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Second-Order Fermions and the Standard Model Johnny Espin

1. Introduction

Since the emergence of Quantum Mechanics (QM), much effort was put into finding rela-
tivistic wave equations that would govern the dynamics of mechanical systems. Schrödinger and
then Klein and Gordon formulated a second-order wave equation, but at that time it seemed that
the nature of the latter violated some fundamental properties of mechanical systems: the Klein-
Gordon wave admitted a positive and a negative energy solution. British physicist Paul A.M. Dirac
believed that the issue relied on the second-order nature of the differential equation. He therefore
sought a first-order differential equation that respected the relativity principle. His theory was for-
mulated in 1928 and the Dirac equation was later shown to describe relativistic spin 1/2 particles:
fermions. This was followed by the development of Quantum Electrodynamics (QED), the rela-
tivistic quantum theory of light and matter interactions which was then generalised into Yang-Mills
(YM) theory, the theory of non-abelian SU(n) gauge fields. This summarises the success of parti-
cle physics in the last century, success that culminated with the edification of the Standard Model
(SM) of particle physics. Yet something can be seen as puzzling. Indeed, one of Dirac’s reasons to
seek a first-order differential equation was the misinterpretation of the negative energy solutions.
However immediately after the discovery of his equation, it became clear that Nature admitted par-
ticles and antiparticles (positive and negative energy solutions). Nonetheless, fermions remained
the only dynamical system that only admitted a first-order description. Indeed, both General Rel-
ativity and Yang-Mills theory admit a first- and second-order formulation [3, 4]. As for fermions,
because their equation is derived from the relativity principle, it also satisfies the Klein-Gordon
equation; its Lagrangian is, however, first order in derivatives. Hence, it is natural to ask whether a
(fully) second-order formulation of fermions that contains all the information of the original one is
possible.
Let us make the last argument more precise. A Dirac spinor can be written as the sum of two unitary
infinite dimensional representations of the Lorentz group SO(3,1) (or its double cover SL(2,C)):

ΨD ∈ (1/2,0)⊕ (0,1/2) (1.1)

which we call left-(unprimed) and right-handed (primed) respectively. The Dirac equation is then
derived from the Dirac Lagrangian, here in 3+1 dimensions with the metric ηµν = (−,+,+,+):

LD = Ψ̄D
(
−i/∂ −m

)
ΨD (1.2)

with /∂ = γµ∂µ and we have the algebra of (Dirac) gamma matrices:

{γµ ,γν}=−2η
µν , (γµ)† = γ

0
γ

µ
γ

0, γ5 = iγ0
γ

1
γ

2
γ

3, (γ5)
† = γ5 (1.3)

This Lagrangian generalises in a straightforward way so as to include the interaction of fermions
and photons. We see that the Dirac equation

(
−i/∂ −m

)
ΨD = 0 (1.4)

relates spinors of one chirality to the other through the off-diagonal entries of the Dirac matri-
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ces1. This is heuristically why a second order Lagrangian of the type

LD
?
= Ψ̄D

(
−�+m2)

ΨD (1.5)

does not work since the Klein-Gordon operator is diagonal and hence we lose information con-
tained in the Dirac equation.

A lot of insight can be gained on the issue when one expresses all the quantities in terms of
two-component spinors (see for example [5]). In this paper, we will construct the simplest second-
order spinor field theories; those of a (Weyl-)Majorana and of a Dirac fermion. Then, we will apply
the same construction to the Standard Model. Finally, we will shortly discuss Perturbation Theory
and Unitarity in this framework.

2. Second-order (Weyl-)Majorana and Dirac fermions

We start by considering the much simpler setup of a single (Weyl-)Majorana spinor and then
repeat the procedure for a Dirac spinor.

2.1 First-order Lagrangian

The Lagrangian for a single Majorana fermion reads:

LMaj =−i
√

2λ
†
∂λ − (m/2)λλ − (m/2)λ †

λ
† (2.1)

Here λA is a two-component spinor, λ
†
A is its Hermitian conjugate and θ A′A

µ is the soldering form

θ
A
µA′θνA

A′ = ηµν (2.2)

where ηµν = diag(−1,1,1,1). We have also introduced the notation ∂ AA′ := θ µ AA′∂µ and written
the Lagrangian in an index-free way. Our index-free convention is that the unprimed fermions are
always contracted as λ χ ≡ λ AχA, while the primed fermions are contracted in the opposite way
λ †χ† ≡ (λ †)A′(χ

†)A′ .

