≤ A4 the superpotential should be limited by
W ≤Φ3 as in Eqn. (5.1). All members of the supermultiplet have the same masses, i. e. the bosons
and the fermions are degenerate in masses. This property of the SUSY theories contradicts to the
phenomenology and requires supersymmetry breaking.

7. Spontaneous breaking of SUSY

Since supersymmetric algebra leads to mass degeneracy in a supermultiplet, it should be bro-
ken to explain the absence of superpartners at modern energies. There are several ways of su-
persymmetry breaking. It can be broken either explicitly or spontaneously. Performing SUSY
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breaking one has to be careful not to spoil the cancellation of quadratic divergencies which allows
one to solve the hierarchy problem. This is achieved by spontaneous breaking of SUSY.

Apart from non-supersymmetric theories in SUSY models the energy is always nonnegative
definite. Indeed, according to quantum mechanics

E =< 0| H |0 >

and due to SUSY algebra eq.(2.4)

{Qα , Q̄β̇
}= 2(σ µ)

αβ̇
Pµ ,

taking into account that tr(σ µPµ) = 2P0, one gets

E =
1
4 ∑

α=1,2
< 0|{Qα , Q̄α}|0 >=

1
4 ∑

α

|Qα |0 > |2 ≥ 0.

Hence
E =< 0| H |0 >6= 0 i f and only i f Qα |0 >6= 0.

Therefore, supersymmetry is spontaneously broken, i.e. vacuum is not invariant (Qα |0 >6= 0),
if and only if the minimum of the potential is positive (i.e. E > 0) .

The situation is illustrated in Fig.1. The SUSY ground state has E = 0, while a non-SUSY one
has E > 0. On the right-hand side a non-SUSY potential is shown. It does not appear even in spon-
taneously broken SUSY theories. However, just this type of the potential is used for spontaneous
breaking of the gauge invariance via the Higgs mechanism. This property has crucial consequences
for the spontaneous breaking of the gauge invariance. Indeed, as will be seen later, in the MSSM
spontaneous breaking of SU(2) invariance takes place only after SUSY is broken.

Figure 1: Scalar potential in supersymmetric and non-supersymmetric theories

Spontaneous breaking of supersymmetry is achieved in the same way as the electroweak sym-
metry breaking. One introduces the field whose vacuum expectation value is nonzero and breaks
the symmetry. However, due to a special character of SUSY, this should be a superfield whose
auxiliary F and D components acquire nonzero v.e.v.’s. Thus, among possible spontaneous SUSY
breaking mechanisms one distinguishes the F and D ones.
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i) Fayet-Iliopoulos (D-term) mechanism [9].
In this case the, the linear D-term is added to the Lagrangian

∆L = ξV |θθθ̄ θ̄ = ξ

∫
d4

θ V. (7.1)

It is gauge and SUSY invariant by itself; however, it may lead to spontaneous breaking of both of
them depending on the value of ξ . We show in Fig.2a the sample spectrum for two chiral matter
multiplets. The drawback of this mechanism is the necessity of U(1) gauge invariance. It can be

Figure 2: Spectrum of spontaneously broken SUSY theories

used in SUSY generalizations of the SM but not in GUTs.
The mass spectrum also causes some troubles since the following sum rule is always valid

∑
boson states

m2
i = ∑

f ermion states
m2

i , (7.2)

which is bad for phenomenology.
ii) O’Raifeartaigh (F-term) mechanism [10].

In this case, several chiral fields are needed and the superpotential should be chosen in a way that
trivial zero v.e.v.s for the auxiliary F-fields be absent. For instance, choosing the superpotential to
be

W (Φ) = λΦ3 +mΦ1Φ2 +gΦ3Φ
2
1,

one gets the equations for the auxiliary fields

F∗1 = mA2 +2gA1A3,

F∗2 = mA1,

F∗3 = λ +gA2
1,

which have no solutions with < Fi >= 0 and SUSY is spontaneously broken. The sample spectrum
is shown in Fig.2b.

The drawbacks of this mechanism is a lot of arbitrariness in the choice of potential. The sum
rule (7.2) is also valid here.
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Unfortunately, none of these mechanisms explicitly works in SUSY generalizations of the
SM. None of the fields of the SM can develop nonzero v.e.v.s for their F or D components without
breaking SU(3) or U(1) gauge invariance since they are not singlets with respect to these groups.
This requires the presence of extra sources of spontaneous SUSY breaking, which we consider
below. They are based, however, on the same F and D mechanisms.

PART II: Supersymmetric Standard Model

1. Motivation for SUSY in particle physics

1.1 Unification with gravity

Let us consider the infinitesimal SUSY transformations δε = εαQα , δ̄ε̄ = Q̄α̇ ε̄ α̇ . Then accord-
ing to SUSY algebra one gets

{δε , δ̄ε̄}= 2(εσ
µ

ε̄)Pµ , (1.1)

where ε, ε̄ are transformation parameters. Choosing ε to be local, i. e. the function of the space-
time point ε = ε(x), one finds from eqn. (1.1) that the anticommutator of two SUSY transformations
is a local coordinate translation, and the theory which is invariant under the local coordinate trans-
formation is the General Relativity. Thus, making SUSY local, one naturally obtains the General
Relativity, or the theory of gravity, or supergravity [2].

1.2 Unification of gauge couplings

According to the Grand Unification hypothesis, the gauge symmetry increases with the en-
ergy [11]. All known interactions are different branches of the unique interaction associated with
a simple gauge group. The unification (or splitting) occurs at the high energy. To reach this goal
one has to consider how the couplings change with the energy. It is described by renormalization
group equations. In the SM the strong and weak couplings associated with the non-Abelian gauge
groups decrease with the energy, while the electromagnetic one associated with the Abelian group
on the contrary increases. Thus, it is possible that at some energy scale they are equal.

After the precise measurement of the SU(3)×SU(2)×U(1) coupling constants, it has become
possible to check the unification numerically. The three coupling constants to be compared are

α1 = (5/3)g′2/(4π) = 5α/(3cos2
θW ),

α2 = g2/(4π) = α/sin2
θW ,

α3 = g2
s/(4π)

(1.2)

where g′, g and gs are the usual U(1), SU(2) and SU(3) couplings and α is the fine structure
constant. The factor of 5/3 in α1 has been included for proper normalization of the generators.

