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We analyze the parametric space of the constrained minimal supersymmetric standard model
(CMSSM) with µ > 0 supplemented by a generalized asymptotic Yukawa coupling quasi-unification
condition which yields acceptable masses for the fermions of the third family. We impose constraints
from the cold dark matter abundance in the universe and its direct detection experiments, the B-
physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson, mh.
We identify two distinct allowed regions with M1/2 > m0 and m0 ≫ M1/2 classified in the hyper-
bolic branch of the radiative electroweak symmetry breaking. In the first region we obtain, approx-
imately, 44 . tanβ . 52, −3 . A0/M1/2 . 0.1, 122 . mh/GeV . 127, and mass of the lightest
sparticle in the range (0.75−1.43) TeV. Such heavy lightest sparticle masses can become consistent
with the cold dark matter requirement on the lightest sparticle relic density thanks to neutralino-stau
coannihilations. In the latter region, fixing mh to its central value from the LHC, we find a wider
allowed parameter space with milder electroweak-symmetry-breaking fine-tuning, 40 . tanβ . 50,
−11 . A0/M1/2 . 15 and mass of the lightest sparticle in the range (0.09−1.1) TeV. This sparticle
is possibly detectable by the present cold dark matter direct search experiments.
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1. Introduction

One of the most economical and predictive versions of the minimal supersymmetric standard
model (MSSM) is the well-known – see e.g Ref. [1] – constrained MSSM (CMSSM) which employs
just four and one half free parameters:

signµ, tanβ , M1/2, m0, and A0, (1.1)

where signµ is the sign of µ , the mass parameter mixing the electroweak Higgs superfields H2 and
H1 of the MSSM which couple to the up- and down-type quarks respectively, tanβ is the ratio of the
vacuum expectation values of H2 and H1, while the remaining symbols denote the common gaugino
mass, scalar mass, and trilinear scalar coupling, respectively, defined at the grand unified theory (GUT)
scale MGUT, which is determined by the unification of the gauge coupling constants.

CMSSM can be further restricted by being embedded in a supersymmetric (SUSY) GUT with a
gauge group containing SU(4)c and SU(2)R. This can lead to ‘asymptotic’ Yukawa unification (YU) [2],
i.e. the exact unification of the third generation Yukawa coupling constants at the SUSY GUT scale
MGUT. Given the experimental values of the top-quark and tau-lepton masses, the CMSSM supple-
mented by the assumption of YU (which naturally restricts tanβ ∼ 50) yields unacceptable values [3]
of the b-quark mass for both signs of the MSSM parameter µ . In Ref. [4] – see also Refs. [5–7] –, this
problem is addressed in the context of the Pati-Salam (PS) GUT model, without the need of invoking
departure from the CMSSM universality. We prefer to sacrifice the exact YU in favor of the universal-
ity hypothesis, since we consider the latter as more economical, predictive, and easily accommodated
within conventional SUSY GUT models. In particular, the Higgs sector of the simplest PS model [8] is
extended so that H2 and H1 are not exclusively contained in a SU(4)c singlet, SU(2)L ×SU(2)R bidou-
blet superfield, but receive subdominant contributions from another bidoublet too which belongs to the
15 representation of SU(4)c. As a result, YU is naturally violated and replaced by a set of asymptotic
Yukawa quasi-unification conditions (YQUCs):

ht(MGUT) : hb(MGUT) : hτ(MGUT) =

∣∣∣∣∣1−ρα2/
√

3√
1+ |α2|2

∣∣∣∣∣ :

∣∣∣∣∣1−ρα1/
√

3√
1+ |α1|2

∣∣∣∣∣ :

∣∣∣∣∣1+
√

3ρα1√
1+ |α1|2

∣∣∣∣∣ . (1.2)

These conditions depend on two complex parameters α1, α2 and one real and positive parameter ρ . The
parameters α1 and α2 describe the mixing of the components of the SU(4)c singlet and 15-plet Higgs
bidoublets, while ρ is the ratio of their respective Yukawa coupling constants to the fermions of the
third family. Note that monoparametric versions of the YQUCs considered within CMSSM arising by
taking α1 =−α2 for µ > 0 [10] or α1 = α2 for µ < 0 [11] are by now experimentally excluded [9,11].
In this talk, based on Ref. [12, 13], we show that the YQUCs in Eq. (1.2) can become compatible with
two disconnected regions of the CMSSM parameter space belonging to the hyperbolic branch (HB) of
the radiative electroweak symmetry breaking (EWSB): The M1/2 > m0 region where the neutralino, χ̃ , is
a pure bino and may (co)annihilate strongly enough with the lighter stau, τ̃1 [14,15]; and the m0 ≫M1/2

region, where χ̃ acquires a sizable higgsino fraction [16–20] which enhances the χ̃ − χ̃ annihilation
and triggers neutralino-chargino (χ̃/χ̃2 − χ̃+

