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1. Introduction

Phenomenological low energy models obtained from string theory are particularly interesting
because many of their parameters are determined from a few basic principles of the theory at the
high scale and a handful of topological properties of the compact space. F-theory [1] model build-
ing [2]-[35] in particular is a promising component of the vast string landscape. Many properties of
the effective F-theory models are determined from the elliptic structure of the fibred internal space.
Furthermore, despite the complicated structure of the Calabi-Yau (CY) geometry, in the F-theory
description one can focus on a small patch and compute several important quantities which can be
directly confronted to experimental tests. For example, Yukawa couplings occur at triple intersec-
tions of D7-branes. Studying locally the wavefunctions’ profiles of the relevant states we are able
to compute the strength of these couplings and predict the mass spectrum and -at least in principle-
all possible interactions predicted within a specific model. Examples of such computations regard-
ing vital issues such as proton decay, the Higgs mixing term and the fermion mass structure appear
in many works including [2, 8, 13, 16, 17, 27, 30, 21, 10, 11].

Another interesting fact in F-theory, is that GUT symmetries are linked to the singularities of
the elliptically fibred K3 manifolds. The advantage in such constructions is that the exceptional
groups E6,7,8, can be naturally incorporated into the theory (see for example [3, 4] and references
therein). A systematic classification of semi-local F-theory GUTs arising from a single E8 point of
local enhancement, leading to simple GUT groups based on E6, SO(10) and SU(5) have also been
studied extensively.

In addition to the non-abelian sector, in string models, abelian and discrete symmetries are
ubiquitous [36]-[45]. In F-theory models in particular these arise either as a subgroup of the non-
abelian symmetry or from a non-trivial Mordell-Weil group associated to rational sections of the
elliptic fibration. Phenomenological analysis shows that the role of abelian and discrete symmetries
is particularly important in model building. They are the appropriate tool to suppress undesired pro-
ton decay operators and various flavour violating interactions and generate a hierarchical fermion
mass spectrum.

In these lecture notes a short overview of the current status of F-theory model building is
given, where the focus is mainly on the above issues. To make this presentation self-contained in
the next two sections I review in brief the basics of elliptic curves, F-theory and elliptic fibration.
The remaining sections are devoted to the methodology of current F-theory model building.

2. Elliptic Curves

F-theory [1] is a geometric reformulation of String Theory. Its 12-dimensional space consists
of the four space-time dimensions and an eight-dimensional internal elliptically fibred compact
space. Hence, the theory of elliptic curves plays a crucial role, while many of the properties that
will be discussed are related to rational points on elliptic curves.

A point is said to be rational if its coordinates are rational, while a rational curve is defined
by an equation with rational coefficients. It is trivial to find the rational points on lines and conics.
Consider for example the equation of the unit circle x2 + y2 = 1. Choosing a rational point on it,
-let it be (−1,0)- we can draw a line which intersects the circle at (x,y). We can map this pair on
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the line identified with the vertical axis y by the transformation

x =
1− t2

1+ t2 , y =
2t

1+ t2 ,

This way, all rational points (x,y) on the curve can be determined in terms of the rational values of

(-1,0) (0,0)

(x,y)

t

Figure 1: Rational points on conics.

the parameter t. Because of this correspondence between the rational points, we say that the curve
(in this case the conic) is birationally equivalent to the line. A rational curve is also called a curve
of genus zero. Every genus zero curve is birationally equivalent either to a conic or to a line.

We proceed now to the elliptic curves which are described by a cubic equation whose most
general form can be written as

C :
3

∑
n=0

n

∑
m=0

am,nxnyn−m = 0 (2.1)

The identification of the rational points on a given elliptic curve C of general type is much more
complicated compared to the conic. We know however, that the rational points of C exhibit a group
structure. According to Mordell’s theorem,
If a non-singular elliptic curve C has a rational point then the group of rational points can be
finitely generated.
In other words, there is a finite number of elements generating the whole group. The group structure
is depicted here in figure 2 which can be defined as follows: Let P,Q two rational points on C .
Drawing the line joining these two points, we can find another one at the third intersection of the
line with the curve C . I designate this point with P∗Q. Suppose now we are given a rational point
O on C that we can identify this to be the zero element of the group. The line from O to P ∗Q
intersects C on another point which, as can be proved 1, under the group law is the point P+Q. To
find the opposite element with respect to the addition law of the group, we draw a tangent to the
zeroth element O which intersects C at some point called here S. One can prove that the opposite
to P is identified with the third intersection of the PS-line and curve C , so that P+(−P) = O.