In the modified minimal subtraction (MS) scheme, the world averaged values of the couplings
at the Z0 energy are obtained from the fit to the LEP and Tevatron data [12]:

α1(MZ) = 0.017,

α2(MZ) = 0.034,

α3(MZ) = 0.118±0.003.

(1.3)
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Assuming that the SM is valid up to the unification scale, one can then use the known RG equations
for the three couplings. In the leading one has:

1
α̃i(Q2)

=
1

α̃i(µ2)
−bi log

(
Q2

µ2

)
. (1.4)

10log Q

1/
_

i

1/_1
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Figure 3: The evolution of the inverse of the three coupling constants in the Standard Model (left) and in
the supersymmetric extension of the SM (MSSM) (right).

The result is demonstrated in Fig. 3 [13] showing the evolution of the inverse of the couplings
as a function of the logarithm of energy. In this presentation, the evolution becomes a straight line
in the first order. The second order corrections are small and do not cause any visible deviation from
the straight line. Fig. 3 clearly demonstrates that within the SM the coupling constant unification
at a single point is impossible. It is excluded by more than 8 standard deviations. This result means
that the unification can only be obtained if the new physics enters between the electroweak and the
Planck scales.

In the SUSY case, the slopes of the RG evolution curves are modified. The SUSY particles
are assumed to contribute effectively to the running of the coupling constants only for the energies
above the typical SUSY mass scale. It turns out that within the SUSY model the perfect unification
can be obtained as it is shown in Fig. 3. What is remarkable the SUSY scale happened to be in the
TeV range offering hopes for the experimental observation of SUSY.

1.3 Solution to the hierarchy problem

The appearance of two different scales V � v in the GUT theory, namely, MGUT and MW ,
leads to a very serious problem which is called the hierarchy problem. There are two aspects of
this problem.
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The first one is the very existence of the hierarchy. To get the desired spontaneous symmetry
breaking pattern, one needs

mH ∼ v∼ 102 GeV

mΣ ∼V ∼ 1016 GeV

mH

mΣ

∼ 10−14� 1, (1.5)

where H and Σ are the Higgs fields responsible for the spontaneous breaking of the SU(2) and
GUT group, respectively. The question arises of how to get so small number in a natural way.

The second aspect of the hierarchy problem is connected with the preservation of the given hi-
erarchy. Even if we choose the hierarchy like in Eqn. (1.5) the radiative corrections will destroy it!
The very accurate cancelation with a precision ∼ 10−14 needs a fine-tuning of the coupling con-
stants.

The only known way of achieving this kind of cancelation of quadratic terms (also known as
the cancelation of the quadratic divergencies) is supersymmetry. Moreover, SUSY automatically
cancels the quadratic corrections in all orders of the perturbation theory. This is due to the con-
tributions of superpartners of ordinary particles. The contribution from boson loops cancels those
from the fermion ones because of an additional factor (−1) coming from the Fermi statistics, as
shown in Fig. 4.

One can see here two types of contribution. The first line is the contribution of the heavy
Higgs boson and its superpartner (higgsino). The strength of the interaction is given by the Yukawa
coupling constant λ . The second line represents the gauge interaction proportional to the gauge
coupling constant g with the contribution from the heavy gauge boson and its heavy superpartner
(gaugino).

In both cases the cancelation of the quadratic terms takes place. This cancelation is true up to
the SUSY breaking scale, MSUSY , which should not be very large (≤ 1 TeV) to make the fine-tuning
natural. Indeed, let us take the Higgs boson mass. Requiring for consistency of the perturbation
theory that the radiative corrections to the Higgs boson mass do not exceed the mass itself gives

δM2
h ∼ g2M2

SUSY ∼M2
h . (1.6)

Figure 4: Cancellation of the quadratic terms (divergencies).
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So, if Mh ∼ 102 GeV and g∼ 10−1, one needs MSUSY ∼ 103 GeV in order that the relation (1.6) is
valid. Thus, we again get the same rough estimate of MSUSY ∼ 1 TeV as from the gauge coupling
unification above.

That is why it is usually said that supersymmetry solves the hierarchy problem. We show
below how SUSY can also explain the origin of the hierarchy.

1.4 Explanation of the EW symmetry breaking

To break the Electroweak symmetry we use the Brout-Englert-Higgs mechanism os sponta-
neous symmetry breaking. However, the form of the scalar field potential is taken ad hoc. Is there
any way to explain its appearance? It happens so that SUSY models provide such an explanation.
As will be shown below, one originally starts with unbroken potential shown in Fig.5 (left) and then
arrives at the famous Mexican hat potential Fig.5 (right) as a result of radiative corrections. Thus,
supersymmetry provides the mechanism of radiative EW symmetry breaking in a natural way.

Figure 5: EW symmetry breaking

1.5 Astrophysics and Cosmology

The shining matter is not the only one in the Universe. Considerable amount of the energy
budget consists of the so-called dark matter. The direct evidence for the presence of the dark
matter are flat rotation curves of spiral galaxies [14]. To explain these curves one has to assume
the existence of a galactic halo made of non-shining matter which takes part in the gravitational
interaction. The other manifestation of existence of the dark matter is the so-called gravitational
lensing caused by invisible gravitating matter in the sky [15], which leads to the appearance of
circular images of distant stars when the light from them passes through the dark matter.

There are two possible types of the dark matter: the hot one, consisting of light relativistic
particles and the cold one, consisting of massive weakly interacting particles (WIMPs) [16]. The
hot dark matter might consist of neutrinos, however, this has problems with the galaxy formation.
As for the cold dark matter, it has no candidates within the SM. At the same time, SUSY provides an
excellent candidate for the cold dark matter, namely, the neutralino, the lightest superparticle [17].

|χ̃0
1 〉= N1|B0〉+N2|W 3

0 〉+N3|H1〉+N4|H2〉.

It is neutral, heavy, stable and takes part in weak interactions, precisely what is needed for a WIMP.
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2. SUSY generalization of the Standard Model. The MSSM

As has been already mentioned, in the SUSY theories the number of the bosonic degrees of
freedom equals that of fermionic. At the same time, in the SM one has 28 bosonic and 90 fermionic
degrees of freedom (without right-handed neutrino, otherwise 96). So the SM is to a great extent
non-supersymmetric. Trying to add some new particles to supersymmetrize the SM, one should
take into account the following observations:

• There are no fermions with quantum numbers of the gauge bosons;

• Higgs fields have nonzero vacuum expectation values; hence, they cannot be the superpart-
ners of the quarks and leptons, since this would induce a spontaneous violation of the baryon
and lepton numbers;

• One needs at least two complex chiral Higgs multiplets in order to give masses to the up and
down quarks.

