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Smallest Representation Holger Bech Nielsen

Continuation of work with Don Bennett on “What is special about the Standard Model
Group”[2, 1] presented by Holger Bech Nielsen. Seeking to extract the information as esti-
mated by Svend Erik Rugh, Syrlykke and HBN[11] yet unexplained forthe Standard Model
Group.

1. Introduction

To day we are in the situation that the highest accelator enrgies reprsentedby LHC just con-
firms the at the present scale best theory, the Standard Model, by not finding so far any new fun-
damental particles - especially not the much hoped for supersymmetry partners -, and so we may
have to face the possibility that there is very long to the new physics! Such a situation would call
for understanding the problems with such pure Standard Model scenario, i.e.

• 1. Is it satisfactory to have a theory that is only renormalizable, but does not give in principle
finite results?

• 2. Including also gravity can we even get a renormalizable theory? One thinks at least
something new has to happen when approaching the Planck scale.

• 3. Neutrino-oscillations at least seems to require some new physics, at saythe see-saw
neutrino scale.

• 4. Can we understand the dark matter (as essentially “seen” astronomically)as comming
from the Standard Model. Here it is that I and my collaborators contrary to most other
physicists would like to answer: Yes we can imagine dark matter being some pearl sized balls
with the enormous mass of about 108 kg (=100000 ton), which can be understood in terms
of a new vacuum which results from just Standard Model with no new physics fundamental
fields. Only bound states - of 6 top + 6 anti top quarks - and condensates of such bound states
are needed, but no new fundamental particles.[5, 36]

• 5. Do we not need a special inflaton field, r can we use the Higgs field. With only Standard
Model we should use in principle only the Higgs field, or perhaps some mysterious field for
a bound state comming from the Standard Model.

• 6. We must understand also the problem with the Standard Model that if we had that alone,
the anomaly for conservation of lepton and baryon numbers would have meant, that the
phenomenologically observed excess of matter over antimatter, which is witnessed even by
our own existence, would have been washed away. Presumably the see-saw neutrino physics
needed for neutrino oscillations anyway would be able to take care of this problem.

• 7. The fine tuning problems would also have to be understood. Here it is thatit is the attitude
of the present article and of several earlier works of ours that we shall choose rather than
to really “solve” the finetuning problems by finding some clever symmetry that can explain
them,we shal truly postulate just an as simple as possible finetuning law or rule. This fine
tuning rule, which we propose is what we call Multiple Point Principle[37] and it says that
the coupling constants are finetuned so as to arrange that there are several - in pracsis below
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three - vacua with very small, meaning of the order of the dark energy in the universe as
observed astronomically, energy densities. Each time a vacuum energy density is fixed to be
small / essentially zero a coupling constant (combination) gets finetuned. Ifwe have luck
with this as I shall review, then we may solve three finetuning problems by threevacua beig
imposed small energy densities[38, 37, 12].

There are many things I would like to tell about such as:

• How we might get almost all the structure of the Standard Model by requiringin a very
sepecial way that representations (of the particles) be the smallest ones[2, 1, 4]! (Earlier
I worked with Niels Brene on an alternative idea also seeking to characterize the Standard
Model group [10].)

• How we might escape most of the arguments for there being “new physics”,so we could in
fact take the message from LHC so far seriously (but this message is not yet there) : that
there seems to be no new physics (even I must though admit that we cannot escape neutrino-
oscillations form signaling new physics).

• But at least for dark matter [36, 5]we have a proposalinside the Standard Model although
in a slightly complicated model with bound state of 6 top + 6 anti tops and a new vacuum
with a Boson condensate of such bound states. Balls made from material muchlike white
dwarf-star-stuff, but surrounded by a skin seperating a vacuum phase with the bound state
condensate from a phase without this condesate and of the size like a pearl and a weight 108

kg make up the dark matter (about one astronmic unit between one ball and thenext.). One
such ball fell in Tunguska in 1908.

• I and Don Bennett invented a “game”[2, 1] between possibleGauge groupsso that the
Standard Model Gauge group [3]S(U(2)×U(3)) (with respect to the Liealgebraequivalent
to U(1)×SU(2)×SU(3)) wins.