1See for example standard textbooks such as [46, 47, 48].
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P

C

P

P +Q

Q

O

Q*

P

S

C

P

O

_

Figure 2: The group structure of rational points on elliptic curves. The law of addition.

P

P+

P *

Q

Q

Q

O8
C

Figure 3: Addition on Weierstrass form. The zero element O is at infinity.

The general form (2.1) of the elliptic equation is rather too complicated. Fortunately it can be
shown that any cubic equation with a rational point on it can be brought to the Weierstraß form

y2 = x3 + f x+g (2.2)

We can readily check that the Weierstraß form is symmetric with respect to the x-axis. More-
over, the zeroth element of the group can be taken to infinity while the sum of two points is just the
reflection (w.r.t. x-axis) of the third intersection point of the line PQ with C .

There are two important quantities characterising the elliptic curves. These are:
• The discriminant

∆ = 4 f 3 +27g2 (2.3)

which classifies the singularities on the elliptic curve. In particular, when ∆ ̸= 0 elliptic curves are
non-singular and may have one or three real roots. When ∆ = 0 curves are singular. Singularities
are of nodal or cuspidal type.
• The j-invariant (modular invariant) function

j(τ) =
4(24 f )3

4 f 3 +27g2 =
4(24 f )3

∆
(2.4)

which takes the same value for equivalent elliptic curves characterised by the SL(2,Z) transforma-
tions τ → aτ+b

cτ+d .
These two functions will be very useful when discussing the elliptically fibred space in F-

theory.
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Figure 4: Fixing the values of the polynomials f,g to certain real numbers, elliptic fibrations reduce to
elliptic curves. The three figures correspond to a discriminant bigger, less or equal to zero respectively.

Often, a crucial step towards understanding the structure of singular fibers is the operation
known as resolution of singularities. The resolution changes the singular part of the fiber but leaves
essentially unchanged the smooth part. We describe with a simple example this procedure. Let the
singular curve

y2 = x3 + x = x(x2 +1)

We take homogeneous coordinates u,v so that vy = ux, and define the affine parameter t = u/v, so
that

y = t(t2 −1) and x = t2 −1

This way we have resolved the singularity by embedding the curve in a higher dimensional space.
(blowing-up a singularity). This is depicted in figure 5.

-1.0
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0.5 -1.0
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-1.0

-0.5

0.0
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Figure 5: Blowing-up a singularity

So far we dealt with real elliptic curves, however our final goal is to use their complex ana-
logues. Hence, we need to consider complex coefficients (functions) f ,g ∈ C. In this case, it can
be proved that a complex elliptic curve C is a genus 1 closed surface with a marked point on it
corresponding to its neutral element (point to infinity). Defining a modulus τ as usually, the torus
(hence C ), is equivalent to the lattice (1,τ).

With respect to the previous analysis of elliptic curves, we distinguish two cases: The complex
analogue of a real elliptic curve with non-singular points is a torus without singularities. On the
contrary, if the real elliptic curve has singular points then its complex equivalent is a torus with a
pinched radius.
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Real Complex

Figure 6: The Weierstraß equation with complex coefficients describes a torus. A non-singular real elliptic
curve “upgrades” to normal torus. Singular elliptic curve corresponds to torus with a pinched radius.

3. F-theory and Elliptic Fibration

We start with the description of a few basic features of F-theory [1]. F-theory is defined on a
background R3,1×X with R3,1 the 4-d space-time and X an elliptically fibred CY complex fourfold
with a section over a complex three-fold base B3. In short, it is the geometrisation of the type II-B
superstring.

There are several reasons for preferring to obtain a geometric picture of string theory. We will
see that in the fibred internal space a significant role is played by the geometric singularities which
are mathematically well understood and systematically classified. F-theory is based on the idea
that geometry dictates the group structure of the effective field theory model.

Let us start then with the type II-B superstring. In the bosonic spectrum there are two scalars,
the dilaton field ϕ and a zero-form potential (axion) C0. One then can define a modulus, the axion-
dilaton complex structure

τ =C0 + ie−ϕ (3.1)

and write down an SL(2,Z) invariant action of the ten-dimensional theory which leads to consistent
equations of motion. The terms of the action seem as if they are obtained from a twelve dimensional
theory compactified along the two radii of the torus (for a review see [49]). We can think of τ as
the modulus of a torus attached to each point of the internal manifold of three complex dimensions
(threefold), as depicted in figure 7. We end up with a fibred fourfold. Recalling the analysis of the
previous section, one is tempted to consider the interesting possibility of describing this fibration
by the Weierstraß model given in equation (2.2). We will approach this through a specific example
establishing an equivalence between F-theory compactifications on a K3 surface and the heterotic
theory compactification on T 2 [50].