The latter is due to the form of the superpotential and the chirality of the matter superfields.
Indeed, the superpotential should be invariant under the SU(3)×SU(2)×U(1) gauge group. If one
looks at the Yukawa interaction in the Standard Model, one finds that it is indeed U(1) invariant
since the sum of hypercharges in each vertex equals zero. For the up quarks this is achieved by
taking the conjugated Higgs doublet H̃ = iτ2H† instead of H. However, in SUSY H is the chiral
superfield and hence the superpotential which is constructed out of the chiral fields, may contain
only H but not H̃ which is the antichiral superfield.

Another reason for the second Higgs doublet is related to chiral anomalies. It is known that the
chiral anomalies spoil the gauge invariance and, hence, the renormalizability of the theory. They
are canceled in the SM between the quarks and leptons in each generation [18]

TrY 3 = 3×
(

1
27

+
1
27
− 64

27
+

8
27

)
− 1 − 1 + 8 = 0

color uL dL uR dR νL eL eR

However, if one introduces the chiral Higgs superfield, it contains higgsinos, which are the
chiral fermions, and contain the anomalies. To cancel them one has to add the second Higgs doublet
with the opposite hypercharge. Therefore, the Higgs sector in the SUSY models is inevitably
enlarged, it contains an even number of the Higgs doublets.

Conclusion: In the SUSY models the supersymmetry associates the known bosons with the
new fermions and the known fermions with the new bosons.

2.1 The field content

Consider the particle content of the Minimal Supersymmetric Standard Model [19, 20, 21].
According to the previous discussion, in the minimal version we double the number of particles
(introducing the superpartner to each particle) and add another Higgs doublet (with its superpart-
ner).

Thus, the characteristic feature of any supersymmetric generalization of the SM is the presence
of the superpartners (see Fig. 6). If the supersymmetry is exact, the superpartners of the ordinary
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Figure 6: The world of supersymmetric particles

particles should have the same masses and have to be observed. The absence of them at modern
energies is believed to be explained by the fact that they are very heavy, that means that the super-
symmetry should be broken. Hence, if the energy of accelerators is high enough, the superpartners
will be created.

The particle content of the MSSM then appears as shown in the Table 1. Hereafter, a tilde
denotes the superpartner of the ordinary particle.

Superfield Bosons Fermions SU(3) SU(2 UY (1)

Gauge
Ga gluon ga gluino g̃a 8 0 0
Vk Weak W k (W±,Z) wino, zino w̃k (w̃±, z̃) 1 3 0
V′ Hypercharge B (γ) bino b̃(γ̃) 1 1 0

Matter

Li

Ei
sleptons


L̃i = (ν̃ , ẽ)L

Ẽi = ẽR

Ñi = ν̃R

leptons


Li = (ν ,e)L

Ei = ec
R

Ni = νc
R

1
1
1

2
1
1

−1
2
0

Qi

Ui

Di

squarks


Q̃i = (ũ, d̃)L

Ũi = ũR

D̃i = d̃R

quarks


Qi = (u,d)L

Ui = uc
R

Di = dc
R

3
3∗

3∗

2
1
1

1/3
−4/3

2/3

Higgs
H1

H2
Higgses

{
H1

H2
higgsinos

{
H̃1

H̃2

1
1

2
2

−1
1

Table 1: Particle content of the MSSM
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The presence of the extra Higgs doublet in the SUSY model is a novel feature of the theory.
In the MSSM one has two doublets with the quantum numbers (1,2,-1) and (1,2,1), respectively:

H1 =

(
H0

1

H−1

)
=

(
v1 +

S1+iP1√
2

H−1

)
,

H2 =

(
H+

2

H0
2

)
=

(
H+

2

v2 +
S2+iP2√

2

)
,

where vi are the vacuum expectation values of the neutral components of the Higgs doublets.
Hence, one has 8 = 4+4 = 5+3 degrees of freedom. As in the case of the SM, 3 degrees of

freedom can be gauged away, and one is left with 5 physical states compared to 1 in the SM. Thus,
in the MSSM, as actually in any two Higgs doublet model, one has five physical Higgs bosons: two
CP-even neutral Higgs, one CP-odd neutral Higgs and two charged ones. We consider the mass
eigenstates below.

2.2 Lagrangian of the MSSM

Now we can construct the Lagrangian of the MSSM. It consists of two parts; the first part is the
SUSY generalization of the Standard Model, while the second one represents the SUSY breaking
as mentioned above.

LMSSM = LSUSY +LBreaking, (2.1)

where

LSUSY = LGauge +LYukawa. (2.2)

We will not describe the gauge part here, since it is essentially the gauge invariant kinetic
terms, but rather concentrate on Yukawa terms. They are given by the superpotential which is
nothing else but the usual Yukawa terms of the SM with the fields replaced by the superfields as
explained above.

LYukawa = εi j

(
yU

abQ j
aUc

b H i
2 + yD

abQ j
aDc

bH i
1 + yL

abL j
aEc

bH i
1 +µH i

1H j
2

)
, (2.3)

where i, j = 1,2 are the SU(2) and a,b = 1,2,3 are the generation indices; the SU(3) colour indices
are omitted. This part of the Lagrangian almost exactly repeats that of the SM. The only difference
is the last term which describes the Higgs mixing. It is absent in the SM since there is only one
Higgs field there.

However, one can write down also the different Yukawa terms

LYukawa = εi j

(
λ

L
abdLi

aL j
bEc

d +λ
L′
abdLi

aQ j
bDc

d +µ
′
aLi

aH j
2

)
+λ

B
abdUc

a Dc
bDc

d . (2.4)

These terms are absent in the SM. The reason is very simple: one can not replace the superfields in
Eqn. (2.4) by the ordinary fields like in Eqn. (2.3) because of the Lorentz invariance. These terms
have also another property, they violate either the lepton number L (the first 3 terms in Eqn. (2.4))
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or the baryon number B (the last term). Since both effects are not observed in Nature, these terms
must be suppressed or excluded. One can avoid such terms introducing a new special symmetry
called R-symmetry [22]. This is the global U(1)R invariance

U(1)R : θ → eiα
θ , Φ→ einα

Φ, (2.5)

which is reduced to the discrete group Z2 called R-parity. The R-parity quantum number is

R = (−1)3(B−L)+2S (2.6)

for the particles with the spin S. Thus, all the ordinary particles have the R-parity quantum number
equal to R = +1, while all the superpartners have the R-parity quantum number equal to R = −1.
The first part of the Yukawa Lagrangian is R-symmetric, while the second part is R-nonsymmetric.
The R-parity obviously forbids the terms (2.4). However, it may well be that these terms are present,
though experimental limits on the couplings are very severe

λ
L
abc, λ

L′
abc < 10−4, λ

B
abc < 10−9.