2.2 Equations of motion and second-order theory

The (first-order) equations of motion for the unprimed spinor are:

−i
√

2∂λ −mλ
† = 0 (2.3)

The second-order formulation can then be obtained by carrying out the Berezin path integral
over the primed spinors (which are treated as independent variables), which effectively amounts to
substituting the above equation of motion in the Lagrangian. Then we have:

LMaj =−
1
m

∂λ∂λ − (m/2)λλ (2.4)

1In the case of Majorana fermions the spinor is linked to its hermitian conjugate through the Dirac equation.
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which is equivalent, after an appropriate rescaling of the fields to:

LMaj =−∂λ∂λ − (m2/2)λλ (2.5)

The second-order Weyl theory is then simply obtained from the massless limit (after the path
integral of the primed spinors has been solved):

LWeyl =−∂λ∂λ (2.6)

2.3 Dirac fermions

In order to describe Dirac fermions, we consider two massive Majorana fermions of equal
mass. The system is then invariant under and internal SO(2) symmetry. Since SO(2) ∼ U(1),
we can introduce a complex linear combination of the spinors and make the second symmetry
explicit. It can then be made local by introducing a U(1) gauge field and by minimally coupling
the fermions. Thus, we define

Dξ = (∂ − ieA)ξ , Dχ = (∂ + ieA)χ, (2.7)

where AAA′ = θ µ AA′Aµ is the electromagnetic potential and e is the electron charge. The gauge
transformation rules are: for the fermions ξ → eiαξ ,χ → e−iα χ , and for the electromagnetic po-
tential Aµ → Aµ − (1/e)∂µα . The Lagrangian becomes

LDirac =−i
√

2ξ
†Dξ − i

√
2χ

†Dχ−mχξ −mξ
†
χ

†, (2.8)

where as before D := θ µDµ . In order to obtain the second-order Lagrangian, the same procedure
is applied to both primed spinors, and we obtain

LDirac =−2DχDξ −m2
χξ , ξ

† =− i
√

2
m

Dχ, χ
† =− i

√
2

m
Dξ . (2.9)

3. Short review of the Standard-Model

For simplicity, we only consider the quark sector of the SM, for the complete picture, we refer
the reader to [1].

3.1 Standard Model quarks

The SM quarks can be put together in the following table
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(1/2,0) reps SU(3) SU(2) Y T3 Q = T3 +Y

Qi =

(
ui

di

)
triplet
triplet

doublet
1/6
1/6

1/2
−1/2

2/3
−1/3

ūi triplet singlet −2/3 0 −2/3
d̄i triplet singlet 1/3 0 1/3

All quarks here are unprimed two-component spinors. Therefore, the Hermitian conjugate
of ui is denoted by u†

i , and ūi is another independent unprimed spinor. Notice that each SU(n)
multiplet corresponds to a collection of unprimed spinors. Thus, e.g. ui, which is a color triplet,
has two types of indices suppressed: the usual spinor index, as well as the strong SU(3) index.
With the index structure made explicit, this field is denoted by uα

iA, where A = 1,2 is the usual
spinor index, and α = 1,2,3 is the index on which SU(3) acts. Only the flavour index i = 1,2,3 is
left explicit in what follows.

3.2 Higgs field

This is the field that plays the central role in the the Standard Model. It is a complex scalar
field of U(1) hypercharge charge Y = 1/2. It is also a weak SU(2) doublet, i.e. it can be written as
a column

Higgs SU(3) SU(2) Y T3 Q = T3 +Y

φ =

(
φ+

φ 0

)
singlet doublet

1/2
1/2

1/2
−1/2

1
0

Note that being an SU(2) doublet, it is really a collection of 2 complex scalar fields φ+ and
φ 0 (with Q = 0). We shall denote the weak SU(2) index by a,b, . . . = 1,2. Thus we can write the
Higgs field as φa, with φ1 = φ+ and φ2 = φ 0.

