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We present an application of the reduction of couplings program in the minimal supersymmet-
ric Standard Model (MSSM). We investigate if a functional relation between α1 and α2 gauge
couplings can be realized which is Renormalization Group Invariant (RGI). Following the same
procedure for the top and bottom Yukawa couplings we end up with a prediction of a narrow
window for tanβ , which is one of the basic parameters that determine the light Higgs mass.
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1. Introduction

The ultimate goal of Particle Physics community is to describe the fundamental interactions
in nature as a unified one. Superstring theory is one of the relevant candidates to achieve this.
However this unified picture must be able to give plausible explanations for the large number of
free parameters of the Standard Model (SM). As a matter of fact this is a very difficult project if not
impossible. So at least we can try to relate some parameters, achieving some partial reduction of
couplings. In general imposing a symmetry is a natural way to reduce the number of independent
couplings of a theory. Grand Unified Theories (GUTs) which support SU(5) symmetry is an exam-
ple of how to reduce three gauge couplings into a unified one. Besides this great achievement SU(5)
GUT can also relate Yukawa couplings via the prediction of the ratio Mτ/Mb. However imposing
larger symmetries seems not to help, because of the new degrees of freedom that are introduced.

In order to avoid such difficulties we can adopt a more general approach. We try to reduce
the number of independent couplings by imposing relations among them. The crucial point is that
these relations are such that renormalizability is preserved and are independent of the normaliza-
tion point. This method was initially developed for the complete reduction from n+1 coupling
parameters α0,α1, ...,αn to a description in terms of α0 only, the so-called program of reduction of
coupling parameters [1]. The basic requirement is that the original as well as the reduced theory
have to satisfy the corresponding renormalization group equations. The last years great progress
has been made applying this method and looking for RGI relations [2, 3, 4, 5, 6, 7, 8, 9] holding
below the Planck scale up to GUT or lower scales.

Application of this procedure to dimensionless couplings of supersymmetric GUTs has led to
the correct prediction of top quark mass in the finite and in the minimal N = 1 supersymmetric
SU(5) GUTs [2, 3]. The most impressive aspect of the RGI relations is that they are valid to
all orders of perturbation theory, a fact that can be realized by exploring the uniqueness of these
relations at 1-loop level [1]. Besides this we can also find RGI relations that guarantee finiteness to
every order in perturbation theory [10, 11].

Here we would like to apply the program of reduction of coupling parameters to minimal
schemes such as MSSM. We explore the possibility to relate α1 and α2 gauge couplings. We
continue applying this method to the Yukawa sector, relating top quark and bottom quark Yukawa
couplings [12]. As a result we finally achieve to give a narrow range of values for tanβ , that permit
us to predict the mass of the Higgs boson. Recently application of the above program relating top
quark and bottom quark Yukawa couplings with α3 gauge coupling has led to a prediction of the
Higgs mass with great success [13].

2. General Method of Reduction

Our aim is to express α1,α2, ...,αn coupling parameters as functions of α0 so that a model
involving a single coupling constant parameter α0 is obtained, which is again invariant under the
renormalization group. So we can write the functions

α j = α j(α0) j = 1, ...,n. (2.1)
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We also assume that the functions α j(α0) should vanish in the weak coupling limit

lim
α0→0

α j(α0) = 0.

Invariance of the Green’s functions G(pi,M,α0,α1, ...,αn) of the original system under renormal-
ization group implies the Callan-Symanzik equations(

M
∂

∂M
+

n

∑
j=0

β j
∂

∂λ j
+ γ

)
G(pi,M,α0,α1, ...,αn) = 0

where M,β j,γ are the renormalization mass, the beta functions and the anomalous dimensions cor-
respondingly. Similarly for the Green’s functions G′(pi,M,α0,α1(α0), ...,αn(α0)) of the reduced
system we have (

M
∂

∂M
+β ′ ∂

∂α0
+ γ ′

)
G′(pi,M,α0,α1(α0), ...,αn(α0)) = 0.

We can see that G′ is obtained from G by substituting the functions (2.1)

G′ = G(α0,α1(α0), ...,αn(α0))

so differentiating with respect to α0 we obtain

∂G′

∂α0
=

∂G
∂α0

+
n

∑
j=1

∂G
∂α j

dα j

dα0
.

The above equations as well as linear independence of the Green’s functions and their derivatives
lead to the relations

β ′ = β0, γ ′ = γ, β ′ dα j

dα0
= β j.