3.1 Elliptic K3 fibration

A K3 surface is a complex smooth regular manifold with trivial canonical bundle. The general
elliptically fibred K3 is described by the Weierstrass equation

y2 = x3 + f (u,w)xz4 +g(u,w)z6 (3.2)

6
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Figure 7: Elliptic fibration. At each point of the threefold B3 a torus τ =C0 + ie−ϕ is assigned.

where x,y,z,u,w are parameters of the fibration and f ,g homogeneous polynomials of degree 8 and
12 respectively. The equation is invariant under the following two rescalings

{u,w,x,y,z}→ {λu,λw,λ 4x,λ 6y,z} ; {u,w,x,y,z}→ {u,w,µ2x,µ3y,µz}

Indeed, for the first rescaling the left hand side becomes y2 → λ 12y2 and the same weight λ 12

emerges for the right hand side of (3.2). Similarly, one finds that for the second rescaling from both
terms of the equation a weight µ6 is factored out.

There are five coordinates compared to two rescalings and one equation, thus the equation
describes a two complex dimensional surface.

For the first rescaling we observe that the sum of the weights (powers of λ ) is 1+1+4+6+
0 = 12, i.e. equal to the weight 12, and the second is 0+0+2+3+1 = 6 is equal to the weight of
the second equivalent equation. Therefore, this is a CY manifold.

Fixing u = 1 the above equation becomes

y2 = x3 + f (w)xz4 +g(w)z6 (3.3)

We now observe that f ,g transform as sections f ∈ K−4
B3

,g ∈ K−6
B3

. This can be understood if
we assign the scalings x → λ 2x and y → λ 3y while taking z = 1 so that (3.3) becomes λ 6 y2 =

λ 6x3 + f̃ λ 2 x+ g̃ implying f̃ → λ 4 f and g̃ → λ 6 g.
For z = 1 equation (3.3) is just equation (2.2). As explained previously, for f ,g complex,

the latter describes a torus whose modulus τ is now identified with that of (3.1). On the other
hand, in order to satisfy the CY conditions, we take the two functions f = f (w),g = g(w) to be
8th and 12th degree polynomials of the complex variable w. As we move from point to point in the
internal manifold, the modulus τ varies. In particular, on moving along non-trivial closed cycles, τ
undergoes non-trivial SL(2,Z) transformations 2. In figure 7 for any generic point we draw a normal
torus, while pinched torii are drawn at points of singularities; the latter appear when two D7-branes
intersect at a ‘point’ of the manifold. These correspond to singularities of elliptic surfaces and

2The SL(2,Z) modular invariant function is given by j(τ) = e−2πiτ + 744+O(e−2πiτ ). Combined with (2.4) one
can elaborate [50] a relation approximated with τ(w)∼ 1

2πi ln(w−wi) in the vicinity of the zeros of ∆(wi) = 0.

7
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ord( f ) ord(g) ord(∆) fiber type Singularity
0 0 n In An−1

≥ 1 1 2 II none
1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+6 I∗n Dn+4

≥ 2 3 n+6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 1: The Kodaira classification relies on the vanishing order of the polynomials f ,g and the discriminant
∆.

were classified in terms of the vanishing orders of the discriminant and the polynomials f (w),g(w)
several decades ago by Kodaira [51]. For minimal elliptic surfaces eight types of singular fibers
were identified, (nodal, cuspidal or otherwise reducible). The singularities are related to simply-
laced Dynkin diagrams of ADE type. These extremely interesting results can be found in several
recent papers and reviews [51, 52, 53, 54]. Here they are summarised in Table 3.1.

4. Interpretation of singularities

The nature of the singularities of the internal space motivated the idea that they can be iden-
tified with the gauge symmetries of the effective field theory model. If this is true, then one can
attribute all the properties of the internal manifold to the massless spectrum and the effective po-
tential describing their interactions. This scenario has many advantages, including calculability of
Yukawa couplings [2]-[21] of the effective theory from a handful of geometric characteristics of
the internal space.

