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1. Introduction

The Higgs boson was the last missing particle from the Standard Model (SM) to be discovered
[1–4]. However, since no evidence of new physics has been found yet, the pressure to find theories
that explain the number of open questions left by the SM, which moreover do not change the low
energy observed picture, is growing.

One of the most celebrated strategies to reduce the number of free parameters is to consider
that the world at high energies is more symmetric. Supersymmetric Grand Unified Theories (SUSY
GUTs) are representative examples of this. An alternative, and possibly complementary way, is to
search for valid functional all-loop renormalization group invariant (RGI) relations among cou-
plings, achieving reduction of couplings in this way. In this approach, the RGIs which preserve
perturbative renormalizability [5, 6] just below the Planck, are maintained down to the unification
scale [7–15], making it possible to apply this method to conventional SUSY GUTs. In this way it
is possible unify the gauge and Yukawa sectors of the theory [7–16].

2. The Method of Reduction of Couplings

In this section we will briefly outline the reduction of couplings method. Any RGI relation
among couplings (i.e. which does not depend on the renormalization scale µ explicitly) can be
expressed, in the implicit form Φ(g1, · · · ,gA) = const., which has to satisfy the partial differential
equation (PDE)

dΦ

dt
=

A

∑
a=1

∂Φ

∂ga

dga

dt
=

A

∑
a=1

∂Φ

∂ga
βa = ~∇Φ ·~β = 0, (2.1)

where t = ln µ and βa is the β -function of ga. This PDE is equivalent to a set of ordinary differential
equations, the so-called reduction equations (REs) [5, 6, 17],

βg
dga

dg
= βa , a = 1, · · · ,A , (2.2)

where g and βg are the primary coupling and its β -function, and the counting on a does not include
g. Since maximally (A−1) independent RGI “constraints” in the A-dimensional space of couplings
can be imposed by the Φa’s, one could in principle express all the couplings in terms of a single
coupling g. The strongest requirement in the search for RGI relations is to demand power series
solutions to the REs,

ga = ∑
n=0

ρ
(n)
a g2n+1 , (2.3)

which formally preserve perturbative renormalizability. Remarkably, the uniqueness of such power
series solutions can be decided already at the one-loop level [5, 6, 17].

Searching for a power series solution of the form (2.3) to the REs (2.2) is justified since various
couplings in supersymmetric theories have the same asymptotic behaviour, thus one can rely that
keeping only the first terms in the expansion is a good approximation in realistic applications.
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3. Reduction of Couplings in Soft Breaking Terms

The method of reducing the dimensionless couplings was extended [13, 18, 19] to the soft
supersymmetry breaking (SSB) dimensionful parameters of N = 1 supersymmetric theories. In
addition it was found [20,21] that RGI SSB scalar masses in Gauge-Yukawa unified models satisfy
a universal sum rule.

Consider the superpotential given by

W =
1
2

µ
i j

Φi Φ j +
1
6

Ci jk
Φi Φ j Φk , (3.1)

where µ i j (the mass terms) and Ci jk (the Yukawa couplings) are gauge invariant tensors and the
matter field Φi transforms according to the irreducible representation Ri of the gauge group G. The
Lagrangian for SSB terms is

−LSSB =
1
6

hi jk
φiφ jφk +

1
2

bi j
φiφ j +

1
2
(m2) j

i φ
∗ i

φ j +
1
2

M λλ +H.c., (3.2)

where the φi are the scalar parts of the chiral superfields Φi, λ are the gauginos and M their unified
mass, hi jk and bi j are the trilinear and bilinear dimensionful couplings respectively, and (m2) j

i the
soft scalars masses.

Let us recall that the one-loop β -function of the gauge coupling g is given by [22–26]

β
(1)
g =

dg
dt

=
g3

16π2 [∑
i

T (Ri)−3C2(G) ] , (3.3)

where C2(G) is the quadratic Casimir of the adjoint representation of the associated gauge group G.
T (R) is given by the relation Tr[T aT b] = T (R)δ ab, where T a are the generators of the group in the
appropriate representation. Similarly the β -functions of Ci jk, by virtue of the non-renormalization
theorem, are related to the anomalous dimension matrix γ i

j of the chiral superfields as:

β
i jk
C =

dCi jk

dt
= Ci jl γ

l
k +Cikl γ

l
j +C jkl γ

l
i . (3.4)

At one-loop level the anomalous dimension, γ(1) i
j of the chiral superfield is [22–26]