Conservation of the R-parity has two important consequences
• the superpartners are created in pairs;

• the lightest superparticle (LSP) is stable. Usually it is the photino γ̃ , the superpartner of
the photon with some admixture of the neutral higgsino. This is the candidate for the DM
particle which should be neutral and survive since the Big Bang.

2.3 Next-to-Minimal Supersymmetry

Some problems of the MSSM are sometimes proposed to be solved within its minimal ex-
tension which is called the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [23]. It
contains additional scalar superfield S which is singlet with respect to the SM symmetry group.
Enlarging the Higgs sector (7 instead of 5 Higgs bosons) this theory allows to smouth the problem
of the lightest Higgs boson mass and to explain why the Higgs mixing parameter µ is around 100
GeV.

The superpotential of the NMSSM contains few additional terms

∆L = λSH1H2 +
κ

3
S3 +m2

s S2 (2.7)

with arbitrary parameters. Being expanded in components the scalarsuper field S gives two addi-
tional neutral Higgses (one scalar and one pseudoscalar ) and the corresponding higgsinos. The vac-
uum expectation values of the singlet field < s > leads to the Higgs mixing term with µ = λ < s >.
One has also the corresponding soft terms. The main features of the NMSSM are similar to the
MSSM except for the Higgs and neutralino sectors.

2.4 Properties of interactions

If one assumes that the R-parity is preserved, then the interactions of the superpartners are
essentially the same as in the SM, but two of three particles involved into the interaction at any
vertex are replaced by the superpartners. The reason for it is the R-parity.

Typical vertices are shown in Fig. 7. The tilde above the letter denotes the corresponding
superpartner. Note that the coupling is the same in all the vertices involving the superpartners.
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+

Figure 7: The gauge-matter interaction, the gauge self-interaction and the Yukawa interaction.

2.5 Creation and decay of superpartners

The above-mentioned rule together with the Feynman rules for the SM enables one to draw
diagrams describing creation of the superpartners. One of the most promising processes is the e+e−

annihilation (see Fig. 8).

Figure 8: Creation of the superpartners at electron-positron colliders.

The usual kinematic restriction is given by the c.m. energy mmax
sparticle ≤

√
s/2. Similar pro-

cesses take place at hadron colliders with the electrons and the positrons being replaced by the
quarks and the gluons.

Experimental signatures at the hadron colliders are similar to those at the e+e− machines; how-
ever, here one has wider possibilities. Besides the usual annihilation channel, one has numerous
processes of gluon fusion, quark-antiquark and quark-gluon scattering (see Fig. 9).

Creation of the superpartners can be accompanied by creation of the ordinary particles as well.
We consider various experimental signatures below. They crucially depend on the SUSY breaking
pattern and on the mass spectrum of the superpartners.

The decay properties of the superpartners also depend on their masses. For the quark and
lepton superpartners the main processes are shown in Fig. 10.
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Figure 9: Examples of diagrams for the SUSY particle production via the strong interactions (top rows for
g̃g̃, q̃q̃ and g̃q̃, respectively) and the electroweak interactions (the lowest row).

squarks q̃L,R→ q+ χ̃0
i

q̃L→ q′+ χ̃
±
i

q̃L,R→ q+ g̃

sleptons l̃→ l + χ̃0
i

l̃L→ νl + χ̃
±
i

chargino χ̃
±
i → e+νe + χ̃0

i
χ
±
i → q+ q̄′+ χ̃0

i

gluino g̃→ q = q̄+ γ̃

g̃→ g+ γ̃

neutralino χ̃0
i → χ̃0

1 + l++ l− final states l+l−+/ET

χ̃0
i → χ̃0

1 +q+ q̄′ 2jets+/ET

χ̃0
i → χ̃

±
1 + l±+νl γ +/ET

χ̃0
i → χ̃0

1 +νl + ν̄l /ET

Figure 10: Decay of superpartners
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3. Breaking of SUSY in the MSSM

Usually it is assumed that the supersymmetry is broken spontaneously via the v.e.v.s of some
fields. However, in the case of supersymmetry one can not use the scalar fields like the Higgs field,
but rather the auxiliary fields present in any SUSY multiplet. There are two basic mechanisms
of spontaneous SUSY breaking: the Fayet-Iliopoulos (or D-type) mechanism [9] based on the D
auxiliary field from the vector multiplet and the O’Raifeartaigh (or F-type) mechanism [10] based
on the F auxiliary field from the chiral multiplet. Unfortunately, one can not explicitly use these
mechanisms within the MSSM since none of the fields of the MSSM can develop the non-zero
v.e.v. without spoiling the gauge invariance. Therefore, the spontaneous SUSY breaking should
take place via some other fields.

The most common scenario for producing low-energy supersymmetry breaking is called the
hidden sector scenario [24]. According to this scenario, there exist two sectors: the usual matter
belongs to the "visible" one, while the second, "hidden" sector, contains the fields which lead to
breaking of the supersymmetry. These two sectors interact with each other by an exchange of some
fields called messengers, which mediate SUSY breaking from the hidden to the visible sector.
There might be various types of the messenger fields: gravity, gauge, etc. The hidden sector is the
weakest part of the MSSM. It contains a lot of ambiguities and leads to uncertainties of the MSSM
predictions considered below.

So far there are four known main mechanisms to mediate SUSY breaking from the hidden to
the visible sector:

• Gravity mediation (SUGRA) [25];

• Gauge mediation [26];

• Anomaly mediation [27];

• Gaugino mediation [28].