3.3 Quark sector of the Standard Model

Using index-free notations, the Lagrangian for the quark sector of the Standard Model reads:

Lquarks = − i
√

2Q†iDQi− i
√

2ū†iDūi− i
√

2d̄†iDd̄i

+Y i j
u φ

T
εQiū j−Y i j

d φ
†Qid̄ j− (Y †

u )
i jū†

i Q†
jεφ
∗− (Y †

d )
i jd̄†

i Q†
jφ

(3.1)

Here as before DAA′ ≡ θ µAA′Dµ , where Dµ is the covariant derivative taht acts on each field
according to its representation. The quantities Y i j are arbitrary complex 3× 3 Yukawa matrices.
The quantity ε ≡ εa

b is the matrix

εa
b =

(
0 1
−1 0

)
. (3.2)

which plays the role of a SL(2,C) metric. Then the object φ T εQ ≡ (φ T )aεa
bQa is invariant

under the action of the latter via Q→ gQ,φ → gφ since gT εg = ε . In particular, φ T εQ is SU(2)
invariant. It is then clear that all the interaction terms in (3.1) are SU(2) invariant. The hypercharge
invariance is easily checked using the charges tables.
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4. Second order formulation of the Standard Model

We now formalise the procedure of integrating out the primed two-component spinors from the
significantly more involved quarks Lagrangian. The equations of motion for the unprimed spinors
are:

Q†
i : i
√

2DQi = −(εφ ∗) ū†
j(Y

†
u )

ji−φ d̄†
j (Y

†
d )

ji

ū†
i : i
√

2Dūi = −(Y †
u )

i jQ†
j (εφ ∗)

d̄†
i : i
√

2Dd̄i = −(Y †
d )

i jQ†
j φ

(4.1)

Notice that some symmetry structure is making itself explicit in the equations of motion. Thus,
let us combine the components of the Higgs field into the following 2×2 matrix:

ρΦ
† := (εφ

∗,φ)≡

(
(φ 0)∗ φ+

−φ− φ 0

)
. (4.2)

Under the weak SU(2) the matrix Φ† transforms as:

Φ
† 7→ ΩΦ

†, (4.3)

while the field ρ remains invariant. It is clear that ρ2 ≡ |φ |2 is just the modulus squared of the
Higgs field.

In order to further simplify the equations of motion, a series of field redefinitions are needed,
[1]. This leads to:

Q†
i : i
√

2DQi = −ρ Φ†
(
Q̄†Λ

)
i

Q̄†
i : i
√

2DQ̄i = −ρ Q†
i Φ†

(4.4)

Here, the doublet Qi transforms under the weak SU(2), and so does the Higgs matrix Φ†,
while Q̄i does not transform. This suggests that we define new composite SU(2)-invariant quark
variables ΦQi

ΦQi := Qinv
i . (4.5)

This corresponds to a Higgs-field dependent SU(2) gauge transformation of the original quark dou-
blet. As such, it can be pulled through the (gauge dependent) covariant derivative if one transforms
the SU(2) gauge fields accordingly. The new vector field so defined will be an SU(2)-invariant
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object. Notice that the SU(2) invariance does not disappear from the theory, it is simply “frozen”
by the new set of variables that we chose as a convenient basis to work in. This change of variables
for the gauge field is equivalent to working in the unitary gauge, but it should be stated that the
second order formulation exists independently of the choice of variables. Keeping in mind this
change in the derivative operator we can write the field equations as:

Q†
i : i
√

2DQi = −ρ
(
Q̄†Λ

)
i

Q̄†
i : i
√

2DQ̄i = −ρ Q†
i

(4.6)

where from now on we drop the superscript inv from the Qi as it is clear that we will be working
with this set of variables exclusively. We see that the equations become much simpler than in terms
of the original fields.

We now substitute the primed spinors obtained from the above field equations into the La-
grangian (3.1) and obtain the following second-order Lagrangian:

Lquarks =−
2
ρ

DQ̄iDQi−ρ
(
ΛQ̄
)i Qi, (4.7)

where it should be remembered that the covariant derivative acting on Qi in (4.7) takes into
account the field redefinition (4.5).

Notice that this new second-order Lagrangian, even though it contains fewer terms that its
first-order counterpart, is clearly non-polynomical in the (physical) Higgs scalar field ρ , because
of the presence of 1/ρ in the kinetic term. In the case of Dirac theory (2.9) a constant rescaling
of the spinors was all that we needed to obtain a canonical kinetic term. The same procedure can
be applied to (4.7). However, ρ is now a dynamical field and thus, absorbing it into the fermion
fields (again) changes the covariant derivative operators acting on both Q̄i,Qi. Denoting the new
covariant derivative by D , we finally write:

Lquarks =−2DQ̄iDQi−ρ
2 (

ΛQ̄
)i Qi (4.8)

where 1/
√

ρ was absorbed into each spinor field. The new covariant derivative D contains non-
polynomial Higgs-quarks interactions as well as the physical SU(2)-frozen gauge fields when act-
ing on the unbarred doublet. It is clear that interaction vertices with the Higgs can be of arbitrarily
high valency (due to non-polynomiality in ρ).