γ
(1) i

j =
1

32π2 [C
ikl C jkl−2g2C2(R)δ i

j ], (3.5)

where C2(R) is the quadratic Casimir of the representation Ri, and Ci jk = C∗i jk. Then, the N = 1
non-renormalization theorem [27–29] ensures there are no extra mass and cubic-interaction-term
renormalizations, implying that the β -functions of Ci jk can be expressed as linear combinations of
the anomalous dimensions γ i

j.
Here we assume that the reduction equations admit power series solutions of the form

Ci jk = g ∑
n=0

ρ
i jk
(n)g

2n . (3.6)

In order to obtain higher-loop results instead of knowledge of explicit β -functions, which
anyway are known only up to two-loops, relations among β -functions are required.
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The progress made using the spurion technique, [29–33] leads to all-loop relations among SSB
β -functions [34–39]. The assumption, following [35], that the relation among couplings

hi jk =−M(Ci jk)′ ≡−M
dCi jk(g)

d lng
, (3.7)

is RGI and furthermore, the use the all-loop gauge β -function of Novikov et al. [40, 41]

β
NSVZ
g =

g3

16π2

[
∑l T (Rl)(1− γl/2)−3C2(G)

1−g2C2(G)/8π2

]
, (3.8)

lead to the all-loop RGI sum rule [42] (assuming (m2)i
j = m2

jδ
i
j),

m2
i +m2

j +m2
k = |M|2

{
1

1−g2C2(G)/(8π2)

d lnCi jk

d lng
+

1
2

d2 lnCi jk

d(lng)2

}
+∑

l

m2
l T (Rl)

C2(G)−8π2/g2
d lnCi jk

d lng
.

(3.9)

The all-loop results on the SSB β -functions lead to all-loop RGI relations (see e.g. [43]). If
we assume:
(a) the existence of a RGI surfaces on which C =C(g), or equivalently that

dCi jk

dg
=

β
i jk
C
βg

(3.10)

holds, i.e. reduction of couplings is possible, and
(b) the existence of a RGI surface on which

hi jk =−M
dC(g)i jk

d lng
(3.11)

holds too in all-orders, then one can prove that the following relations are RGI to all-loops [44,
45] (note that in the above assumptions (a) and (b) we do not rely on specific solutions to these
equations)

M = M0
βg

g
, (3.12)

hi jk =−M0 β
i jk
C , (3.13)

bi j =−M0 β
i j
µ , (3.14)

(m2)i
j =

1
2
|M0|2 µ

dγ i
j

dµ
, (3.15)

where M0 is an arbitrary reference mass scale to be specified shortly.
Finally we would like to emphasize that under the same assumptions (a) and (b) the sum

rule given in Eq.(3.9) has been proven [42] to be all-loop RGI, which gives us a generalization of
Eq.(3.15) to be applied in considerations of non-universal soft scalar masses, which are necessary
in many cases including the MSSM.
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As it was emphasized in ref [44] the set of the all-loop RGI relations (3.12)-(3.15) is the one
obtained in the Anomaly Mediated SB Scenario [46, 47], by fixing the M0 to be m3/2, which is the
natural scale in the supergravity framework. A final remark concerns the resolution of the fatal
problem of the anomaly induced scenario in the supergravity framework, which is here solved
thanks to the sum rule (3.9). Other solutions have been provided by introducing Fayet-Iliopoulos
terms [48].

4. A Successful Application of the Reduction of Couplings Method: Finiteness

Field theories are said to be finite if their beta functions vanish. Consider a chiral, anomaly
free, N = 1 globally supersymmetric gauge theory based on a group G with gauge coupling constant
g. Consider the superpotential Eq. (3.1) together with the soft supersymmetry breaking Lagrangian
Eq. (3.2). All the one-loop β -functions of the theory vanish if the β -function of the gauge coupling
β
(1)
g and the anomalous dimensions of the Yukawa couplings γ

j(1)
i vanish, giving the following

relations

∑
i

T (Ri) = 3C2(G) ,
1
2

CipqC jpq = 2δ
j

i g2C2(R) . (4.1)

These two conditions are also enough to guarantee two-loop finiteness [49]. A striking fact is the
existence of a theorem [50–52], that guarantees the vanishing of the β -functions to all-orders in
perturbation theory. This requires that, in addition to the one-loop finiteness conditions (4.1), the
Yukawa couplings are reduced in favour of the gauge coupling to all-orders (see [53] for details).
Alternatively, similar results can be obtained [54–56] using an analysis of the all-loop NSVZ gauge
beta-function [40, 57].