Hence the functions (2.1) must satisfy the following differential equations, the reduction equations

β j = β0
dα j

dα0
. (2.2)

A crucial point here is that the system (2.2) forms a necessary and sufficient condition for reducing
the original system by the functions α j(α0).

3. Reduction of a system with two coupling constants

For simplicity we assume that the original system has two coupling parameters, α0 and α1. We
will examine if we can reduce α1 in favor of α0. The corresponding beta-functions can be written
at lowest order as

β0 = b0α2
0 + ....

β1 = c1α2
1 + c2α0α1 + c3α2

0 ....
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which cover a wide range of models. The reduction equation which we have to solve is

β1 = β0
dα1

dα0
. (3.1)

Assuming power series solution we can expand α1 as

α1 = p(1)0 α0 + ∑
n=1

p(1)n α(n+1)
0 .

Substituting the above expression into the (3.1) at lowest order we end up with a quadratic equation

c1 p2
0 +(c2 −b0)p0 + c3 = 0

which can be easily solved calculating the corresponding determinant.

4. Application to the MSSM

4.1 Relating α1 and α2 gauge couplings

We will explore the possibility to reduce α2 gauge coupling in favor of α1 (αi = g2
i /4π).

Assuming that there is a relation between them, a function α2(α1), we have to solve the following
reduction equation

β2 = β1
dα2

dα1
(4.1)

where

β2 ≡
dα2

dt
=

b2

2π
α2

2 , β1 ≡
dα1

dt
=

b1

2π
α2

1

are the β functions for the α2 and α1 gauge couplings correspondingly, b2 = 1 and b1 = 11 are
the β function coefficients and t = lnE. Assuming that the differential equation (4.1) has a power
series solution, we can expand α2 at lowest order in perturbation theory as

α2 = c0α1

where c0 is a constant. Substituting this relation to the reduction equation (4.1) we are led to

c0 =
β2

β1
=

b2α2
2

b1α2
1
=

b2c2
0α2

1

b1α2
1

⇒

c0(c0b2 −b1) = 0 ⇒

c0 = 0, c0 = 11.

Hence α2 can be written as a function of α2 as

α2 = 11α1.
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We can check now if the above result is compatible with the experimental values

1
αem(Mz)

=
1

α1(Mz)
+

1
α2(Mz)

⇒

αem(Mz) =
11
12

α1(Mz).

We know that

sin2 θw(Mz) =
αem(Mz)
α2(Mz)

⇒

sin2 θw(Mz) =
11
12

α1(Mz)
11α1(Mz)

=
1

12
= 0.08333

which is unacceptable because sin2 θw(Mz)exp = 0.23151±0.00017. Concluding, the reduction of
α2 and α1 couplings in the context of the MSSM is not possible.

4.2 Relating αt top quark and αb bottom quark Yukawa couplings

Following the same procedure we assume that αt Yukawa coupling can be related with the αb

Yukawa coupling (αi = h2
i /4π, i = t,b), so they must satisfy the reduction equation

βt = βb
dαt

dαb
⇒

dαt

dαb
=

βt

βb
=

αt(6αt +αb − 13
15 α1 −3α2 +

16
3 α3)

αb(6αb +αt +ατ − 7
15 α1 −3α2 +

16
3 α3)

where βt and βb are the β functions of top quark Yukawa coupling and bottom quark Yukawa
coupling correspndingly. We can for simplicity neglect the contribution from the τ lepton, ατ , and
the small difference between 13

15 and 7
15 , so we are led to

βt

βb
=

αt(6αt +αb − 13
15 α1 −3α2 +

16
3 α3)

αb(6αb +αt − 13
15 α1 −3α2 +

16
3 α3)

(4.2)

Assuming again power series solution of the reduction equation we can expand top quark Yukawa
coupling at lowest order as

αt = d0αb

where d0 is a constant. The derivative of the ratio of the two Yukawa couplings must be zero

d
dt
(

αt

αb
) = 0 ⇒

1
α2

t
(αbβt −αtβb) = 0 ⇒
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αt

αb
=

βt

βb
.

Substituting the above result into eqn.(4.2) we obtain

αt

αb
=

αt(6αt +αb − 13
15 α1 −3α2 +

16
3 α3)

αb(6αb +αt − 13
15 α1 −3α2 +

16
3 α3)

⇒

6αt +αb −
13
15

α1 −3α2 +
16
3

α3 = 6αb +αt −
13
15

α1 −3α2 +
16
3

α3 ⇒

αt = αb.