A convenient description which emphasizes the local properties of these singularities is given
in terms of Tate’s algorithm [55]. In this context, the equation describing the elliptically fibred
space takes the form

y2 +α1xyz+α3yz3 = x3 +α2x2z2 +α4xz4 +α6z6 (4.1)

The variables [x,y,z] have weights [2 : 3 : 1] correspondingly, defining a hypersurface in the P(2,3,1)

weighted projective space.
In analogy with Kodaira’s classification of singularities, here also the gauge group is deter-

mined in terms of the vanishing orders of the polynomials αk and the discriminant ∆. The results
are summarised in Table 2. We note that the Weierstraß equation can be obtained from Tate’s form
by recovering the functions f ,g from the coefficients αk. To this end, it is convenient to define the
following quantities

β2 = α2
1 +4α2; β4 = α1α3 +2α4; β6 = α2

3 +4α6; β8 =
1
4
(
β2β6 −β 2

4
)
. (4.2)

8
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Type Group a1 a2 a3 a4 a6 ∆

I0 − 0 0 0 0 0 0

I1 − 0 0 1 1 1 1

I2 SU(2) 0 0 1 1 2 2

Ins
2m Sp(m) 0 0 m m 2m 2m

Is
2m SU(2m) 0 1 m m 2m 2m

Is
2m+1 SU(2m+1) 0 1 m m+1 2m+1 2m+1

I∗s
1 SO(10) 1 1 2 3 5 7

I∗ns
2m−3 SO(4m+1) 1 1 m m+1 2m 2m+3

I∗s
2m−3 SO(4m+2) 1 1 m m+1 2m+1 2m+3

I∗ns
2m−2 SO(4m+3) 1 1 m+1 m+1 2m+1 2m+4

I∗n
2m−2 SO(4m+4)∗ 1 1 m+1 m+1 2m+1 2m+4

IV ∗s E6 1 2 2 3 5 8

III∗s E7 1 2 3 3 5 9

IIs E8 1 2 3 4 5 10

Table 2: Selected cases of Tate’s algorithm. The first column declares the type of the singular fiber according
to Kodaira, i.e. nodal (I1), cuspidal (II) etc. The superscripts s,ns stand for split and non-split. (The complete
results can be found in [55, 52, 54].) The other columns show the order of vanishing of the coefficients
ai ∼ zni , the discriminant ∆ and the corresponding gauge group.

Then, it can be readily checked that the functions f ,g and the discriminant ∆ are

f =
1

48
(
24β4 −β 2

2
)

(4.3)

g =
1

864
(
β 3

2 −36β4β2 +216β6
)

(4.4)

∆ = −8β 3
4 +9β2β6β4 −27β 2

6 −β 2
2 β8 (4.5)

After these preliminary notes, in the next section we proceed to the description of the basic tools
for local model building.

5. GUT models

The attractive scenario of linking gauge symmetries to the singularities of the internal geom-
etry leads to far reaching implications. An interesting advantage of F-theory constructions based
on the elliptic fibration, is the appearance of the exceptional symmetry E8 where the gauge group
of the effective theory is embedded[3, 4, 5, 6, 7]3. However, phenomenological investigations have
shown that additional symmetries (discrete or continuous) are required to render the theory viable.
Interestingly, a useful class of such symmetries originates from the commutant of this GUT with
respect to the exceptional gauge symmetry E8.

3For reviews, see [23, 24, 25, 26]
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To show how these symmetries appear we describe the E6 and SU(5) gauge groups in brief. In
the local picture, Tate’s coefficients have a general expansion of the form

αk = αk0 +αk1w+αk2w2 + . . . (5.1)

If a certain coefficient αk has vanishing order n, it is convenient to write

αk = αk,nwn, with αk,n = αkn +αk(n+1)w+ · · · (5.2)

We proceed to a brief description of the two aforementioned GUTs.

5.1 E6 GUT

For an E6 type of singularity, the coefficients take the form

α1 = α1,1w, α2 = α2,2w2, α3 = α3,2w2, α4 = α4,3w3, α6 = α6,5w5

With this choice, the discriminant is factorised as follows

∆ = ∆0 w8 (5.3)

where we defined
∆0 =−27α4

3,2 +A(αk j)w+O(w2) (5.4)

while for convenience we introduced the coefficient A(αk j) of the first power in w:

A(αk j) = (α1,1α3,2 +2α4,3)
((

α2
1,1 +36α2,2

)
α2

3,2 −32α4,3(α1,1α3,2 +α4,3)
)
−216α2

3,2α6,5

Indeed, ∆ has a vanishing order of 8th degree, in accordance with Table 2. From (5.3) we observe
that the discriminant locus consists of two divisors, DE6 (at w = 0 of multiplicity eight) and DI (at
∆0 = 0 of multiplicity one). There are eight D7 branes wrapping the divisor DE6 and one D7 brane
wrapping ∆I which is assumed to be irreducible.