• How we at least - Colin Froggat and I - have a chance of proposing a model for dark
matter[36, 5] inside the Standard Model in a complicated way, so that we couldimagine
that the Standard Model is the final answer for very long up in energy(almost to the Planck
scale except for some see-saw neutrinoes).

2. Smallest Volume of a Faithful Represntation Compared to that of the “Adjoint”
Representation

Crudely the main point is this:

• All Lie groups (potential gauge groups for the right model for Nature) have representations,
and are properly represented by thefaithful representations.

• It is very natural, although slightly convention dependent, to define a volumefor the image
of a Lie group being mapped into a representation using a “natural” distanceconcept:

ds2 =
1

dim
∗Tr(|(U(g)−U(g+dg))|2), (2.1)
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whereU(g) is a (unitary) representation of the group elementg andg+ dg symbolizes an
hereto infinitesimally close element, while the numerical value symbol|...| is taken for the
matrices to be defined as|A|2 = AA†. The numberdim is the dimension of the representation
matricesU(g).

• Even for Lie groups with Abelian components we may construct areplacement for an adjoint
representaton, let us say “Adjoint”(now in quotation marks).

• Then the Standard Model Gauge group “wins” by having the smallest represetation volume
for a faithful representation compared to the volume of the “Adjoint” representation for the
group.

Explanation of the Symbolic Figure with the Groups and their Representations

• Using the metric

ds2 =
1

dim
∗Tr(|(U(g)−U(g+dg))|2), (2.2)

the representation copies of the group look very similar (the same for simple groups), only/mainly
the size of these images(= the different faithfull representations) are different. (Truly a faith-
full representation considered as Riemannian manifold imbedded into the space of unitary
matries of orderdim is in correspondance with the group itself and has the (inner) geometry
metric which only deviates from that on the group by a numerical factor bing the same all
along the manifold; but this is true only provided one keeps to only count distancesalong the
manifolds)

• Typically any group has aritrarily large representations measured in the metric.

• But there is a lower limit to the size of the faithfull representations (while non-faithfull ones
count also the trivial representation, which in some sense is infinitely small, although we
might argue it to have indetermined size; the point is that the purely zero representation can
be said to have dimension of the representationdim=0 and so the distances become 0/0= “ill
defined”)
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• By comparing any representation size - say the volume taken to the (1/“groupdimension”)th
power - to the “Adjoint” (slightly generalized) wecan compare representations even for
different groups .

The crux of our principle:
Nature so loved small (faithfull) representations, that it even selected the gauge group of the
true model (= the Standard Model) so that the gauge group could have the smallest - relative
to the “adjoint”(slightly generalized) - possible faithfull representation whatsoever!

(analogue style to Johannes 3.14)

Selecting Goal Quantity
• We want to use the volume of the representation relative to that of the “adjoint”representa-

tion.

• We want to choose the “goal quantity” ( = “the score”) so as to be balanced w.r.t. dimension
of the (gauge) group being tested; therefore we want to take thedGth root of the volume, so
that it becomes rather say the linear scale size ratio. (HeredG is the dimensionality of the Lie
groupG.) By this being balanced w.r.t. dimension we have in mind that we should avoid that
“goal quantity” would have so much dependence on the dimension of the Lie group that it
would make this dimension selcted rather than some hoped for more dimension independent
stucture. As a sign of such a balance having been at least attempted is that the goal quantity
is arranged to be the same for a groupG and for any cross product of this group with itself
G×G×G×·· ·×G

• For quite conventional and accidental reasons we started to consider theinverse squareof the
linear - understood in the metric - size of the “the image of smallest faithful representation
F” compared to the same linear size of the “adjoint representation”A.

This means that we look at

“goal quantity”=

(

Vol(F)

Vol(A)

)−2/dG

=

(

Vol(A)

Vol(F)

)2/dG

(2.3)

2.1 Reminder of the main motivation for the whole game with this “goalquantity”

Let us remind the reader about why this “goal quantity” is so important:The by Nature chosen
gauge group- namely the Standad Model group S(U(2)×U(3)) (which has the same Lie algebra
as the Lie algebra of the Standard ModelR⊕ su(2)⊕ su(3)) has the smallest “goal quantity”(if
one uses the definition just above; but one should ask for the biggest if one took a definition being
like the one in earlier paper an inverse or inverse square of the presentone of course):Thus it selects
or explains the Standard Model group.