1 ) coannihilations.
We begin by describing the cosmo- & phenomeno- logical requirements which we consider in our

investigation in Sec. 2. Next (Sec. 3), we exhibit the resulting restrictions on the parameters of the
CMSSM. Moreover, we check in Sec. 4 the consistency with Eq. (1.2) and discuss the naturalness of
the model in Sec. 5. We summarize our conclusions in Sec. 6.
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2. Phenomenological and Cosmological Constraints

In our investigation, we integrate the two-loop renormalization group equations for the gauge
and Yukawa coupling constants and the one-loop ones for the soft SUSY breaking parameters be-
tween MGUT and a common SUSY threshold MSUSY ≃ (mt̃1mt̃2)

1/2 (t̃1,2 are the stop mass eigenstates)
determined consistently with the SUSY spectrum. At MSUSY, we impose radiative EWSB, evaluate
the SUSY spectrum employing the publicly available calculator SOFTSUSY [21], and incorporate the
SUSY corrections to the b and τ mass – see below. From MSUSY to MZ , the running of gauge and
Yukawa coupling constants is continued using the standard model (SM) renormalization group equa-
tions. The SUSY spectrum is put into micrOMEGAs [22], a publicly available code which calculates
a number of phenomenological – see Sec. 2.1 – and cosmological – see Sec. 2.2 – observables which
assist us to restrict the parametric space of our model.

2.1 Phenomenological Requirements

2.1.1 SM Fermion Masses. After incorporating the sizable (about 20%) and less important (almost
4%) corrections [23] to the b-quark and τ-lepton masses, we compare the masses of top-quark, mt ,
b-quark, mb and τ-lepton, mτ with their experimental values [24, 25]

mt(mt) = 164.83 GeV, mb(mb)
MS = 4.18 GeV, mτ(MZ) = 1.748 GeV. (2.1)

The second value is evolved up to MZ using the central value as(MZ) = 0.1185 [24] of the strong
fine-structure constant at MZ and then converted to the DR scheme with result mb(MZ) = 2.83 GeV.

2.1.2 Collider Bounds. For our analysis, the relevant collider bounds constrain:

• The mass mh of the lightest Higgs boson, h. The experiments ATLAS [26] and CMS [27] in the
LHC discovered simultaneously a boson that looks very much like the expected SM Higgs boson.
The allowed 95% confidence level (c.l.) range of mh can be estimated including a theoretical
uncertainty of about ±1.5 GeV. This gives

122 . mh/GeV . 128.5. (2.2)

• The masses of the lightest chargino, mχ̃± , [28] and gluino, mg̃ [29]:

(a) mχ̃± & 103.5 GeV and (b) mg̃ & 1.3 TeV. (2.3)

2.1.3 B-Physics Constraints. SUSY contributions to observables related to B-meson physics yield
restrictions to the SUSY parameters. In particular, we impose the following bounds on:

• The branching ratio BR(Bs → µ+µ−) of the process Bs → µ+µ− [30, 31]

BR(Bs → µ+µ−). 4.2×10−9. (2.4)

• The branching ratio BR(b → sγ) of b → sγ [32, 33]:

2.84×10−4 . BR(b → sγ). 4.2×10−4. (2.5)

• The ratio R(Bu → τν) of the CMSSM to the SM branching ratio of the process Bu → τν [32]

0.52 . R(Bu → τν). 2.04 . (2.6)

3
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2.1.4 Muon Anomalous Magnetic Moment. There is a 2.9−σ [34–36] discrepancy

δaµ = (24.9±8.7)×10−10 ⇒ 7.5×10−10 . δaµ . 42.3×10−10 at 95% c.l. (2.7)

between the measured value of the muon anomalous magnetic moment aµ from its SM prediction. This
δaµ can be attributed to SUSY contributions which have the sign of µ and its absolute value decreases
as mLSP increases. Therefore, Eq. (2.7) hints that the sign of µ has to be positive. Moreover, a lower
[upper] bound on mLSP can be derived from the upper [lower] bound in Eq. (2.7). As it turns out,
only the upper bound on mLSP is relevant here. Taking into account the aforementioned computational
instabilities and the fact that a discrepancy at the level of about 3−σ cannot firmly establish a real
deviation from the SM value, we restrict ourselves to just mentioning at which level Eq. (2.7) is satisfied
in the parameter space allowed by all the other constraints.