The representations of the effective theory model, reside at the intersections of the DE6 divisor
with D7 branes spanning different dimensions of the internal space. These intersections (often
called matter curves) are in fact Riemann surfaces along which symmetry is enhanced. In the
elliptic fibration the highest allowed singularity is E8. Then, a convenient way to attain a viable
effective model is through the decomposition

E8 → E6 ×SU(3)

where E6 is the desired GUT, while the enhancements along the matter curves include factors
embedded in SU(3). We can also think of SU(3) broken by fluxes (or some other mechanism) to a
subgroup of it. The possibilities are either the continuous symmetries SU(2),U(1)2, or a discrete
group such as the S3 (permutation of three objects), Z3 or Z2. Hence all E6 representations transform
non-trivially under the latter. Viable cases have a final symmetry such as:

E6 ×U(1)2, E6 ×S3, E6 ×Z2 (5.5)

10
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In general, for an E6 GUT, any additional symmetry embedded in E8 is included into its commutant,
SU(3). A phenomenologically simple description of these symmetries is based on the spectral
cover approach and can be realised as follows. According to the previous discussion, the Tate’s
form for E6 is written

y2 +α11xyw+α32yw2 = x3 +α22x2w2 +α43xw3 +α65w5

Let us assign the following weights on the complex coordinates: [x : y : w] =
[1

3 : 1
2 : 1

]
. Dropping

the terms with weights bigger than one, namely [xyw] = 31
30 > 1, [x2w2] = 16

10 > 1, we end up with

y2 +α32yw2 = x3 +α43xw3 +α65w5

Defining a new parameter s3 = w5 with x = s−4/5, y = s−6/5, we get

C3 : b0 s3 +b2 s+b3 = 0

where b0 = α65, b2 = α43, b3 = −α32. The three roots ti of the polynomial C3 are associated to
the SU(3) Cartan subalgebra satisfying ∑i ti = 0. The coefficients bk encode the information of
the compact space, while they can be written in terms of elementary functions of ti. Inversion of
these relations may lead to branchcuts, connecting some ti through monodromies. As a result, the
original SU(3) symmetry reduces to some discrete or continuous subgroup such as in (5.5). Details
on viable models can be found in several papers including [6, 30, 31, 32].

5.2 SU(5) GUT

As a second example we consider that the GUT gauge symmetry is associated to a divisor
characterised by an SU(5) singularity while the commutant is also SU(5) -usually denoted with
SU(5)⊥.

E8 ⊃ SU(5)×SU(5)⊥ (5.6)

The implications of SU(5)⊥ are described by a spectral cover denoted by C5 as follows: The
coefficients fulfilling the conditions for the SU(5) singularity are denoted as

b0 = α6,5, b2 = α4,3, b3 = α3,2, b4 = α2,1, b5 = α1,0

Define the homogeneous coordinates

w →U, x →V 2, y →V 3

so that the Weierstrass equation becomes

0 = b0U5 +b2V 2U3 +b3V 3U2 +b4V 4U +b5V 5

with U,V being sections of −t and c1 − t respectively4.

4As previously, c1 the 1st Chern class of the tangent to SGUT bundle and −t that of the normal bundle.

11
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We can write this equation in terms of the affine parameter s =U/V

C5 :
5

∑
k=0

bks5−k = b0s5 +b1s4 +b2s3 +b3s2 +b4s+b5 = 0 (5.7)

which is a five degree polynomial (notice that b1 = 0 as expected for any SU(n) group). Equation
(5.7) includes the basic information regarding geometric properties as well as additional symme-
tries of the SU(5) F-GUT.

The massless spectrum is found in 248 of E8, which decomposes as follows

248 → (24,1)+(1,24)+(10,5)+(5,10)+(5,10)+(5,10) (5.8)

The SU(5) GUT multiplets have transformation properties under the second SU(5)⊥. Depending
on the specific topological structure of the internal space, the spectral cover C5 may factorise in
various ways. A few interesting cases are

C4 ×C1, C3 ×C2, C2 ×C2 ×C1

implying analogous factorisations of the polynomial (5.7). For the SU(5) GUT, there is a rich
variety of possible accompanying discrete symmetries, including [27, 35, 44]

SU(5)×A4 ×U(1), SU(5)×Z3 ×Z2, SU(5)×Z2 ×Z2 ×U(1)

F-SU(5) models have been extensively discussed in the literature [4, 5, 6, 7, 27, 28, 29, 30, 31, 33].