The field equations (4.6) for the new fermionic fields of mass dimension one read

i
√

2DQi =−ρ
(
Q̄†

Λ
)

i , i
√

2DQ̄i =−ρ Q†
i . (4.9)

and are now interpreted as the reality conditions, whose linearised versions are to be imposed on
the external lines.
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5. Perturbation theory and perturbative Unitarity

We now discuss, in the framework of Dirac theory, how pertubation theory is modified but
leads to the same results as in the first-order formalism, and also how Unitarity holds even though
the Lagrangian is non-Hermitian. More details can be found in [2].

5.1 Feynman rules

The propagator becomes very simple:

〈0|T{χA(p)ξB(−p)}|0〉 ≡ D(p)AB =
−i

p2 +m2 εAB (5.1)

It is nothing but a scalar-type propagator, the espilon tensor in the numerator being the identity
over the space of unprimed spinors. The complexity of the Dirac propagator is now shifted to the
vertices. We have two interaction vertices with Feynman rules (incoming momenta):

2ie
[
kC

A′
εBA + pB

A′
εCA

]
, −2ie2

ε
A′B′

εABεCD (5.2)

Notice that the quartic vertex is simply the identity over both Minkowski spacetime and the space
of unprimed spinors.

AA′
A

ξC

χB

AA′
A

AB′
B

χC

ξD

Figure 1: Interaction vertices

5.2 Spin averaged probabilities

When we sum (or average) over photon polarisation states, one can make use of the Ward
identities to obtain:

∑
pol.

εµε
∗
ν → ηµν (5.3)

In our case, this will become:

∑
pol.

εAA′ε
∗
BB′ → − εABεA′B′ (5.4)
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As for the second-order fermions, we have:

ε
+
A ε
∗+
A′ (k)+ ε

−
A ε
∗−
A′ (k) =

√
2

m2 kAA′ (5.5)

5.3 e−µ−→ e−µ− scattering

Consider the simplest QED process: electron-muon scattering at tree level in the limit me�
mµ , Fig.2.

Figure 2: e−µ−→ e−µ−

Let us first compute the amputated amplitude MABCD for an incoming electron with momen-
tum k1 scattered off an incoming muon with momentum p1. We have:

MABCD = 4
(ie)2(−i)

q2

(
k1A

E ′
εDE − k2D

E ′
εAE

)
ε

EF
εE ′F ′

(
p1B

F ′
εCF − p2C

F ′
εBF

)
=−4ie2

q2

[
(k1 · p1)AB εCD− (k2 · p1)DB εAC− (k1 · p2)AC εBD +(k2 · p2)CD εAB

] (5.6)

where we defined:

(k · p)AB := kA
C′ pBC′ (5.7)

and q2 = (k1− k2)
2 = (p1− p2)

2 = t. The complex conjugate amplitude is simply given by re-
placing every unprimed spinor by a primed one and every primed spinor by an unprimed one, so
that:

M ∗
A′B′C′D′ =−

4ie2

q2

[
(k1 · p1)A′B′ εC′D′− (k2 · p1)D′B′ εA′C′− (k1 · p2)A′C′ εB′D′+(k2 · p2)C′D′ εA′B′

]
(5.8)

and we defined:

(k · p)A′B′ := kA′C pB
C (5.9)

9
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The unpolarised cross-section is then obtained from:

|M |2 = 1
4 ∑

pol.
MABCDM ∗

A′B′C′D′ε
A
ε
∗A′(k1)ε

B
ε
∗B′(p1)ε

C
ε
∗C′(p2)ε

D
ε
∗D′(k2)

=
1
4
MABCDM ∗

A′B′C′D′k
AA′
1 pBB′

1 pCC′
2 kDD′

2
2

m2
e

2
m2

µ

(5.10)

With a bit of algebra, it can be shown that the following equality holds:

M ∗
A′B′C′D′k

AA′
1 pBB′

1 pCC′
2 kDD′

2
2

m2
e

2
m2

µ

=−M ABCD (5.11)

So that:

|M |2 =−1
4
MABCDM ABCD (5.12)