All the four mechanisms of soft SUSY breaking are different in details but are common in
results. The predictions for the sparticle spectrum depend on the mechanism of SUSY breaking. In
what follows, to calculate the mass spectrum of the superpartners, we need the explicit form of the
SUSY breaking terms. For the MSSM without the R-parity violation one has in general

−LBreaking = (3.1)

= ∑
i

m2
0i |ϕi|2 +

(
1
2 ∑

α

Mα λ̃α λ̃α +BH1H2 +AU
abQ̃aŨc

b H2 +AD
abQ̃aD̃c

bH1 +AL
abL̃aẼc

bH1

)
,

where we have suppressed the SU(2) indices. Here ϕi are all the scalar fields, λ̃α are the gaugino
fields, Q̃,Ũ , D̃ and L̃, Ẽ are the squark and slepton fields, respectively, and H1,2 are the SU(2)
doublet Higgs fields.

Eqn. (3.1) contains a vast number of free parameters which spoils the predictiive power of the
model. To reduce their number, we adopt the so-called universality hypothesis, i. e., we assume
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the universality or equality of various soft parameters at the high energy scale, namely, we put all
the spin-0 particle masses to be equal to the universal value m0, all the spin-1/2 particle (gaugino)
masses to be equal to m1/2 and all the cubic and quadratic terms, proportional to A and B, to repeat
the structure of the Yukawa superpotential (2.3). This is the additional requirement motivated by the
supergravity mechanism of SUSY breaking. The universality is not the necessary requirement and
one may consider the non-universal soft terms as well. However, it will not change the qualitative
picture presented below; so, for simplicity, in what follows we consider the universal boundary
conditions. In this case, Eqn. (3.1) takes the form

−LBreaking = (3.2)

= m2
0 ∑

i
|ϕi|2 +

(
m1/2

2 ∑
α

λ̃α λ̃α +BµH1H2 +A
[
yU

abQ̃aŨc
b H2 + yD

abQ̃aD̃c
bH1 + yL

abL̃aẼc
bH1
])

.

Thus, we are left with five free parameters, namely, m0,m1/2,A,B and µ versus two parameters
of the Higgs potential in the SM, m2 and λ . In the SUSY model the Higgs potential is not arbitrary
but is calculated from the Yukawa and gauge terms as we will see below.

The soft terms explicitly break the supersymmetry. As will be shown later, they lead to the
mass spectrum of the superpartners different from that of the ordinary particles. Remind that the
masses of the quarks and leptons remain zero until the SU(2) symmetry is spontaneously broken.

3.1 The soft terms and the mass formulae

There are two main sources of the mass terms in the Lagrangian: the D-terms and the soft
ones. With given values of m0,m1/2,µ,Yt ,Yb,Yτ ,A, and B one can construct the mass matrices for
all the particles. Knowing them at the GUT scale, one can solve the corresponding RG equations,
thus linking the values at the GUT and electroweak scales. Substituting these parameters into the
mass matrices, one can predict the mass spectrum of the superpartners [29, 30].

3.1.1 Gaugino-higgsino mass terms

The mass matrix for the gauginos, the superpartners of the gauge bosons, and for the higgsinos,
the superpartners of the Higgs bosons, is nondiagonal, thus leading to their mixing. The mass terms
look like

LGaugino−Higgsino =−
1
2

M3λ̄aλa−
1
2

χ̄M(0)
χ− (ψ̄M(c)

ψ +h.c.), (3.3)

where λa,a = 1,2, . . . ,8 are the Majorana gluino fields and

χ =


B̃0

W̃ 3

H̃0
1

H̃0
2

 , ψ =

(
W̃+

H̃+

)
(3.4)

are, respectively, the Majorana neutralino and the Dirac chargino fields.
The neutralino mass matrix is

M(0) =


M1 0 −MZ cosβ sinθW MZ sinβ sinθW

0 M2 MZ cosβ cosθW −MZ sinβ cosθW

−MZ cosβ sinθW MZ cosβ cosθW 0 −µ

MZ sinβ sinθW −MZ sinβ cosθW −µ 0

 ,
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where tanβ = v2/v1 is the ratio of two Higgs v.e.v.s and sinθW is the usual sine of the weak
mixing angle. The physical neutralino masses M

χ̃0
i

are obtained as eigenvalues of this matrix after
diagonalization.

For the chargino mass matrix one has

M(c) =

(
M2

√
2MW sinβ√

2MW cosβ µ

)
. (3.5)

This matrix has two chargino eigenstates χ̃
±
1,2 with mass eigenvalues

M2
1,2 =

1
2

[
M2

2 +µ
2 +2M2

W ∓
√

(M2
2 −µ2)2 +4M4

W cos2 2β +4M2
W (M2

2 +µ2 +2M2µ sin2β )

]
.

3.1.2 Squark and slepton masses

The non-negligible Yukawa couplings cause mixing between the electroweak eigenstates and
the mass eigenstates of the third generation particles. The mixing matrices for m̃2

t , m̃
2
b and m̃2

τ are(
m̃2

tL mt(At −µ cotβ )

mt(At −µ cotβ ) m̃2
tR

)
,

(
m̃2

bL mb(Ab−µ tanβ )

mb(Ab−µ tanβ ) m̃2
bR

)
,

(
m̃2

τL mτ(Aτ −µ tanβ )

mτ(Aτ −µ tanβ ) m̃2
τR

)
with

m̃2
tL = m̃2

Q +m2
t +

1
6
(
4M2

W −M2
Z
)

cos2β ,

m̃2
tR = m̃2

U +m2
t −

2
3
(M2

W −M2
Z)cos2β ,

m̃2
bL = m̃2

Q +m2
b−

1
6
(2M2

W +M2
Z)cos2β ,

m̃2
bR = m̃2

D +m2
b +

1
3
(M2

W −M2
Z)cos2β ,

m̃2
τL = m̃2

L +m2
τ −

1
2
(2M2

W −M2
Z)cos2β ,

m̃2
τR = m̃2

E +m2
τ +(M2

W −M2
Z)cos2β

and the mass eigenstates are the eigenvalues of these mass matrices. For the light generations
mixing is negligible.

The first terms here (m̃2) are the soft ones, which are calculated using the RG equations starting
from their values at the GUT (Planck) scale. The second ones are the usual masses of the quarks
and leptons and the last ones are the D-terms of the potential.
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3.2 The Higgs potential

As has already been mentioned, the Higgs potential in the MSSM is totally defined by the
superpotential (and the soft terms). Due to the structure of LYukawa the Higgs self-interaction is
given by the D-terms while the F-terms contribute only to the mass matrix. The tree level potential
is

Vtree = m2
1|H1|2 +m2

2|H2|2−m2
3(H1H2 +h.c.)+

g2 +g
′2

8
(|H1|2−|H2|2)2 +

g2

2
|H∗1 H2|2, (3.6)

where m2
1 = m2

H1
+µ2,m2

2 = m2
H2
+µ2. At the GUT scale m2

1 = m2
2 = m2

0+µ2
0 , m2

3 =−Bµ0. Notice
that the Higgs self-interaction coupling in Eqn. (3.6) is fixed and defined by the gauge interactions
as opposed to the Standard Model.