6. Mordell-Weil U(1)’s and discrete symmetries

In the previous section we presented the classification of the non-abelian singularities of the
elliptic fiber, subject to restrictions arising from Kodaira classification. Adopting the interpretation
that these correspond to non-abelian gauge symmetries, we were able to determine the GUT gauge
group of the potential F-theory models. There is considerable activity [56]-[75] on the role of the
abelian sector related to the rational sections of the elliptic curves. Subsequently, we focus in some
related issues.

In the introductory section we have seen that there is a class of abelian symmetries, associated
to rational sections of the elliptic curves. Since the internal space is elliptically fibred, these U(1)’s
may manifest themselves in potential low energy effective models. From analyses of phenomeno-
logical models, we know that such symmetries are extremely useful in order to prevent unwanted
terms in the lagrangian. It seems that such abelian symmetries are indispensable when construct-
ing an F-theory effective model, however, a Kodaira-type classification is lacking up to now. From
the Mordell-Weil theorem we only know that these are related to the rational sections defined on
elliptic curves but the rank of this group is not known. The Mordell-Weil group can be written as

E (K ) = Z ⊕Z ⊕·· ·⊕Z︸ ︷︷ ︸
n

⊕G ≡ Zn ⊕G

12



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
4
6

FGUTS George K. Leontaris

Here n is the rank of the Abelian group, while G is the torsion subgroup and K is the number
field. According to a theorem by Mazur [76] (see also [77]), the possible torsion subgroups are
either Zk,k = 1,2, . . . ,10,12 or the direct sum Z2 ⊕Z2k with k = 1,2,3,4.

G =

{
Zn n = 1,2, . . . ,10,12
Z2k ⊕Z2 k = 1,2,3,4

(6.1)

A specific choice of the coefficients in an elliptic curve equation eventually will fix the symmetries
of the effective GUT model. For a simple demonstration on the appearance of such symmetries,
let us see how a Z2 discrete symmetry can arise [78]. Under a Z2 action, a point P on an elliptic
curve is identified with its opposite, −P. From the group law, (see figure 2) P+(−P) = O, hence
P+P = O, where for the Weierstraß form the zero element O is taken to infinity. This implies that
line OP must be tangent to P. If we put P at the origin, (0,0) then dy/dx = ∞. For example, the
elliptic curve y2 = x(x2 + x+1) has a Z2 symmetry at the origin (0,0).

6.1 On GUT Models with Mordell-Weil U(1) ’s

In the geometric picture of F-theory discussed previously, the elliptic fibration assumed over
a base B3 can be defined as a holomorphic section of the fourfold. In the following, the possibility
of having a fibration of an elliptic curve with two rational sections, including the zero (universal)
section will be examined. This leads to a rank-one Mordell-Weil group, or a theory with one U(1)
symmetry in addition to the non-abelian GUT group. From the phenomenological point of view
this is one of the most viable possibilities. GUT models with an additional abelian factor and
perhaps a discrete symmetry arising from the torsion part (6.1), are probably adequate to impose
sufficient constraints on superpotential terms.

However, in general, it is not easy to identify the U(1) symmetries by starting directly form the
Weierstraß form. Instead, it is more feasible to start with a different representation of the elliptic
curve where the Mordell-Weil rank and other characteristics are more transparent. Once we have
identified the abelian structure, in order to study the non-abelian group we convert our equation
to the ordinary Weierstraß form using the appropriate birational transformation. To derive the

u
uD

D

D

t

v
v

4 4

t 2

Figure 8: The reflexible polygon for the model P(1,1,2) with one lattice point in its interior in accordance
with the genus-one elliptic curve.

equation of such a hypersurface, following the analysis of [56], we start with a point P associated
to the holomorphic (zero) section and a rational point Q on an elliptic curve. We introduce the
degree-two line bundle M = O(P + Q) and denote u and v its two independent sections with
weights [1 : 1] generating the group H0(M ). The space H0(2M ) should have four independent