That is, if we start with αt and αb equal at an energy scale, equality will persist at all energies.
The next thing to do is to solve numerically the one-loop coupled differential equations of

top and bottom Yukawa couplings taken account the ατ contribution and the difference between
the numerical factors, to see if such a relation like the previous one can exist. First, we solve
the differential equations for the gauge and Yukawa couplings in the SM. And then at MSUSY we
impose the next boundary conditions for some values of tanβ that keeps the ratio αt/αb constant
for all energies

αtSM(MSUSY ) = αtMSSM(MSUSY )sin2 β

αbSM(MSUSY ) = αbMSSM(MSUSY )cos2 β

ατSM(MSUSY ) = ατMSSM(MSUSY )cos2 β

In Fig.1 we plot the ratio of the two Yukawa couplings under investigation ht/hb (a) and the
derivative of their ratio (b) as a function of energy, for several values of tanβ , MSUSY = 1 TeV,
mb(MZ) = 2.82 GeV and mt = 172 GeV. We can see that for the range of values for tanβ between
52.25-58.55, the derivative of the ratio is very close to zero.

In Fig.2 in (a) and (c) we plot the ratio ht/hb as well as the derivative of the ratio in (b) and
(d) as a function of energy for tanβ = 56. In (a) and (b) we can see three curves corresponding
to MSUSY = 1, 5 and 10 TeV (we have kept the masses of top and bottom quarks at their central
values). In (c) and (d) we have taken three values for the bottom mass mb(MZ) = 2.75, 2.82 and
2.89 GeV, keeping the top mass at its central value and MSUSY = 1 TeV.
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Figure 1: (a) The ratio of top and bottom quark Yukawa couplings ht/hb and (b) the derivative of their ratio
as a function of energy. Several values of tanβ have been taken in addition with MSUSY = 1 TeV, mt = 172
GeV and mb(MZ) = 2.82 GeV.
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Figure 2: (a) The ratio of top and bottom quark Yukawa couplings ht/hb and (b) the derivative of their ratio
as a function of energy for MSUSY = 1, 5 and 10 TeV. (c) The ratio ht/hb and (d) the derivative of the ratio as
a function of energy for MSUSY = 1 TeV and three values of the bottom mass that vary in the experimental
error region.
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Having used a Fortran code for the calculation of higgs particle spectrum in the MSSM (SUS-
PECT [14])1, we plot in the plane of sfermions and gauginos, (m0,m1/2), contours of constant mass
values for the lightest supersymmetric Higgs mh. In Fig.3 in (a) we plot these contours for several
values of the lightest supersymmetric Higgs mh = 114,116,118,120 GeV. We also choose the val-
ues A = 0 GeV and tanβ = 56. The contours with the dashed line correspond to a gluino mass
of 1 TeV and to (the lightest) squark mass of 1.2 TeV correspondingly. In (b) we plot contours of
constant mass values for the lightest supersymmetric Higgs mh for two values of tanβ : 58.55 and
52.25.
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tanΒ=56

msquark = 1200 GeV
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A=0 GeV

400 600 800 1000 1200

400

600

800

1000

1200

m0HGeVL

114

116

118

mh = 120 GeV

m1�2HGeVL
tanΒ = 52.25

tanΒ = 58.86

A=0 GeV
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1000
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Figure 3: (a) Contours of constant pole mass for the lightest supersymmetric Higgs mh in the plane of
(m0,m1/2) for initial value A = 0 GeV and for tanβ = 56. The contours with the dashed line correspond to a
gluino mass of 1 TeV and to (the lightest) squark mass of 1.2 TeV correspondingly. In (b) we plot contours
of constant mh (pole) mass in the plane of (m0,m1/2) for initial value A = 0 GeV and for two values of tanβ :
58.55 and 52.25.

5. Conclusions

The program of reduction of couplings is a very powerful method that relates arbitrary cou-
pling parameters. As a result we obtain a new reduced theory which has an increased predictive
power. This method has been applied to supersymmetric GUTs and lately to the MSSM with great
success. In our work relating top and bottom quark Yukawa couplings, we give a narrow range
of values for tanβ that can permit us to give a prediction for the lightest supersymmetric Higgs
particle in the MSSM.

1We run the program choosing the mSUGRA model, running the renormalization group equations in 2-loop level
and evaluating the pole masses. Also we choose sign(µ) = +1.
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