Let us even mention that requiring the minimal “goal quantity” for the Lorentz-group taken
for simplicity as the compact oneSO(d) for d dimensional space-time leads to the “winning”
dimension beingd = 3 ord = 4 and thus our goal quantity puts itself into the series of explanations
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attempted to be given to the question: Why do we have just 3+1 space time dimensions[1, 7, 8, 6].
Getting only to an equal race between 3 and 4 space time dimensions is of course not quite as
impressive as if 4 (the phenomenological value) had been sigled out alone. In the article [1] I did
invent some “improvements” taking crudely the whole Poincare group into account and managed
by such compliation - even if a bit motivated, somewhat less beuatyfull - to makethe 4=3+1 to win.

2.2 Special problems with the Abelian invariant subalgebras:

• A priori there are no adjoint representation to compare with for Abelian groups.

• A priori an Abelian Lie group has a continuum of different representations - all the irre-
ducible ones are one dimensional representations - namely having different chargese (mean-
ing a representation by a 1× 1 matrix exp(ieδ ) where the group element is exp(iδ ) ∈U(1))

• The charges get only quantized, when one considers a compactified Lie groupU(1) rather
thanR.

Treatment of Abelian Part

The easiest way to treat the Abelian part:

• Have in mind that working withgroupsrather than just Lie algebras - which is the only
thing that matters for the Yang-Mills gauge field couplings - O’Raifeartaigh [3] defines the
significance of thegroup from its restrictions on the matter field representations. (It might
be good to think of this type of restrictions as generalizations of the quantitzation of charge
obtained from the existence of (Dirac) monopoles. In fact David Olive found the monopole
that can just deliver the restriction for the Standard Model [13].)

• A short way is then to define the factor in the “volume of the representationr compared
to that of the replacement for the adjoint representation” formally by means the system of
allowed representation under thegroup Gin question.

• Indeed the restriction from thegroup rather than only from the Lie algebra is given by a
(charge) on which representations are allowed may be described by what we call a “quan-
tization rule”. Such a quantization rule is the restriction on the representationsfor the Lie
algebra which would select out those representations allowed as representations of the group.
E.g. in the case of the Standard Modelgroup S(U(2)×U(3)) the quantization rule reads

Y/2+ IW3 + “ triality ′′/3 = 0(mod1) (2.4)

whereIW3 is the third component of the weak isospin,andY the weak hypercharge, so that the
electric charge isQ = Y/2+ IW3. Further “triality ′′/3 is 1/3 for quarks -1/3 for anti quarks,
0 for gluons. (Note that for the Standard Model this “quantization rule” is just the extension
to the inclusion of the quarks with their - somewhat mysterious - of the simple Millikan[14]
rule of charge quantization(charge being an integer multiplum of the chargequantum).
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• Take the ratio of the “number” of allowed representations of the maximal Abelian invariant
subalgebra, when no restrictions is put to which representations for the non-abelian invariant
subgroups we use. Then compare that to the “number” of those charge combinations, which
are allowed, if the representations of the non-abelian invariant subgroups are required trivial.
(Really there are infintely many of both two types of charge combinations mentioned here,
but it is not so difficult to define a meaningful and finte ratio of the two infinite “numbers”)

• The number of allowed representations of both kinds are typically infnite, but one may take a
limit, and then this ratio is the extra factor to put on the volume ratio for the non-abelian part
as the contribution from the abelian part.At the end one then takes the “total dimension”th
root and the minus second power to get to our “goal quantity”.