In the above formula, we only need to compute three different expressions. Consider four
momenta k, p, q, l describing massive particles. We have:

(k · p)ABεCD


(k · p)ABεCD = m2

km2
p

(k ·q)ACεBD =−1
2 m2

k(p ·q)

(q · l)CDεAB = (k · p)(q · l)

(5.13)

where

k · p = kA
A′ pA′

A = kµ pµ (5.14)

Using this and neglecting terms proportional to the electron mass, we obtain:

|M |2 = 8e4

q4

[
(k1 · p1)(k2 · p2)+(k1 · p2)(k2 · p1)+m2

µ(k1 · k2)
]

(5.15)

which is the well know squared amplitude for the unpolarised process.

5.4 One-loop charge renormalisation

Let us now look at a simple one-loop example. Although there are half the number of fermions
in our theory, fermions loops are equivalent in both formalisms. Indeed, let us look at the amplitude
for the charge renormalisation in the second-order formalism:

10
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iΠ1−loop(k)A′
A

B′
B

= (−1)4e2
∫ d4 p

(2π)4

[
pA′

B(p+ k)B′
A +(p+ k)A′

B pB′
A− 1

2

(
(p+ k)2 + p2

)
εA′B′εAB

]
[p2 +m2] [(p+ k)2 +m2]

+ (−1)4e2
∫ d4 p

(2π)4
εA′B′εAB

[p2 +m2]

(5.16)

where we left explicit the contributions from both diagrams.

Figure 3: One-loop photon two-point amplitude

We can rearrange the latter to obtain:

iΠ1−loop(k)A′
A

B′
B

= (−1)4e2
∫ dD p

(2π)D

[
pA′

B(p+ k)B′
A +(p+ k)A′

B pB′
A +m2εA′B′εAB

]
[p2 +m2] [(p+ k)2 +m2]

(5.17)

which is the usual tow-component version of the loop integral that has to be calculated in the
first-order formalism.

5.5 Remarks on perturbative Unitarity

In quantum field theory, the S-matrix is generally written in the interaction picture:

S = T ei
∫

d4xLint(x) (5.18)

where T denotes time-ordering. Taking matrix elements between physical states, Unitarity of
the S-matrix reads:

〈 f |i〉= ∑
phys n
〈 f |S|n〉〈n|S†|i〉= ∑

phys n
〈 f |S†|n〉〈n|S|i〉 (5.19)
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where the sum runs only over physical intermediate states, which are eigenstates of the free
Hamiltonian, i.e. they correspond to on-shell particles. For perturbative computations, one splits
the S-matrix into the identity plus a transition matrix T :

S = 1+ iT (5.20)

The Unitarity equation then reads:

〈 f |(iT )|i〉+ 〈 f |(iT )†|i〉=− ∑
phys n
〈 f |(iT )†|n〉〈n|(iT )|i〉 (5.21)

This equation is generally proven in Perturbation Theory, order-by-order in the coupling con-
stant appearing in the interactions, and diagram-by-diagram. Usually, this is shown to be true as a
consequence of the Hermicity of the Lagrangian, however, in [2], we show that this latter require-
ment is not necessary and we prove Unitarity of second-order QED at all orders. The proof relies
on the existence of a non-trivial real-structure that involves a derivative operator:

† 7→ i
m

D ,

(
i
m

D

)2

= IV (5.22)

This is nothing but the first-order Dirac equation imposed on the physical states of the theory.
Imposed linearly (without any coupling to the gauge fields) on the free theory, this leads to a
positive definite Hamiltonian H0 ∼ a†a. While, imposed on the external states, they lead to a
Unitary S-Matrix.

6. Conclusion

In this short note, we demonstrate that a second-order description of spinor fields is viable and
that in many aspects, it is simpler than the usual first-order description. This new reformulation of
the SM leads in particular to new insights on the available Unification patterns that could be allowed
[1]. Furthermore, since the formalism involves only half the number of spinor fields and because
the interaction vertices seen as matrices live in a much smaller space than their four-dimensional
counterparts, the complexity of perturbative calculations is greatly decreased. It is also believed
that for the purpose of lattice calculations, working with a scalar-type propagator could simplify
the implementation of the theory.

Finally, it should be noted that the construction that is followed here intends to mimic the SM
calculations, but it might be possible to take the second-order formulation as fundamental and try
to implement modifications of the theory in the latter.
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