The Higgs scalar potential in accordance with the supersymmetry, is positive definite and
stable. It has no nontrivial minimum different from zero. Indeed, let us write the minimization
condition for the potential (3.6)

1
2

δV
δH1

= m2
1v1−m2

3v2 +
g2 +g′2

4
(v2

1− v2
2)v1 = 0,

1
2

δV
δH2

= m2
2v2−m2

3v1 +
g2 +g′2

4
(v2

1− v2
2)v2 = 0,

(3.7)

where we have introduced the notation

〈H1〉 ≡ v1 = vcosβ , 〈H2〉 ≡ v2 = vsinβ ,

v2 = v2
1 + v2

2, tanβ ≡ v2

v1
.

Solution to Eqs. (3.7) can be expressed in terms of v2 and sin2β

v2 =
4(m2

1−m2
2 tan2 β )

(g2 +g′2)(tan2 β −1)
, sin2β =

2m2
3

m2
1 +m2

2
. (3.8)

One can easily see from Eqn. (3.8) that if m2
1 = m2

2 = m2
0 +µ2

0 , v2 happens to be negative, i. e. the
minimum does not exist. In fact, real positive solutions to Eqs. (3.7) exist only if the following
conditions are satisfied:

m2
1 +m2

2 > 2m2
3, m2

1m2
2 < m4

3, (3.9)

which is not the case at the GUT scale. This means that spontaneous breaking of the SU(2) gauge
invariance, which is needed in the SM to give masses for all the particles, does not take place in the
MSSM.

This strong statement is valid, however, only at the GUT scale. Indeed, going down with
the energy, the parameters of the potential (3.6) are renormalized. They become the “running”
parameters with the energy scale dependence given by the RG equations.
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3.3 Radiative electroweak symmetry breaking

The running of the Higgs masses leads to the remarkable phenomenon known as radiative
electroweak symmetry breaking. Indeed, one can see in Fig. 11 that m2

2 (or both m2
1 and m2

2) de-
creases when going down from the GUT scale to the MZ scale and can even become negative. As a
result, at some value of Q2 the conditions (3.9) are satisfied, so that the nontrivial minimum appears.
This triggers spontaneous breaking of the SU(2) gauge invariance as shown in Fig.5 above. The
vacuum expectations of the Higgs fields acquire nonzero values and provide masses to the quarks,
leptons and SU(2) gauge bosons, and additional contributions to the masses of their superpartners.

In this way one also obtains the explanation of why the two scales are so much different. Due
to the logarithmic running of the parameters, one needs a long "running time" to get m2

2 (or both m2
1

and m2
2) to be negative when starting from a positive value of the order of MSUSY ∼ 102÷103 GeV

at the GUT scale.
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Figure 11: An example of evolution of superparticle masses and soft supersymmetry breaking parameters
m2

1 = m2
H1

+µ2 and m2
2 = m2

H2
+µ2 for low (left) and high (right) values of tanβ .

3.4 The superpartners mass spectrum

The mass spectrum is defined by the low energy parameters. To calculate the low energy values
of the soft terms, we use the corresponding RG equations [31]. Having all the RG equations, one
can now find the RG flow for the soft terms. Taking the initial values of the soft masses at the
GUT scale in the interval between 102÷ 103 GeV consistent with the SUSY scale suggested by
the unification of the gauge couplings (see Fig.3) leads to the RG flow of the soft terms shown in
Fig. 11. [29, 30]

One should mention the following general features common to any choice of initial conditions:

• The gaugino masses follow the running of the gauge couplings and split at low energies. The
gluino mass is running faster than the other ones and is usually the heaviest due to the strong
interaction.

• The squark and slepton masses also split at low energies, the stops (and sbottoms) being the
lightest due to the relatively big Yukawa couplings of the third generation.
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• The Higgs masses (or at least one of them) are running down very quickly and may even
become negative.

The typical dependence of the mass spectra on the initial conditions at the GUT scale (m0) is
also shown in Fig. 12 [32, 33]. For a given value of m1/2 the masses of the lightest particles are
practically independent of m0, while the masses of the heavier ones increase with it monotonically.
One can see that the lightest neutralinos and charginos as well as the top-squark may be rather light.
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Figure 12: The masses of sparticles as functions of the initial value m0.

3.5 The Higgs boson masses

Provided conditions (3.9) are satisfied, one can also calculate the masses of the Higgs bosons
taking the second derivatives of the potential (3.6) with respect to the real and imaginary parts of
the Higgs fields (Hi = Si + iPi) in the minimum. The mass matrices at the tree level are

CP-odd components P1 and P2:

M odd =
∂ 2V

∂Pi∂Pj

∣∣∣∣
Hi=vi

=

(
tanβ 1

1 cotβ

)
m2

3, (3.10)

CP-even neutral components S1 and S2:

M even =
∂ 2V

∂Si∂S j

∣∣∣∣
Hi=vi

=

(
tanβ −1
−1 cotβ

)
m2

3 +

(
cotβ −1
−1 tanβ

)
M2

Z
sin2β

2
, (3.11)

Charged components H− and H+:

M ch =
∂ 2V

∂H+
i ∂H−j

∣∣∣∣∣
Hi=vi

=

(
tanβ 1

1 cotβ

)(
m2

3 +M2
W

sin2β

2
)
. (3.12)
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Diagonalizing the mass matrices, one gets the mass eigenstates:{
G0 =−cosβP1 + sinβP2, Goldstone boson→ Z0,

A = sinβP1 + cosβP2, Neutral CP−odd Higgs,

{
G+=−cosβ (H−1 )∗+sinβH+

2 , Goldstone boson→W+,

H+ = sinβ (H−1 )∗+ cosβH+
2 , Charged Higgs,

{
h =−sinαS1 + cosαS2, SM CP− even Higgs,
H = cosαS1 + sinαS2, Extra heavy Higgs,

where the mixing angle α is given by

tan2α = tan2β

(
m2

A +M2
Z

m2
A−M2

Z

)
.