3. Noting Philosophy of Extracting the Teaching of Nature from Structure of the
Gauge Group

The reader should have in mind that we physicists having only acceleratorslike even LHC with very
small energies per elementary particle compared to say the Planck scale, where the really true new
physics may show up. Thus we would love, if we could guess from some very pregnant regularity
being discovered at our “low” (compared to Planck scale) energy something about the Planck scale
or just somewhat higher up in energy scale physics. This means we dreamabout being as lucky
as Dalton [19] was, when he could argue for the existence of molecules/atoms from the simple
rational volume ratios between gasses, that made chemical reactions (e.g. oxygen burning with
hydrogen to make only water in a very simple rational ratio of the volumes: two parts hydrogen to
one part oxygen). But such a simple rule, so simple that we can trust its suggestion, does not have
only to be concerning numbers, no, it could also concern structure, such a selecting a gauge group.
The important thing is just that the number of reasonably comparably simple possibilities among
which nature has selected the so remarkable one, is sufficiently high. It were these numbers of
possibilities that were presented in our paper by Rugh et al. [11] in the form of giving the number
of digital cifers needed to specify among similarly reasonable choices just that one that Nature has
chosen. We[11] Rugh et al. called this number of cifers needed the amount of information not yet
explained measured in bits. If we make a model, that in this language explains a large number of
bits, it almost must be true, but if it only explains a small number of bits it could easily be just
accidentally “a remarkable choice of nature”.

The main point of the present talk is:

To makeNature give us a hint towards the true model beyond the Standard Model by seeking
- rather unbiased - a relatively simple property characterizing just the Standard Model Group
S(U(2)×U(3)) ( Lie-algebra-wise equivalent toU(1)×SU(2)×SU(3)). It will turn out that
I can use almost the same idea to characterize the phenomenological dimensiond = 4 [1] (di-
mension were also explained much earlier [6, 7], and even for telling the representations of the
Fermions[18, 4] and theHiggs .

But really the amount of information in the not explained gauge group of the Standard Model
is only -according to our, i.e. Rugh et al’s, estimate 8 bits (hardly two letters) while the dimension
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d = 4 gives≈ 3 bits, i.e. about a half letter.Nevertheless we shall now seek to get some usefull
information out of the “book of nature” this way.

Rughs et al.’s Information Counting; Not Explained Information. [11]

Unexplained Amount in
information bits

Parameters 143 to 155
Structural Information 21
divided out as:

Gauge group 8
3+1 dimensions 3
Spin-distribution 6
Higgs-representation 4

The information (not explained) in the parameters of the Standard Model making up ca 150
bits is like the information in 30 letters, and the 21 bits in the structure of Standard Model is like
4 letters. In all a half line. (Information in the Weyl-representations≈ 92 bits have been counted
as explained, but that may be exagerated? The idea we refer to here is this: If you assume that
we can only hope to observe fermions, which are mass protected by the gauge charges in the
Standard Model because “you” (= the physicists ) are so “poor” that we only have energies very
small compared to the presumed fundamental scale at our disposal per particle, then there can only
be fermions of one handedness, when there exist non of the opposite one with the same gauge
charge quantum numbers. This requirement restricts of course the system of fermions a lot, and
thus gives/explains a lot of information. It is this information/explanation whichwe refered to as
the 92 bits)

More Precise Strategy:

Don Bennett and I found - by complicated calculations and speculations, which I shall not tell you
about now - a quantity depending on/defined for groups, or at first rather Lie algebras,

“goal quantity” (3.1)

= ( ∏
simple groupsi

(
CA

CF
)di
i ∗ ∏

Abelian factorsj
(
e2

A

e2
F

)
d j
j )1/dG (3.2)

(the notation of which I shall first explain to you later), which

• 1. is relativelysimple, and

• 2. takes its biggest value for just the Standard ModelGroup S(U(2)×U(3)).

The point then should be that this on groups defined “goal quantity”, a real number, character-
izes the Standard Model gauge group by pointing it out as the one that winsthe game of getting the
highest value for this “goal quantity”.
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Here the quantitiesCA andCF are respectively quadratic Casimir operator values on the adjoint
(irreducible) representationA and on the irreducible representationF with the smallestCF (exclud-
ing the non-faithful trivial representation) for the various simple invariant subgroup of which the
groupG cinsidered is essentially the cross product. Therefore the ratiosCF/CA are in fact Dynkin
indices[15]. The indexi enumerates the simple groups in the essential cross product making upG
and the symboldi denotes the dimensions of these simple Lie groups. Of coursedG is the dimension
of the full Lie groupG.

