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Investigation of the structure of the Standard Model effective potential at very large field strengths
opens a window towards new phenomena and can reveal properties of the UV completion of the
SM. The map of the lifetimes of the vacua of the SM enhanced by nonrenormalizable scalar
couplings has been compiled to show how new interactions modify stability of the electroweak
vacuum. Whereas it is possible to stabilize the SM by adding Planck scale suppressed interac-
tions and taking into account running of the new couplings, the generic effect is shortening the
lifetime and hence further destabilisation of the SM electroweak vacuum. Absolute stability can
be achieved by lowering the suppression scale of higher order operators while picking up such
combinations of new couplings, which do not generate new deep minima in the potential. We
discuss the issue of gauge dependence of the perturbative determination of the tunnelling rate and
show how this rate can be made gauge independent at the leading nontrivial order of the RGE
improved effective action.
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1. Introduction

The discovery of the 125 GeV scalar particle, which in the light of available data can be
identified with the Standard Model Higgs boson, and absence of experimental signature of any new
physical state in the LHC experiments makes it important to search for possible windows towards
new phenomena within the Stadard Model itself. One of the possible windows is the investigation
of the structure of the effective potential in the Standard Model which has been the subject of
considerable activity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The question about stability of the SM vacuum in the presence of ultraviolet completions at
or below the planck scale is the central point of this note. In the paper [10] higher order operators
have been added to the scalar potential of the neutral Higgs field. The operators were assumed to
be suppressed by suitable powers of the Planck scale and for sensible values of the new couplings
they were found to modify significantly the behaviour of the potential near the Planck scale. In the
paper [11] the question has been studied further, in particular a complete map of the vacua in the
SM extended by nonrenormalisable scalar couplings, taking into account the running of the new
couplings, have been produced. Also going beyond the standard simplifying assumptions taken
when calculating the lifetime of the metastable vacuum and instead using a completely numerical
approach.

However, we begin with the discussion of the issue of gauge dependence of the perturbative
determination of the tunnelling rate and argue how this rate can be made gauge independent at the
leading nontrivial order of the RGE improved effective action.

2. Gauge dependence of tunnelling rate

It is well known that the effective potential and in general the effective action are gauge-
dependent objects. However, using them properly one can draw gauge independent physical con-
clusions. In particular the statement about the spontaneous breaking of gauge symmetry is gauge
invariant [12]. The gauge invariant "observables" are the values of the effective potential at the
extrema, and the tunneling rate between different minima. The position of the minima is gauge
dependent, the values of the classical field φc at arbitrary points are gauge dependent as well. How-
ever, when one computes the SM effective potential in a straightforward manner (say naively),
nothing looks gauge independent - neither the value of the effective potential at the extrema (see
[13]) nor the tunneling rate. In order to obtain gauge invariant quantities one must perform appro-
priate expansion of the effective action. The relevant strategy to demonstrate vacuum lifetime gauge
independence has been discussed in [14], and applied there to the case of scalar electrodynamics.
Very similar treatment was recently used also in case of the Standard Model in order to show the
gauge independence of values of the potential at its extrema in [15, 16]. There the authors point
out two main problems one faces while using the approach of [14] to the Standard Model. Firstly,
RGE improved renormalisation of the field strength Γ =

∫
γ ln µ induces gauge dependant correc-

tion at all orders of perturbation theory. Secondly, the expansion used in [14] assumes λ ∝ h̄e4

(where e is the gauge coupling constant) which is also violated by RGE resummation. In this note
we shall briefly discuss possible solution to these problems in case of the Standard Model. More
exhaustive discussion will appear elsewhere. In order to illustrate the gauge dependence induced
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by field strength renormalisation it is enough to consider tree level potential improved with one-
loop renormalisation group equations. For electroweak vacuum stability consideration this implies
a very simple quartic potential

V =
λ (µ)

4
e4Γ(µ)h4 (2.1)

where Γ(µ) =
∫ µ

Mt
γ(µ̄) ln µ̄ . The next step in the standard procedure is to set µ = h as implied by

minimisation of loop corrections to the above potential.
One can then calculate lifetime of the vacuum numerically solving the resulting equation of

motion of the scalar field to obtain the bounce solution, or deduce a lower bound on the lifetime
by using an analytical result known for quartic potential (with constant λ = λc) [?] to obtain the
action S = 8π2

3|λc| . For comparison of the two methods see [11]. Since λc has to be negative for this
solution to exist and lifetime of the vacuum depends on the action exponentially τ ∝ eS its easy to
see that lower bound of lifetime corresponds to minimum of λ . Now our simplified lifetime reads

τ

TU
=

1
Λ4T 4

U
e

8π2
3

1
|e4Γ(Λ)λc(Λ)| , (2.2)

where Λ is the energy scale a which λ achieves its minimum. This simplified result is obviously
gauge dependent since at one loop in Fermi gauge we have [13]

γ =
1

16π2

(
9
4

g2
2 +

9
20

g2
1−3y2

t −3y2
b− y2

τ +
3
20

ζBg2
1 +

3
4

ζW g2
2

)
(2.3)

where ζB and ζW are the gauge fixing parameters. This problem occurs only due to the fact that
we did not include the field renormalization Zh(h) = eΓ(h) which appears in the kinetic term. In
our Lagrangian we always have renormalised fields Zh(h)h so we can use a redefined field φ =

Zh(h)h, as the action is stationary so it is not changed by this redefinition. This can be also verified
numerically, however than one has to remember that Zh is a function of h and derivatives in the
kinetic term act on it accordingly.