Since we would like to consider only finite theories here, we assume that the gauge group is
a simple group and the one-loop β -function of the gauge coupling g vanishes.1 We also assume
that the reduction equations admit power series solutions of the form Eq. (3.6). According to the
finiteness theorem of ref. [50–52,60], the theory is then finite to all orders in perturbation theory, if,
among others, the one-loop anomalous dimensions γ

j(1)
i vanish. The one- and two-loop finiteness

for hi jk can be achieved through the relation [61]

hi jk = −MCi jk + · · ·=−Mρ
i jk
(0) g+O(g5) , (4.2)

where . . . stand for higher order terms.
In addition it was found that the RGI SSB scalar masses in Gauge-Yukawa unified models

satisfy a universal sum rule at one-loop [20]. This result was generalized to two-loops for finite
theories [21], and then to all-loops for general Gauge-Yukawa and finite unified theories [42]. From
these latter results, the following soft scalar-mass sum rule is found [21]

( m2
i +m2

j +m2
k )

MM† = 1+
g2

16π2 ∆
(2)+O(g4) , (4.3)

where m2
i, j,k are the scalar masses and ∆(2) is the two-loop correction which vanishes for the uni-

versal choice, i.e. when all the soft scalar masses are the same at the unification point, as well as in
the model considered here.

1Realistic Finite Unified Theories based on product gauge groups, where the finiteness implies three generations of
matter, have also been studied [58, 59].
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4.1 An SU(5) Finite Unified Theory

In this section we show how to apply the reduction of couplings method in Finite Unified
Theories. We will apply it only to the third generation of fermions and in the soft supersymmetry
breaking terms. After the reduction of couplings takes place, we are left with relations at the
unification scale for the Yukawa couplings of the quarks in terms of the gauge coupling according
to Eq. (3.6), for the trlininear terms in terms of the Yukawa couplings and the unified gaugino mass
Eq. (3.11), and a sum rule for the soft scalar masses also proportional to the unified gaugino mass
Eq. (3.9), as applied in each model.

We examine an all-loop Finite Unified theory with SU(5) as gauge group, where the reduction
of couplings has been applied to the third generation of quarks and leptons. The particle content
of the model we will study, which we denote FUT consists of the following supermultiplets: three
(5+ 10), needed for each of the three generations of quarks and leptons, four (5+ 5) and one 24
considered as Higgs supermultiplets. When the gauge group of the finite GUT is broken the theory
is no longer finite, and we will assume that we are left with the MSSM [7, 9–11, 14].

A predictive Gauge-Yukawa unified SU(5) model which is finite to all orders, in addition to
the requirements mentioned already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δ

j
i .

2. Three fermion generations, in the irreducible representations 5i,10i (i = 1,2,3), which obvi-
ously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs quintet
and anti-quintet, which couple to the third generation.

After the reduction of couplings the symmetry is enhanced, leading to the following superpo-
tential [62]

W =
3

∑
i=1

[
1
2

gu
i 10i10iHi +gd

i 10i5i H i ]+gu
23 102103H4 (4.4)

+gd
23 10253 H4 +gd

32 10352 H4 +g f
2 H2 24H2 +g f

3 H3 24H3 +
gλ

3
(24)3 .

The non-degenerate and isolated solutions to γ
(1)
i = 0 give us:

(gu
1)

2 =
8
5

g2 , (gd
1)

2 =
6
5

g2 , (gu
2)

2 = (gu
3)

2 =
4
5

g2 , (4.5)

(gd
2)

2 = (gd
3)

2 =
3
5

g2 , (gu
23)

2 =
4
5

g2 , (gd
23)

2 = (gd
32)

2 =
3
5

g2 ,

(gλ )2 =
15
7

g2 , (g f
2)

2 = (g f
3)

2 =
1
2

g2 , (g f
1)

2 = 0 , (g f
4)

2 = 0 ,

and from the sum rule we obtain:

m2
Hu

+2m2
10 = M2 , m2

Hd
−2m2

10 =−
M2

3
, m2

5 +3m2
10 =

4M2

3
, (4.6)

i.e., in this case we have only two free parameters m10 and M for the dimensionful sector.
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As already mentioned, after the SU(5) gauge symmetry breaking we assume we have the
MSSM, i.e. only two Higgs doublets. This can be achieved by introducing appropriate mass
terms that allow to perform a rotation of the Higgs sector [7–11, 63–65], in such a way that only
one pair of Higgs doublets, coupled mostly to the third family, remains light and acquire vacuum
expectation values. To avoid fast proton decay the usual fine tuning to achieve doublet-triplet
splitting is performed, although the mechanism is not identical to minimal SU(5), since we have
an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the MSSM, with
the boundary conditions for the third family given by the finiteness conditions, while the other two
families are not restricted.