Let us immediately on the following figure symbolize the result of the “game” between Lie
groupswith our goal quantity as the goal which is to be the largest to win. You see thatthe Standard
Model GroupS(U(2)×U(3)) get the largest goal quantity, 3.91782... But it is very nearly followed
by the next in the run, which is essentially the Standard Model Gauge group, just without the
strong interactionSU(3) group; that means it is in factU(2). The natural goal quantity would be
to take the ratio volume of the small representationF say, which is faithful to the volumeof the
adjoint representation and take thedGth root of it to get what we culd call the linear scale ratio
corresponding to the volume ratio. This most natural goal quantity would be the inverse square
root of the goal quantity used in Bennett’s mine first paper. On the figure you see the relation of
different goal quantities expressing the same illustrated as the relation between the distances (or
square of it) being identified with the goal quantity of mine and Don Bennetts old paper, while the
more natural linear size of the small representation compared to the adjoint then corresponds to the
time the runners needed for running a specified distance. This ratio of linear size ( determined as
thedG root of the volume of the small representation to the adjoint is therefore put up on the figure
as the times it took the runners. Apart from the squaring then the distance they reached when the
goal photo was taken is identified with our old paper goal quantity. To win - i.e.to be the gauge
group to be chosen by Nature to be realized - requires that you get the smallest representation in
linear size. But that correponds to getting the largest value of the invertedsquare of this meaning
the quantities discussed in our older work [2].

To appresiate the just described correspondance of the two equivalent ways of describing a
goal quantity one should note that the numbers on the figure are related like this: 1√

2.95782451
=

0.581451905 and e.g. 1√
2.69345184

= 0.6093199492.

9
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Correspondance group-structure↔ charge quantization rule

Have in mind, that for our purpose of using gaugegroupswe just have the following equivalent
ways of assigning a certain further information to a gauge theory Lie algebra:

• “group” We can assign more information to telling what the gauge Lie algebra is by telling
also what is the “gaugegroup”

is equivalent to

• charge quantization ruleTelling about certain restrictions on the representations occuring in
the model (restrictions comming from that different groups with the same Lie algebra do in
general not allow all the representations of the Lie algebra(or its covering group), but only a
certain subset of them.

(This connection is due to:O’Raifeartaigh[3], Group Structure of Gauge theories,University
Press Cambridge (1986))

4. Outlook from the philosophy that Standard Model is the truemodel very far up
in energy

We have above put forward an attempt to find out, why precisely the Standard Model with
its special Lie groupS(U(2)×U(3)) were selected by Nautre. If such a selection of indeed the
Standard Model gauge Group by some principle - as above the principle ofsmall representations
- is the truth behind, then it means that the Standard Model must be the right model so far up in
energy, that this Standard Model is indeedthe relevant model in some very significant region of
conditions. If namely, as many physicists hope for, there would appear new physics by rather little
increase in the energy of the LHC say, then it would make no sense to find a characterisation of the
Standard Model. The Standard Model would namely have no speial fundamental significane, but
rather just be asub-modelthat is part of a bigger or more extended model, which just happens to
the part already discovered in 2014.

It is therefore at least suggested, that if our above characterization isrelevant then the Standard
Model must be a good theory over a very large energy scale, and thereshould be essentially no new
physics at say the LHC.

But such a speculation meets severe problems:
If see saw neutrinoes needed to explain the observed neutrino oscillationsand also how we

could obtain an excess of matter over antimatter cosmologically, are just withoutgauge degrees of
freedom charges, then they may not change the gauge group. Since wemainly above looked at the
gauge group, we could say that an extension of the Standard Model notmodifying the Standard
Model Gauge Group would not be a challenge to the interest and relevance of our story of how to
select the gauge group. So such a see saw neutrino extension without any extra gauge degrees of
freedom being speculated could be o.k. ( But it is really not a priori o.k. w.r.t. to the idea that all the
fermions with masses very small compared to the Planck scale - identified as a fundamental scale
of energy - should be mass protected w.r.t. to the gauge group. The phenomenologically needed
see-saw neutrinoes should namely be chargeless singlets under the Standard Model gauge group,

10
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and thus if the Standard Model group were selected by some great principle and thus should be
the only gagueg group, the see-saw neutrinoes would have to be totally neutral and there would
consequently be no way to get them mass-protected.)

Similarly a pure or minimal supersymmetry extension - which also would not change the gauge
group - could be accepted without spoiling the value of the above considerations.

If we, however, not only care for the gauge group, but also for thatthe repsentations realized
as fields in the model should be small, then the gauginos, which must belong to theadjoint repre-
sentations could be claimed to not have the smallest representations, unless one takes the point of
view, that one has to only take the smallest representations as far as supersymmetry allows it.