2.2 Cold Dark Matter Considerations

2.2.1 CDM Abundance. In the context of the CMSSM, χ̃ can be the lightest SUSY particle (LSP)
and, thus, naturally arises as a Cold Dark Matter (CDM) candidate as long as its relic abundance does
not exceed the upper bound on the CDM abundance deduced from the Planck satellite [37]

ΩLSPh2 . 0.125. (2.8)

Two important mechanisms which assist to achieve ΩLSPh2 consistent with the limit above within
CMSSM are (i) the coannihilation of χ̃ with a particle P when a proximity between the mass mLSP of χ̃
and the mass mP of P is established; (ii) the P′-pole effect which enhances the χ̃ − χ̃ pair annihilation
procedure by an P′-pole exchange in the s-channel when the mass of P′ satisfies the relation mP′ ≃
2mLSP. The strength of the coannihilation and the P′-pole effect processes is controlled by the relative
mass splittings. The relevant for our cases mass splittings are defined as follows

∆P =
(mP −mLSP)

mLSP
for P = τ̃1, χ̃+

1 , χ̃2 and ∆P′ =
mP′ −2mLSP

2mLSP
for P′ = H , (2.9)

where τ̃1 is the lightest stau, χ̃2 the next-to-lightest neutralino, χ̃+
1 the lightest chargino and H the

heavier CP-even neutral Higgs boson. The resulting ΩLSPh2 normally decreases with these ∆P’s.

2.2.2 CDM Direct Detection. Employing the relevant routine of the micrOMEGAs package [38]
we calculate the spin-independent (SI) and spin-dependent (SD) lightest neutralino-proton (χ̃ − p)
scattering cross sections σSI

χ̃ p and σ SD
χ̃ p , respectively. The relevant scalar, f p

Tq
, and axial-vector, ∆p

q , form
factors for light quarks in the proton (with q = u,d,s), are taken as follows [39, 40]:

f p
Tu = 0.018, f p

Td = 0.026, and f p
Ts = 0.022; (2.10a)

∆p
u =+0.842, ∆p

d =−0.427, and ∆p
s =−0.085. (2.10b)

Data on σSI
χ̃ p coming from large underground Xenon (LUX) experiment [41] provide strict bounds on

the values of the free parameters of SUSY models with χ̃ owning a sizable higgsino component, as in
our case with m0 ≫ M1/2. These data [42], however, are directly applicable in the case where the CDM
consists of just χ̃’s. If the χ̃’s constitute only a part of the CDM in the universe, the LUX experiment
bound on the number of the scattering events is translated into a bound on the “rescaled” SI χ̃− p elastic
cross section ξ σ SI

χ̃ p, where ξ = Ωχ̃/0.12 with 0.12 being the central value of the CDM abundance [37].
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3. Restrictions on the SUSY Parameters

Imposing the requirements described in Sec. 2, we can restrict the parameters of our model. Fol-
lowing our approach in Refs. [12, 13], we consider as free parameters the ones in Eq. (1.1). The ratios
ht/hτ and hb/hτ are then fixed by using the data of Eq. (2.1). These ratios must satisfy the YQUCs
in Eq. (1.2) for natural values of the parameters α1,α2, and ρ – see Sec. 4. To assure this, we restrict
ourselves to ratios hm/hn (m,n = t,b,τ) close to unity which favor the range tanβ ≥ 40. We also con-
centrate on the µ > 0 case, given that µ < 0 worsens the violation of Eq. (2.7), and scan the region
−30 ≤ A0/M1/2 ≤ 30.

We localize below two separated clusters of allowed parameters categorized in the HB of the
radiative EWSB, as justified in Sec. 3.1: (i) The M1/2 > m0 area at high tanβ (43.8 . tanβ . 52)
discussed in Sec. 3.2 and (ii) the m0 ≫ M1/2 area for any tanβ in the range 40−50 studied in Sec. 3.3.
We finally – see Sec. 3.4 – exhibit a direct comparison of the solutions obtained in the aforementioned
areas focusing on the characteristic value tanβ = 48, which balances well enough between maintaining
natural values for the hm/hn’s and satisfying the various requirements of Sec. 2. Note that the numerical
calculations for the soft SUSY masses become quite unstable for m0 ≫ M1/2 and tanβ & 50.