4.2 Predictions of the Finite Model

Since the gauge symmetry is spontaneously broken below MGUT, the finiteness conditions do
not restrict the renormalization properties at low energies, and all it remains are boundary condi-
tions on the gauge and Yukawa couplings (4.5), the h=−MC (3.7) relation, and the soft scalar-mass
sum rule at MGUT. With these boundary conditions we run the MSSM RGEs down to the SUSY
scale, which we take to be the geometrical average of the stop masses, and then run the SM RGEs
down to the electroweak scale (MZ), where we compare with the experimental values of the third
generation quark masses. The RGEs are taken at two-loops for the gauge and Yukawa couplings
and at one-loop for the soft breaking parameters. We let MU and |µ| at the unification scale to
vary between ∼ 1 TeV ∼ 11 TeV, for the two possible signs of µ . In evaluating the τ and bottom
masses we have taken into account the one-loop radiative corrections that come from the SUSY
breaking [66, 67]; in particular for large tanβ they can give sizeable contributions to the bottom
quark mass.

We use the experimental value of the top quark pole mass as [68]2

mexp
t = (173.2±0.9) GeV . (4.7)

The bottom mass is calculated at MZ to avoid uncertainties that come from running down to the
pole mass and, as previously mentioned, the SUSY radiative corrections both to the tau and the
bottom quark masses have been taken into account [70]

mb(MZ) = (2.83±0.10) GeV. (4.8)

In Fig.1 we show the FUT predictions for mt and mb(MZ) as a function of the unified gaugino
mass M, for the two cases µ < 0 and µ > 0. The bounds on the mb(MZ) and the mt mass clearly
single out µ < 0, as the solution most compatible with these experimental constraints [71, 72].

We now analyze the impact of further low-energy observables on the model FUT with µ < 0.
For the lightest Higgs mass prediction we used the code FeynHiggs [73–77] where the prediction
for Mh of FUT with µ < 0 is shown in Fig. 2. The lightest Higgs mass ranges in

Mh ∼ 124−132 GeV , (4.9)

2We did not include the latest LHC/Tevatron combination, leading to mexp
t = (173.34± 0.76) GeV [69], which

would have a negligible impact on our analysis.
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Figure 1: The bottom quark mass at the Z boson scale (left) and top quark pole mass (right) are shown as
function of M, the unified gaugino mass.

Figure 2: The lightest Higgs mass, Mh, as function of M for the model FUT with µ < 0.

where the uncertainty comes from variations of the soft scalar masses. To this value one has to
add at least ±2 GeV coming from unkonwn higher order corrections [77]. We have also included
a small variation, due to threshold corrections at the GUT scale, of up to 5% of the FUT boundary
conditions.

We now impose the constraint of the lightest Higgs boson mass on our results, which is the
value of the Higgs mass

Mh ∼ 125.1±3.1±2.1 GeV , (4.10)

where±3.1 GeV corresponds to the current theory and experimental uncertainty, and±2.1 GeV to
a reduced theory uncertainty in the future. We find that constraining the allowed values of the Higgs
mass puts a limit on the allowed values of the unified gaugino mass, as can be seen from Fig. 2.
The dashed-dotted lines indicate the current uncertainty, placing an upper bound of M <∼ 3.8 TeV.

8



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
9
2

Reduction of couplings and Finite Theories Myriam Mondragon

100

1000

10000

m
as

se
s 

[G
eV

]

h  H   A   H
±
  stop1,2 sbot1,2 gl.   stau1,2  cha1,2 neu1,2,3,4

Mh = 125.1 ± 3.1 GeV

100

1000

10000

m
as

se
s 

[G
eV

]

h  H   A   H
±
  stop1,2 sbot1,2 gl.   stau1,2  cha1,2 neu1,2,3,4

Mh = 125.1 ± 2.1 GeV

Figure 3: The left (right) plot shows the spectrum after imposing the constraint Mh = 125.1±3.1(2.1) GeV.
The light (green) points are the various Higgs boson masses, the dark (blue) points following are the two
scalar top and bottom masses, the gray ones are the gluino masses, then come the scalar tau masses in orange
(light gray), the darker (red) points to the right are the two chargino masses followed by the lighter shaded
(pink) points indicating the neutralino masses.