In any case I have, however, personally attempted to seek models, in whichthe Standard Model
is everything all the way to the Planck scale or close to it except for some seesaw neutrino physics.
If one has this ambition of no new physics except for see saw neutrinoes and perhaps a scalar
associated with it, but at least no more gauge particles at that stage, and even choose to have only
minimal matter field representation like in the Standard Model, then e.g. dark matter becomes a
severe problem.

Can we have dark matter in the pure Standard Model? Contrary to most other physicists, I
and my collaborators C. D. Froggatt,... [36] have developped an idea for how to obtain dark matter
in pure Standard Model, only extended with our (D. Bennetts and Froggattand my own) multiple
point principle[37]. This mutiple point principle - which developped from first D. Bennetts talks
about commodities being fixed rather than intensive quantities - states that the universe sits just
at a phase transition multiple point, wherein the coupling constants have beenfinetunedso as to
organize, that there are several different vacuum states with very small (in older formulation of MPP
the vacua should just have the same energy densities, but not a priori have small energy densities)
energy densities. By introducing such a finetuning principle as this “multiple point principle” really
means that one has at least the hope a priori of explaining (some of) the fine tuning problems of
the physics and especially the Standard Model. If one formulates what we could think of as the
“modern version” of the “multiple point principle” (MPP)[37] namely that there are several vacua
and they all have very small (almost zero from high energy physics pointof view) energy densities
- a version for which I thank Leonard Susskind for private information -, then the usual problem of,
why the cosmolgical constant is so terribly small compared to most of the various contributions,
that must exist to the cosmological constant from vaious types of loop diagrams etc., has been
absorbed into the multiple point assumption. This cosmological constant problem of, why the
cosmological is so small is of course not really solved unless one has an explanantion for, why
the several vacua all have small energy densities, but putting the assumptions together in this way
means that we anyway have to have some assumption like the mutiple point one.

But if we now make this assumption of multiple point principle, then we succeededin in fact
calculate crudely the energy scale of weak interactions relative to some “fundamental” scale of
energy - taken to be the Planck scale - and obtain in fact a good order of magnitude for the weak
interaction energy scale[38].

5. Can we get any hint of the Theory Beyond the Standard Model ?

First of all one would ask one-self: Is there any mechanism, that coupld explain the principle
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of Nature selecting strongly the principle seeking the smallest faithful or at least smallest represen-
tation in the sense of having the smallest volume compared to that of the “Adjoint” representation?

Having in mind that the various fields e.g. the fermion fields that belong to these so very
small representations, are shifted exceptionally little for a measured by the “Adjoint” representation
somehow given shift of the group element. It means that counted in the by means of the “Adjoint”
representation defined distance concept on the Lie group thefields transform exceptionally little
for the gauge group selected by Nature. You could almost call the Standard Model group the most
“lazy” Lie group in the sense that it varies for a given variation in the group itself the various fields
as little as possible!

This story of this in some sense minimal variation under the gauge transformationof the matter
fields could be explained by a model of the type that Nature at first had no gauge symmetry, but that
some approximate gauge symmetry could be found by accident, and then in someway effectively
become exact [21]. If one looks for an accidental approximate symmetry,there is of course the
best chance to find one, when the variaton of the fields due to the symmetry operation is so small
as possible. If one only varies the fields a little bit there is a much higher chance for that say the
action is approximately the same after the shift as before, than if one varied the fields a lot. If you
vary the fields a lot the action is expected to also vary a lot, while if the fields onlyare varied a bit,
then also the action will from contuity vary a bit. So there is the best chance to by accident have
an approximate gauge symmetry under a gauge group giving small variationsof the fields than
under one that leads to bigger variations of the fields. This means that our result of the Standard
Model group winning the game to have the biggest value of our “goal quantity” means that it varies
the fields exceptionally little and has the best value to be approximately a good symmetry just by
acident. This could favour a philosophy that the fundamental theory actually is a randomly selected
one and that even gauge symmetry appeared by some “Ãĺxactification mechanism” working when
it is there only approximately at first. Actually we with D. Første and Ninomiya have long ago
proposed such an exactification mechanism[21]. The very idea of thinkingof gauge symmetry as
something that were there at first approximately in a random theory and thensomehow comes out
at the end almost by itself one could say is very much in the spirit of my long beloved project
of Random Dynamics [17, 20, 21, 22, 23]. Thus we could read the message about the smallest
possible faithful representations as a hint pointing towards Random Dynamics in as far as we got
the suggestive explanation for our finding that it came from a random action roughly.