The constraints which play an important role in delineating both allowed parameter spaces of our
model are the lower bound on mh in Eq. (2.2) and the CDM bound in Eq. (2.8). The M1/2 > m0 region
is further restricted by the bound on BR(Bs → µ+µ−) in Eq. (2.4) whereas the m0 ≫ M1/2 area is
additionally bounded by the LUX data and the limits on mχ̃± and mg̃ in Eq. (2.3a) and (b). In the
parameter space allowed by these requirements, all the other restrictions of Sec. 2 are automatically
satisfied – with the exception of the lower bound on δaµ in Eq. (2.7).

3.1 Elliptic Versus Hyperbolic Branch

The classification – see e.g. [19, 20] – of the various solutions of the radiative EWSB condition is
based on the expansion of µ2 in terms of the soft SUSY breaking parameters of the CMSSM included
in Eq. (1.1). Indeed, using fitting techniques, we can verify the following formula

µ2 +M2
Z/2 ≃ c0m2

0 + c1/2M2
1/2 + cAA2

0 + cAMA0M1/2, (3.1)

where the coefficients c0,c1/2,cA, and cAM depend basically on tanβ and the masses of the fermions of
the third generation. These coefficients are computed at the scale MSUSY – see Sec. 2 and, therefore,
inherit a mild dependence on the SUSY spectrum too. From Eq. (3.1), we can easily infer that the
SUSY breaking parameters are bounded above for fixed µ , when the quadratic form in the right-hand
side of this equation is positive definite. This is the so-called ellipsoidal branch (EB) which is highly
depleted [20] after the discovery of h with mh in the range of Eq. (2.2). On the other hand, in the HB
region favored by Eq. (2.2), c0 is negative and, consequently, m0 can become very large together with a
combination of A0 and M1/2 with all the other parameters being fixed. In this case the soft parameters
lie on focal curves or surfaces. Near the boundary between the EB and HB regions, c0 is very close
to zero and, thus, m0 can become very large with all the other parameters fixed. These are the so-
called focal points. Moreover, there is a region where the soft SUSY breaking mass-squared m2

H2
of H2

becomes independent of the asymptotic value of the parameter m0. This is called the focus point (FP)
region [18]. In the large tanβ regime under consideration, we have [1] m2

H2
≃−µ2 −M2

Z/2 and so no
distinction between focal and focus points can be established.

5



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
1
5

CMSSM with Generalized Yukawa Quasi-Unification: An Update C. Pallis

REGION c0 c1/2 cA cAM C0/108 CA/107

M1/2 > m0 −0.059 0.955 0.102 −0.277 −1.05 6.14
m0 ≫ M1/2 −0.0689 0.848 0.0982 −0.254 33.3 −2.34

Table 1: The c’s in Eq. (3.1) and C’s in Eq. (3.2) for tanβ = 48 and M1/2 > m0 or m0 ≫ M1/2.

To get an idea of how our solutions presented in Secs. 3.2–3.4 are classified into these categories,
we display in Table 1 the values of the coefficients c in Eq. (3.1) for the two representative cases of
Table 2 corresponding to tanβ = 48 – see Sec. 3.4. We obtain c0 < 0 in both cases and so we expect
that our solutions belong to the HB region. To illustrate the emergence of the relevant focal curves we
diagonalize the quadratic form in the right-hand side of Eq. (3.1) keeping, e.g., M1/2 fixed and using
m0 and A0 as varying parameters. Then, Eq. (3.1) can be cast in the following form

m2
0/C0 + Ā2

0/CA = 1 (3.2)

where Ā0 = A+ cAMM1/2/2cA, C0 = µ̄2/c0, and CA = µ̄2/cA with µ̄2 = µ2 +M2
Z/2− c̄1/2M2

1/2 and
c̄1/2 = c1/2 − c2

AM/4cA. The numerical values of C0 and CA also listed in Table 1. Since in both cases,
one from C0 and CA is negative, m0 and A0 can vary along an hyperbola parameterized by Eq. (3.2) and
so both (M1/2 > m0 and m0 ≫ M1/2) our solutions in Table 2 belong to the HB region.