The physical Higgs bosons acquire the following masses [20]:

CP-odd neutral Higgs A:
m2

A = m2
1 +m2

2, (3.13)

Charged Higgses H±:
m2

H± = m2
A +M2

W , (3.14)

CP-even neutral Higgses H,h:

m2
H,h =

1
2

[
m2

A +M2
Z±
√
(m2

A +M2
Z)

2−4m2
AM2

Z cos2 2β

]
, (3.15)

where, as usual,

M2
W =

g2

2
v2, M2

Z =
g2 +g′2

2
v2.

This leads to the once celebrated SUSY mass relations

mH± ≥MW , mh ≤ mA ≤MH ,

mh ≤MZ|cos2β | ≤MZ, (3.16)

m2
h +m2

H = m2
A +M2

Z.

Thus, the lightest neutral Higgs boson happens to be lighter than the Z-boson, which clearly
distinguishes it from the SM one. Though we do not know the mass of the Higgs boson in the
SM, there are several indirect constraints leading to the lower boundary of mSM

h ≥ 135 GeV. After
including the leading one-loop radiative corrections, the mass of the lightest Higgs boson in the
MSSM, mh, reads

m2
h = M2

Z cos2 2β +
3g2m4

t

16π2M2
W

log
m̃2

t1m̃2
t2

m4
t

+ . . . (3.17)

which leads to about 40 GeV increase [34]. The second loop correction is negative but small [35].
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It is interesting, that the Higgs mass upper bound depends crucially on some parameters of the
model, and is almost independent on the choice of the other parameters. For example, the 1 GeV
change in the mass of the top quark leads to the ∼1 GeV change in the Higgs mass upper bound.
The dependence of the maximal Higgs mass on the supersymmetry breaking scale MS is shown
in the left panel of Fig. 13 [36] for different scenarios of SUSY breaking. The widths of bands
corresponds to the variation of the top mass in the range 170–176 GeV.

Figure 13: The maximal Higgs mass in the constrained MSSM scenarios mSUGRA, mAMSB and mGMSB,
as a function of the scale MS when the top quark mass is varied in the range mt = 170–176 GeV (left) and as
a function of tanβ (right).

The right panel of Fig. 13 shows the dependence of the maximal Higgs mass on tanβ for the
fixed value of mt = 173 GeV while other parameters of the model vary within the ranges [37]:

mSUGRA: 50 GeV ≤ m0 ≤ 3 TeV, 50 GeV ≤ m1/2 ≤ 3 TeV, |A0| ≤ 9 TeV;

GMSB: 10 TeV ≤ Λ≤ 1000 TeV, 1 ≤Mmess/Λ≤ 1011, Nmess = 1;

AMSB: 1 TeV ≤ m3/2 ≤ 100 TeV, 50 GeV ≤ m0 ≤ 3 TeV.

New possibilities appear if one enlarges the Higgs sector. The next popular step is the intro-
duction of an additional Higgs field which is a singlet with respect to the gauge group of the SM,
i.e. transition from the MSSM to the NMSSM [23]. Here one has already seven Higgs bosons and
three of them CP-even and neutral. The novel feature of this model is that already at the tree level
Eqn.(3.17) is modified by additional term

m2
h = M2

Z cos2 2β +λ
2v2 sin2 2β + ..., (3.18)

thus, allowing for higher values of the Higgs mass. This allows one to relax the slight tension
which appears in the Constrained MSSM with respect to the 125 GeV Higgs boson. The sample
spectrum of particles for various models is shown in Fig.14 (right).

Note that in the case of the NMSSM one has two light CP-even Higgs bosons and the discov-
ered particle with the mass of 125 GeV might correspond to both H1 and to H2. The reason why
we do not see the lightest Higgs boson H1 in the second case is that it has a large admixture of the
singlet state and hence very weakly interacts with the SM particles.
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Model Particle content
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Figure 14: The field content and the spectrum in various models of the Higgs sector

3.6 The lightest superparticle

One of the crucial questions is the properties of the lightest superparticle. Different SUSY
breaking scenarios lead to different experimental signatures and different LSP.

• Gravity mediation

In this case, the LSP is the lightest neutralino χ̃0
1 , which is almost 90% photino for the low

tanβ solution and contains more higgsino admixture for high tanβ . The usual signature for
LSP is the missing energy; χ̃0

1 is stable and is the best candidate for the cold dark matter

particle in the Universe. Typical processes, where the LSP is created, end up with jets +
/
ET ,

or leptons +
/
ET , or both jets + leptons + /ET .

• Gauge mediation

In this case the LSP is the gravitino G̃, which also leads to the missing energy. The actual
question here is what is the NLSP, the next-to-lightest particle, is. There are two possibilities:

i) χ̃0
1 is the NLSP. Then the decay modes are: χ̃0

1 → γG̃, hG̃, ZG̃. As a result, one has two
hard photons + /ET , or jets + /ET .

ii) l̃R is the NLSP. Then the decay mode is l̃R→ τG̃ and the signature is a charged lepton and
the missing energy.

• Anomaly mediation

In this case, one also has two possibilities:

i) χ̃0
1 is the LSP and wino-like. It is almost degenerate with the NLSP.
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ii) ν̃L is the LSP. Then it appears in the decay of the chargino χ̃+→ ν̃ l and the signature is
the charged lepton and the missing energy.

• R-parity violation

In this case, the LSP is no longer stable and decays into the SM particles. It may be charged
(or even colored) and may lead to rare decays like the neutrinoless double β -decay, etc.

Experimental limits on the LSP mass follow from the non-observation of the corresponding events.
The modern lower limit is around 40 GeV .

4. Where is SUSY?

After many years of unsuccessful hunt for supersymmetry in particle physics experiments
the natural question arises: where is supersymmetry? We try to answer this question searching
for SUSY at accelerators, in the deep sky with the help of telescopes, and with the help of the
underground facilities. It is obvious, that only direct detection of superpartners can convince people
in discovery of supersymmetry, however combined information from the sky might give hints to
the mass spectra and confirm the SUSY interpretation of the data.

4.1 Search for SUSY at Colliders

The strategy of the SUSY searches at colliders is based on the assumption that the masses
of the superpartners indeed are in the region of 1 TeV so that they might be created on the mass
shell with the cross-section big enough to distinguish them from the background of the ordinary
particles. Calculation of the background in the framework of the Standard Model thus becomes
essential since the secondary particles in all the cases are the same.