5.1 Hint about Gauge Group Beyond

There may be one hint for what could go on beyond the Standard Model, namely that we
could assume that even beyond the Standard Model the gauge group is stillgiven by our selection
principle of the right gauge group to make our goal quantity maximal. It shouldnamely be admitted
that our principle of maximizing the goal quantity is not completlely unique, because we have in
constructing the goal quantity balanced it so well against simple dependence on the dimensionality
of the Lie group, that we have arranged that our goal quantity obeys thegeneral rule that taking it
for a cross product of a group with itself a number of times leads to the same goal quantity as for
the cross product factors.That is to say we had arranged

gq(G) = gq(G×G×·· ·×G). (5.1)

12



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
4
5

Smallest Representation Holger Bech Nielsen

Here we denoted the goal quantity for a group G say asgq(G).
Thus it were not totally correct that just the Standard Model groupS(U(2)×U(3)) were

uniquely pointed out by our goal quantity. Rather it could equally well havebeen the cross product
of any number of standard model groups. I.e. it could equally well have been any group like
S(U(2)×U(3))×S(U(2)×U(3))×·· ·S(U(2)×U(3))×S(U(2)×U(3)) that could be claimed
to be “the” selceted one. This ambiguity in our selction after all gives us the possibility to have a
group with a larger dimensionality than the 12 of the Standard Model group, so that there could
be a chance to take it as an extension of the Standard Model group. we could namely propose one
of these cross products of the Standard Model group with itself a number of times. The standard
model group itself can be found as a subgroup of such a cross product of standard model groups
with itself in a few different ways. It can for example be found as what wecall the diagonal
subgroup of the cross product group. In a group that is a cross product of say a groupG with itself
a number of timesG×G×·· ·×G the elements in it are of course of the form(g1,g2, ...gn) where
thegi ∈ G. The diagonal subgroup is the group consisting of just those elements inG×G×·· ·×G
for which all the component elementsgi are equal to each other, i.e.g1 = g2 = · · · = gn. Long tme
ago we worked with a model which were called AntiGUT model - in contrast of course to usual
grand unified theory[24] - and it that the high energy or original ((anti)unifying) group were such
a cross product of the Standard Model group with itself a number of times - namely one factor
in the cross product for each family of quarks and leptons -S(U(2)×U(3))×S(U(2)×U(3))×
·· ·S(U(2)×U(3))×S(U(2)×U(3)). In this AntiGUT model each family of quarks and leptons
would so to speak obtain its own set of gauge particles.

Here we just stress that strictly speaking our small representation principlehas as its only
possible extension of the Standard Model to a larger gauge group the possibilty of using this kind
of antiGUT type theories.

Actually antiGUT has several advantages: 1) Contrary to simple GUT theories the extension
can contribute to the small hierarchy, meaning it may help in explaining that thereare orders of
magnitude differences between various quarks and leptons.

2) We once used it combined with what we would now consider “multiple point principle” to
fit the fine structure constants using the number of families - which were at that time not known-
as a parameter and in this way we PREdicted the number of families to be three form MPP and
AntiGUT background gauge theory.[]

6. Resume Conclusion

• We have defined a measure for the size of representationr relative to that of the adjoint
representation for the same groupG, so that we even can compare “sizes” of representations
of different groups.

• The concept of this “adjoint” representation is the straightforward concept - the representa-
tion on the Lie algebra - for the non-abelian part of the Lie group, but hasto be defined by
us for the Abelian part.

• Including in the counting only faithful representations (which are the onesrepresenting every
element of the group by a seperate element) we seek the very smallest representation among
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all the different groups; then the Lie group having this very smallest faithful representation
is just the Standard Model gauge group.