13
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sections. Given u and v we are able to generate only three, namely, u2,v2 and uv. Thus we need to
introduce a new one -let us call this t- with weight 2, so we are in a P(1,1,2) projective space of three
sections [u,v, t] with weights [1 : 1 : 2] respectively. From u,v, t we can form six sections of degree
6 (namely u3,v3,uv2,u2v and tu, tv) which match exactly the number of independent sections of
H0(3M ). But u,v, t generate nine sections for H0(4M ) exceeding the independent ones by one.
Hence there has to be a constraint among them which defines a hyper-surface in the weighted
projective space P(1,1,2) given by the equation of the form

t2 +a0u2t +a1uvt +a2v2t = b0u4 +b1u3v+b2u2v2 +b3uv3 +b4v4 (6.2)

where bi,a j are coefficients in the specific field K we are interested in. The P(1,1,2) projective
space can be regarded as a toric variety [79]-[82] shown in the left side of figure 8. Furthermore,
we can identify three divisors. For t = v = 0,u ̸= 0 the divisor Du = [1 : 0 : 0], for t = u = 0,v ̸= 0
the divisor Dv = [0 : 1 : 0], and for u = v = 0, t ̸= 0, the divisor Dt = [0 : 0 : 1]. These are indicated
on the right side of the same figure. Without loss of generality [56] in order to avoid complications
with square roots etc, we can simplify this equation to:

t2 +a2v2t = u(b0u3 +b1u2v+b2uv2 +b3v3) (6.3)

Having constructed the elliptic curve equation with one Mordell-Weil U(1), we would like now to
transform this equation to the familiar P(2,3,1) model. In fact this is inevitable; in order to identify
the non-abelian part of the gauge symmetry, we need to read off the singularity structure from the
coefficients in the Weierstraß form. It can be proved that the conversion can occur by two sets of
equations [70] relating the sections of the P(1,1,2) model to those of P(2,3,1). Both transformations
lead to equivalent results. The simplest one is [70]:

v =
a2y

b2
3u2 −a2

2 (b2u2 + x)
(6.4)

t =
b3uy

b2
3u2 −a2

2 (b2u2 + x)
− x

a2
(6.5)

u = z (6.6)

We substitute the above to P(1,1,2) model and we recover the Tate’s form

y2 +2
b3

a2
xyz±b1a2yz3 = x3 ±

(
b2 −

b2
3

a2
2

)
x2z2

−b0a2
2xz4 −b0a2

2

(
b2 −

b2
3

a2
2

)
z6

This is indeed in the desired P(2,3,1) form however not all of the Tate’s coefficients are independent.
Comparing with the standard Tate’s form given in (4.1) we observe the relations

α1 = ±2
b3

a2

α2 = b2 −
b2

3

a2
2
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α3 = ±b1a2 (6.7)

α4 = −b0a2
2

α6 = −
(

b2 −
b2

3

a2
2

)
b0a2

2

In particular, notice that the following relation holds

α6 = α2α4 (6.8)

As we shall see in the following, this relation inevitably implies constraints on the non-abelian
singularities. We restrict here the analysis in the Tate’s form of the Weierstraß equation since it
is this form that we automatically obtain from the birational map. Hence, we assume the local
expansion of the Tate’s coefficients which as a function of the “normal” coordinate they are given
by (5.1) and (5.2).

To see the implications of the relation α6 = α4α2, we need to substitute in it the specific types
of coefficients for each non-abelian group shown in Table 2.

We start the investigation with the SU(n) singularities. According to Table 2 we must treat
separately even SU(2m) and odd SU(2m+1) cases.

1. SU(2m) case. The vanishing orders of αk’s for SU(2n) groups are

α2 = α2,1w, α4 = α4,mwm, α6 = α6,2mw2m

Substitution into (6.8) gives

α2,1 α4,mwm+1 = α6,2mw2m

which is satisfied only for m = 1, implying that only SU(2) is compatible.

2. SU(2m+1) case. Reading off the minimal powers of αk’s from Table 2, we get

α2,1 α4,mwm+2 = α6,2mw2m+1

This is also valid for m = 1, hence only SU(3) is admissible.

Extending this analysis to the rest of the entries in Tate’s table, one finds that the most inter-
esting cases arise for the exceptional groups. We observe that under the particular birational map
to Tate’s form the only non-trivial admissible non-abelian singularities are E6 and E7.