The anticipated future uncertainty (keeping the current central value) would lower this bound to
M <∼ 2.6 TeV. These upper bounds yield restrictions to the corresponding SUSY spectrum.

The full particle spectrum of model FUT with µ < 0, compliant with quark mass constraints
and the lightest Higgs-boson mass is shown in Fig. 3. It can be seen from the figure that the
lightest observable SUSY particle (LOSP) is the light scalar tau. In the left (right) plot we impose
Mh = 125.1± 3.1(2.1) GeV. Including the Higgs mass constraints in general favours the lower
part of the SUSY particle mass spectra [78–81], however in particular very heavy colored SUSY
particles are favored, in agreement with the non-observation of those particles at the LHC [82–84].
Going to the anticipated future theory uncertainty of Mh (as shown in the right plot of Fig. 3) still
permits SUSY masses which would remain unobservable at the LHC, the ILC or CLIC. On the
other hand, large parts of the allowed spectrum of the lighter scalar tau or the lighter neutralinos
might be accessible at CLIC with

√
s = 3 TeV.

5. Conclusions

One of the most interesting realisations of the idea that the physics beyond the SM can be
understood through the addition of symmetries is provided by the MSSM, assuming further a GUT.
However successful, it is not possible to reduce further the number of free parameters of the SM
this way.

A new interesting possibility towards reducing the free parameters of a theory has been put
forward in refs. [5,6], which consists on a systematic search on the RGI relations among couplings.

9



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
9
2

Reduction of couplings and Finite Theories Myriam Mondragon

This method might lead to further symmetry, however its scope is much wider. After several trials
it seems that the basic idea found very nice realisations in a Finite Unified Theory. In this case
one is searching for RGI relations among couplings holding beyond the unification scale, which
morever guarantee finiteness to all-orders in perturbation theory. Finiteness is related to some
fundamental developments in Theoretical Particle Physics based on reconsiderations of the problem
of divergencies and serious attempts to solve it. They include the motivation and construction of
string and noncommutative theories, as well as N = 4 supersymmetric field theories [85,86], N = 8
supergravity [87–91] and the AdS/CFT correspondence [92]. It is a thoroughly fascinating fact
that many interesting ideas that have survived various theoretical and phenomenological tests, as
well as the solution to the UV divergencies problem, find a common ground in the framework of
N = 1 Finite Unified Theories, which we discussed here. From the theoretical side they solve the
problem of UV divergencies in a minimal way. On the phenomenological, the celebrated success
of predicting the top-quark mass [7, 9] is now extended to the predictions of the Higgs masses and
the supersymmetric spectrum of the MSSM, which so far have been confronted very successfully
with the discovery of the Higgs and and the bounds on the s-spectrum at the LHC.

Important improvements in the analysis are expected from progress on the theory side, in
particular in an improved calculation of the light Higgs boson mass. The corrections considered
in [73] not only introduce a shift in Mh (which should to some extent be covered by the estimate of
theory uncertainties). They also reduce the theory uncertainties, see [73,93], and in this way refine
the selected model points, leading to a sharper prediction of the allowed spectrum. One can hope
that with even more higher-order corrections included in the Mh calculation an uncertainty below
the 0.5 GeV level can be reached.

The other important improvements in the future will be the continuing searches for SUSY
particles at collider experiments. The LHC has restarted in spring 2015 with an increased center-
of-mass enery of

√
s <∼ 13 TeV, largely extending its SUSY search reach. The lower parts of

the currently allowed/predicted colored SUSY spectra will be tested in this way. For the elec-
troweak particles, on the other hand, e+e− colliders might be the better option. The ILC, operating
at
√

s <∼ 1 TeV, has only a limited potential for our model spectra. Going to higher energies,√
s <∼ 3 TeV, that might be realized at CLIC, large parts of the predicted electroweak model spectra

can be covered.
All spectra, however, (at least with the current calculation of Mh and its corresponding uncer-

tainty), contain parameter regions that will escape the searches at the LHC, the ILC and CLIC. In
this case we would remain with a light Higgs boson in the decoupling limit, i.e. would be undistin-
guishable from a SM Higgs boson. The only hope to overcome this situation is that an improved
Mh calculation would cut away such high spectra.
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