7. appendix

For calculating our “goal quantityÂt’Ât’ for various groups one has inaddition to evaluate fac-
tor connected with the abelian invariant subgroups - something done by considering how strongly
the associated restriction relations (which essentially is the charge quantization rule) restricts the
representations - the factor associated with the simple nonabelian invariant subgroupos. The lat-
ter factor is obtained by first evaluating for each simple invariant non-abelian subgroup the ratio
of the quadratic Casimir for respectively the adjoint representation and that faithful representation
of the simple non-abelian group that has the smallest quadratic Casimir. In the reference[2] we
constructed a table of ratiosCA/CF for the quadratic CasimirCA for the adjoint representationA
to thatCF for the faithful repsentationF with CF minmial among faithful representations )really it
is only the trivial representation that is excluded from being theF when we talk about simple Lie
algebras). Here we used the terminology of simple a bit wrongly in as far as we called even the Lie
groups which are not simple, if they have simple Lie algebra. For theSO(N) groups -Bn andDn for
odd and evenN respectively - the faithful representation with the smallest quadratic Casimir may
depending on the rankn or the dimensionN be a spinor representation or a vector representation.
Therefore we give in the table below from reference [2] two cases fortheseSO(N) Lie groups.

Our Ratio of Adjoint to “smallest” Quadratic Casimirs CA/CF , for faithful repr.

CA

CF
|An =

2(n+1)2

n(n+2)
=

2(n+1)2

(n+1)2−1
=

2

1− 1
(n+1)2

(7.1)

CA

CF vector
|Bn =

2n−1
n

= 2− 1
n

(7.2)

CA

CF spinor
|Bn =

2n−1
2n2+n

8

=
16n−8

n(2n+1)
(7.3)

CA

CF
|Cn =

n+1
n/2+1/4

=
4(n+1)

2n+1
(7.4)

CA

CF vector
|Dn =

2(n−1)

n−1/2
=

4(n−1)

2n−1
(7.5)

CA

CF spinor
|Dn =

2(n−1)
2n2−n

8

=
16(n−1)

n(2n−1)
(7.6)

CA

CF
|G2 =

4
2

= 2 (7.7)

CA

CF
|F4 =

9
6

=
3
2

(7.8)

CA

CF
|E6 =

12
26
3

=
18
13

(7.9)

CA

CF
|E7 =

18
57
4

=
72
57

=
24
19

(7.10)
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CA

CF
|E8 =

30
30

= 1 (7.11)

The notation is this table is the mathematical classification of the Lie algebras:

An = SU(n+1) (7.12)

Bn = SO(2n+1) (7.13)

Cn (symplecticLiegroup) (7.14)

Dn = SO(2n) (7.15)

(7.16)

and the Lie groupsG2,En,F4 are the special Lie groups.

7.1 An example

As an example you may use the table to obtain the goal quantity for the Standard Model gauge
group:

The two simple non-abelian groups for which we need theCA/CF ratio areSU(2) = A1 giv-
ing (CA/CF)SU(2) = 8/3 andSU(3) = A2 which gives(CA/CF)SU(3) = 9/4. These ratios mean
the squares of the scaling factor in the group or representation manifolds ofthose dimensions
corresponding to the simple grouo in question of the adjoint compared to theFrepresentation )
characterized as smallestCF for any faithfull representation of the simple group. Were it not for
the factor involving the abelian part and the division out of a subgroup ofthe center, we would
obtain the factor - from the simple nonabelian -(8/3)3/2 ∗ (9/4)8/2 for the ratio of the volume of
the adjoint representation manifold to the one for the to theF representations corresponding. The
rule to multiply this volume ratio by the number 6 comming from the quantization restrictiononly
allowing crudely speakung one out of 6 combinations. Now to avoid as we asked for in the article
a too strong dependence on the dimesnion of the group, we decided to take the thedG th root of
the volume ratio. So if we decide to look for a (linear) size ratio of theF one (the small one) to the
adjoint our goal quatity - now to be minmized to win -

goal−quantity=
1

((8/3)3/2∗ (9/4)8/2∗6)1/12
. (7.17)

To avoid too much confusion due to that we used in this article a goal-quantity that is the
inverse square root of the one used in previous papers and even inthefigure here let me translate
this expression to the notation of the earlier papers

earlier−goal−quantity= ((8/3)3/2∗ (9/4)8/2∗6)2/12. (7.18)
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