For E6 in particular we have

α2α4 ∝ α2,2α4,3w5, α6 ∝ α6,5w5

i.e, the w powers match and therefore we only need to impose the equality constraint

α2,2α4,3 = α6,5
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Type Group a1 a2 a3 a4 a6 ∆

I0 − 0 0 0 0 0 0

I1 − 0 0 1 1 1 1

Is
2 SU(2) 0 1 1 1 2 2

Is
3 SU(3) 0 1 1 2 3 3

I∗ns
1 SO(9) 1 1 2 3 4 7

I∗n
0 SO(8)∗ 1 1 2 2 3 6

IV ∗s E6 1 2 2 3 5 8

III∗s E7 1 2 3 3 5 9

Table 3: Selected cases of Tate’s coefficients satisfying the relation α6 = α2α4. The Standard Model is
naturally embedded in the exceptional groups only.

Group a2 b0 b1 b2 b3

E6 1 1 1 2 2

0 3 2 2 1

E7 1 1 2 2 2

0 3 3 2 1

Table 4: The vanishing order of the coefficients bk ∼ bk,nwn, the two exceptional symmetry models.

Once this condition is satisfied, we also need to check the remaining coefficients constrained by
equations (6.7). To investigate these relations, we express all coefficients in terms of a2. Assuming
that the latter is given in terms of an unspecified power of the coordinate,

a2 ∝ wn

we find that a consistent solution exists in accordance with

b0 =−α43w3−2n, b1 = α32w2−n, b2 = (α22 +α2
11/2)w2, b3 = (α11/2)wn+1 (6.9)

Requiring the b0 coefficient to be a positive power in w we see that this leaves two possibilities for
the integer n, namely n = 0,1.

Substituting (6.9) into the equations (6.7) we find

α1 = α11w, α2 = α2w2,α3 = α32w2,α4 = α43w3,α6 = α65w5

As can be checked in Table 4 this is just the requirement to obtain an E6 singularity. We compute
the discriminant to find

∆ =−27α4
32w8 +O(w9)

which, as expected has vanishing order 8.
• Repeating the analysis of the E7 case, we end up with the conditions on bi’s listed in the

corresponding rows of Table 4. Here, compared to the previous case, we require also the vanishing
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of the coefficient α32 so that α3 =α3,3w3. It is also straightforward to see that ∆ ∝ w9 in accordance
with Table 2. Finally, notice that for the E8 case, the condition a2a4 = a6 cannot be fulfilled.

From the above analysis, we have seen that in the presence of an additional rational section
which is associated to an extra U(1) symmetry -as long as the minimal requirements on αn of
Table 2 are implemented-, the available non-abelian groups compatible with the restrictions are
SU(3),SU(2) and the E6 and E7. From these, only the exceptional groups are adequate to include
the complete gauge symmetry of the SM. The E6 model looks the most promising and has been
extensively analysed in the literature. A detailed analysis can be found in [31].

7. Conclusions

In this lecture, a few basic tools for F-theory model building have been described. Current
F-theory constructions are based on the elliptically fibred internal space with E8 being the highest
admissible singularity. We started our investigation by presenting a few necessary ingredients,
namely some elementary notions related to elliptic curves, elliptic fibration through the Weierstraß
model and F-theory basics. Subsequently, we introduced the main tools in order to build viable
models.

We discussed a class of F-theory effective models which are fully embedded in E8. As a con-
sequence, the GUT symmetry is a subgroup of E8 while the commutant incorporates any additional
symmetry of discrete or continuous nature which could be used to put constraints on the effective
lagrangian.

Next, we analysed abelian and discrete symmetries emerging from the a non-trivial Mordell-
Weil group, i.e. the group of rational points of the elliptic curves associated to the fibration. In this
approach, one constructs a representation of the elliptic curve with the desired rational sections and
then finds the birationally equivalent Weierstraß equation.

In the presence of one Mordell-Weil factor in particular, we have shown that the birational
transformations to Tate’s form gives two viable gauge symmetries which are E6 ×U(1)MW or
E7 ×U(1)MW . Although in the presence of a Mordell-Weil U(1) the non-abelian sector seems
to be constrained, yet these exceptional groups contain all the well known GUTs, such as SU(5),
SO(10) and the like, which can be readily obtained once we break the initial symmetry by a suit-
able mechanism, such as flux breaking, Wilson lines mechanism etc. The rather interesting fact
in the procedure, is that the U(1)MW symmetry is not necessarily identified with some generator
of the Cartan subalgebra of E8. This means that the U(1)MW charges of the non-abelian represen-
tations are not necessarily the usual ones. Furthermore, the torsion group has a rich structure of
discrete symmetries which can also be symmetries of the effective lagrangian. Perhaps issues such
as proton stability, the µ-term and flavour physics find their solutions in a judicious choice of these
symmetries.
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