Action calculated using redefined field φ of course corresponds to using potential (2.1) with
Γ = 0 and it is manifestly gauge independent. Since Zh is a positive multiplicative factor it does
not change the conclusions on the absolute stability of the potential but can significantly change
the border between metastability and instability. It is clear that using potential with field renormal-
isation results in more shallow true minimum and hence longer lifetime. Gauge dependence of the
bounce action calculated with different choices of the effective action is shown in the Figure 1. The
dashed lines correspond to the tree-level effective potential with running couplings and field renon-
rmalization. The solid line corresponds to the tree-level effective potential with running couplings
treated as a function of the redefined field φ = Zh(h)h. It is very important notice that using Landau
gauge (ξ = 0) predicts an incorrect action of the bounce.

Table 2 shows how the resulting lifetime changes in case of the Standard Model using the
Landau gauge. We can see that incorrectly including Zh in the potential leads to lifetime longer by
a factor of more than 10100. We would like to point out that our results in [11] have already been
supplemented with this correction despite the fact that we did not point this out explicitly in that
paper. The differences between various choices of the effective action are illustrated in the Table 1.
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Figure 1: Gauge dependence of the bounce action calculated with different choices of the effective action.
The dashed line corresponds to the effective action which includes both running of the couplings and field
renormalization. The solid line correspond to the tree-level effective potential with running couplings treated
as a function of the redefined field φ = Zh(h)h.

Potential type Bounce action SB lifetime τ

Tree level, RGE improved, Z = 1 SB = 1764 τ = 1.09∗10529

Tree level, RGE improved, Landau gauge SB = 2111 τ = 2.55∗10676

Table 1: Lifetime of the EW vacuum for different methods of finding the bounce solution

3. New interactions and Standard Model phase diagram

In what follows we will assume the Lagrangian of the Standard Model augmented by two
higher dimensional operators proportional to |H|6 and |H|8, where H is the Higgs doublet. They
are suppressed by a large mass scale M to an appropriate power. Being interested only in the
direction H = (φ/

√
2,0), we obtain a potential of the form:

V =−m2

2
φ

2 +
λ

4
φ

4 +
λ6

6!
φ 6

M2 +
λ8

8!
φ 8

M4 . (3.1)

One-loop beta functions of new couplings take the form

16π
2
βλ6 =

10
7

λ8
m2

M2 +18λ66λ −6λ6

(
9
4

g2
2 +

9
20

g2
1−3y2

t

)
, (3.2)

16π
2
βλ8 =

7
5

28λ
2
6 +30λ86λ −8λ8

(
9
4

g2
2 +

9
20

g2
1−3y2

t

)
,

which agrees with [17]. To illustrate effects of new nonrenormalisable operators on Standard Model
vacuum stability we show in Figure 2 the well known Standard Model phase diagram (see for
example [2]) and the same diagram after inluding new operators, respectively λ6(Mp) =−1/2,−1
and λ8(Mp) = 1,1/2. Above plots clearly show that nonrenormalisable interactions supressed by
the Planck mass can drastically change the SM phase diagram, by pushing electroweak vacuum
towards the instability region.
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4. Lowering the magnitude of the suppression scale

It is interesting to see how lowering the suppression scale M in (2.1) changes our results. To
analyse this problem qualitatively it is enough to use the analytical approximation (2.2). When
nonrenormalisable operators are positive, lowering the suppression scale M corresponds simply to
making the potential positive not far above M. The action (the exponent in (2.2)) increases because
the position of the minimum of λe f f shifts towards smaller energy scales and the value of |λe f f |
decreases, which is shown in left hand side panel of Figure 3.

In the case with positive λ8 and negative λ6 this dependence is smaller. The new minimum
is deeper and changing the scale changes λe f f by a small fraction of its value which means the
resulting lifetimes are much less scale dependent, as shown in the right hand side panel of Figure 3.

The last possibility is a potential unbounded from below (λ8 < 0) which corresponds to quickly
decaying solutions ( see [11]).

5. Summary

In this note we have presented a map of the vacua in the SM extended by nonrenormalisable
scalar couplings, taking into account the running of the new couplings and going beyond the stan-
dard assumptions taken when calculating the lifetime of the metastable vacuum. As a preliminary
step we have discussed the issue of gauge dependence of the perturbative determination of the tun-
nelling rate and have argued how this rate can be made gauge independent at the leading nontrivial
order of the RGE improved effective action.

In general, we confirm that it is relatively easy to destabilise the SM with the help of the
Planck scale suppressed scalar operators. While it is possible to stabilise the SM by adding such
higher dimensional interactions and taking into account running of the new couplings, the generic
effect is shortening the lifetime and hence further destabilisation of the SM electroweak vaccuum.
It has been demonstrated that absolute stability can be achieved by lowering the suppression scale
of higher order operators while picking up such combinations of new couplings, which do not
generate new deep minima in the potential. Our results also show the dependence of the lifetime of
the electroweak minimum on the magnitude of the new couplings.
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Figure 2: Standard Model phase diagram (left panel), the same diagram after including new operators
λ6(Mp) = −1/2 and λ8(Mp) = 1 (middle panel) and λ6(Mp) = −1 and λ8(Mp) = 1/2 (right panel). The
green region corresponds to absolute stability, the red region to instability, and the yellow region to metasta-
bility.

Figure 3: Scale dependence of λe f f /4 = V/φ 4 with λ6 = λ8 = 1 (left panel) and −λ6 = λ8 = 1 (right
panel) for different values of suppression scale M. The lifetimes corresponding to suppression scales
M = 108,1012,1016 are respectively, log10(

τ

TU
) = ∞,1302,581 (left panel) and log10(

τ

TU
) =−45,−90,−110

(right panel) while for the Standard Model log10(
τ

TU
) = 540.
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