There are many possibilities to create the superpartners at the hadron colliders. Besides the
usual annihilation channel there are numerous processes of the gluon fusion, quark-antiquark and
quark-gluon scattering. The maximal cross-sections of the order of a few picobarn can be achieved
in the process of gluon fusion.

As a rule all the superpartners are short lived and decay into the ordinary particles and the
lightest superparticle. The typical processes of creation of superpartners in strong and weak inter-
action are shown in Fig.15 [21]. The typical signature of supersymmetry is the presence of missing
energy and missing transverse momentum carried away by the lightest supersymmetric particle χ0

1
which is neutral and stable.

The presence of missing energy and transverse momentum is the main difference from the
background processes of the Standard Model. Contrary to the e+e− colliders, at hadron machines
the background is extremely rich and essential. The missing energy is carried away by the heavy
particle with the mass of the order of 100 GeV that is essentially different from the processes with
the neutrino in the final state. In hadron collisions the superpartners are always created in pairs
and then further quickly decay creating a cascade with the ordinary quarks (i. e. hadron jets) or
leptons in the final state plus the missing energy. For the case of the gluon fusion with the creation
of gluino it is presented in Fig.15 (right panel).
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2l,6j,ET

8j,ET

l,2j,ET

2l,2j,ET

Figure 15: Creation of superpartners in weak (left) and strong (right) interactions. The expected final states
are also shown. The particles escaping detection are encircled

The chargino and neutralino can also be produced in pairs through the Drell-Yang mechanism
pp→ χ̃

±
1 χ̃0

2 and can be detected via their lepton decays χ̃
±
1 χ̃0

2 → ```+
/
ET . Hence the main signal of

their creation is the isolated leptons and the missing energy, see Fig.15(left panel). The main back-
ground in the trilepton channel comes from the creation of the standard particles WZ/ZZ, tt̄,Zbb̄ è
bb̄. There might be also the supersymmetric background from the cascade decays of the squarks
and gluinos in multilepton modes.

So far the creation of superpartners at the LHC is not found, there are only limits on the masses
of the hypothetical new particles. The boundary of possible values of masses of the scalar quarks
and gluino have reached approximately 1500 and 1000 GeV, respectively. For the stop quarks it
is almost two times lower. For the lightest neutralino the mass boundary varies between 100 and
400 GeV depending on the values of the other masses. The constraints on the masses of charged
weakly interacting particles almost two times higher than those for the neutral ones but depend on
the decay mode. The obtained mass limits depend on the assumed decay modes which in their turn
depend on the mass spectrum of superpartners, which is unknown. The presented constraints refer
to the natural scenario.

5. Conclusion

Today after 40 years since the invention of supersymmetry we have no single convincing evi-
dence that supersymmetry is realized in particle physics. Still it remains very popular in quantum

33



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
2
4

Introduction to SUSY

field theory and in string theory due to its exceptional properties but needs experimental justifica-
tion.

Let us remind the main pros and contras for supersymmetry in particle physics
Pro:
• Provides natural framework for unification with gravity
• Leads to gauge coupling unification (GUT)
• Solves the hierarchy problem
• Is a solid quantum field theory
• Provides natural candidate for the WIMP cold DM
• Predicts new particles and thus generates new job positions
Contra:
• Does not shed new light on the problem of
∗ Quark and lepton mass spectrum
∗ Quark and lepton mixing angles
∗ the origin of CP violation
∗ Number of flavours
∗ Baryon asymmetry of the Universe
• Doubles the number of particles
Low energy supersymmetry promises us that new physics is round the corner at the TeV scale

to be exploited at colliders and astroparticle experiments of this decade. If our expectations are
correct, very soon we will face new discoveries, the whole world of supersymmetric particles will
show up and the table of fundamental particles will be enlarged in increasing rate. This would be a
great step in understanding the microworld.
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[5] S. J. Gates, M. Grisaru, M. Roček and W. Siegel, Superspace or One Thousand and One Lessons in
Supersymmetry, Benjamin & Cummings, 1983;
P. West, Introduction to supersymmetry and supergravity, World Scientific, 1990;
S. Weinberg,The quantum theory of fields, Vol. 3, Cambridge, UK: Univ. Press, 2000.

[6] S. Coleman and J .Mandula, Phys. Rev. 159 (1967) 1251.

[7] R.Haag, J.Lopuszansky and M.Sohnius, Nucl.Phys. B88 (1975) 257.

[8] F.A. Berezin, The Method of Second Quantization, Moscow, Nauka, 1965.

[9] P. Fayet and J. Illiopoulos, Phys. Lett. B51 (1974) 461.

[10] L. O’Raifeartaigh, Nucl.Phys. B96 (1975) 331

[11] G. G. Ross, Grand Unified Theories, Benjamin & Cummings, 1985.

[12] C. Amsler et al. (Particle Data Group), Phys. Lett. B667 (2008) 1.

[13] U. Amaldi, W. de Boer and H. Fürstenau, Phys. Lett. B260 (1991) 447.

[14] Y. Sofue, V. Rubin, Ann. Rev. Astron. Astrophys. 39 (2001) 137, and refs therein.

[15] C.S. Kochanek, Astrophys. J. 453 (1995) 545;
N.Kaiser, G.Squires, Astrophys. J. 404 (1993) 441.

[16] V.A. Ryabov, V.A. Tsarev and A.M. Tskhovrebov, Phys. Usp. 51 (2008) 1091, and refs therein.

[17] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rep. 267 (1996) 195;
H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419;
J.R. Ellis, et al., Nucl. Phys. B238 (1984) 453.

[18] M. Peskin and D. Schröder, An Introduction to Quantum Field Theory, Addison-Wesley, 1995.

[19] H. Baer and X. Tata, Weak Scale Supersymmetry, Cambridge University Press, 2006.

[20] H.E. Haber, Introductory Low-Energy Supersymmetry, Lectures given at TASI 1992, (SCIPP 92/33,
1993), hep-ph/9306207;
D.I. Kazakov, Beyond the Standard Model (In search of supersymmetry), Lectures at the ESHEP
2000, CERN-2001-003, hep-ph/0012288;
D. I. Kazakov, Beyond the Standard Model, Lectures at the ESHEP 2004, hep-ph/0411064. D.
Kazakov, Supersymmetry on the Run: LHC and Dark Matter, Nucl.Phys.Proc.Suppl. 203-204 (2010)
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