3.2 M1/2 > m0 Region

Initially, we concentrate on the M1/2 > m0 region and delineate in the left plot of Fig. 1 the allowed
(shaded) areas in the M1/2 −m0 plane for tanβ = 48 and various A0/M1/2’s indicated therein. The
lower boundaries of these areas corresponds to ∆τ̃1 = 0; the areas below these boundaries are excluded
because the LSP is the charged τ̃1. The upper boundaries of the areas come from the CDM bound in
Eq. (2.8), while the left one originates from the limit on BR(Bs → µ+µ−) in Eq. (2.4). The upper
right corners of the areas coincide with the intersections of the lines ∆τ̃1 = 0 and ΩLSPh2 = 0.125. We
observe that the allowed area, starting from being just a point at a value of A0/M1/2 slightly bigger than
−0.9, gradually expands as A0/M1/2 decreases and reaches its maximal size around A0/M1/2 =−1.6.
For smaller A0/M1/2’s, it shrinks very quickly and disappears just after A0/M1/2 =−1.62. The fact that
the allowed regions are narrow strips along the lines with ∆τ̃1 = 0 indicates that the main mechanism
which reduces ΩLSPh2 below 0.125 is the χ̃ − τ̃1 coannihilations. Namely, the dominant processes
are the τ̃2τ̃∗

2 coannihilations to bb̄ and ττ̄ which are enhanced by the s-channel exchange of H, with
∆H ≃ 1.1 – see also Table 2.

Extending our analysis to various tanβ ’s for ∆τ̃1 = 0 we can obtain a more spherical view of the
overall allowed region of the model for M1/2 > m0. This is because ∆τ̃1 = 0 ensures the maximal
possible reduction of ΩLSPh2 due to the χ̃ − τ̃1 coannihilation and so we find the maximal M1/2 or
mLSP allowed by Eq. (2.8) for a given value of A0/M1/2. The relevant allowed (hatched) regions in the
M1/2 −A0/M1/2 plane are displayed in the right plot of Fig. 1. The right boundaries of the allowed
regions correspond to ΩLSPh2 = 0.125, while the left ones saturate the bound on BR(Bs → µ+µ−) in
Eq. (2.4). The almost horizontal upper boundaries correspond to the sudden shrinking of the allowed
areas which is due to the weakening of the H-pole effect as A0/M1/2 drops below a certain value
for each tanβ . The lower left boundary of the areas for tanβ = 44, 45, and 46 comes for the lower

6
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Figure 1: Allowed (shaded) areas in the M1/2 −m0 [M1/2 −A0/M1/2] plane (left [right] plot) for M1/2 > m0.
In the left [right] plot we use tanβ = 48 [∆τ̃1 = 0] and various A0/M1/2’s [tanβ ’s] indicated in the graph. The
dot-dashed [dashed] line corresponds to mh = 125 [126] GeV.

bound on mh in Eq. (2.2), while the somewhat curved, almost horizontal, part of the lower boundary
of the area for tanβ = 44 originates from Eq. (2.8). The dot-dashed and dashed lines correspond to
mh = 125 and 126 GeV respectively. We see that the mh’s which are favored by LHC can be readily
obtained for 47 . tanβ . 50. In the overall allowed region we obtain 122 . mh/GeV . 127.23 and
746.5 . mLSP/GeV . 1433. Also δaµ ≃ (0.35−2.76)×10−10 and so, Eq. (2.7) is satisfied only at the
level of 2.55 to 2.82−σ .

3.3 m0 ≫ M1/2 Region

The interplay of the various requirements of Sec. 2 in the m0 ≫ M1/2 region can be easily under-
stood from Fig. 2, where we present the (shaded) strips in the M1/2 −m0 plane allowed by Eqs. (2.2)
– (2.8) for tanβ = 48 and several A0/M1/2’s indicated in the graph – note that no restrictions from
LUX data are applied to this plot. The upper [lower] boundary along each of these allowed strips arises
from the limit on mχ̃± [ΩLSPh2] in Eq. (2.3a) [Eq. (2.8)]. On the other hand, the lower limit on mh in
Eq. (2.2) causes the termination of the strips at low values of m0 and M1/2, whereas their termination
at high values of m0 is put in by hand in order to avoid shifting the SUSY masses to very large values.
The solid lines indicate solutions with mh = 125.5 GeV – see Eq. (2.2). From this figure, we easily see
the main features of the m0 ≫ M1/2 region: m0 spans a huge range (4− 15) TeV, whereas M1/2 [µ]
remains relatively low (1− 6) TeV [(0.1− 1) TeV]. We observe also that as A0/M1/2 increases from
−2 to 2 the allowed strip moves to larger M1/2’s and becomes less steep.

Varying continuously A0/M1/2 for tanβ = 48, mh = 125.5 GeV and taking into account the LUX
data, we depict in the right plot of Fig. 2 the overall allowed region of the model for m0 ≫ M1/2

in the mLSP − A0/M1/2 plane. On the solid and dashed line, the bounds on mχ̃± in Eq. (2.3a) and
on ΩLSPh2 in Eq. (2.8) are saturated, whereas the restriction from the LUX data on ξ σ SI

χ̃ p yields the
dotted boundary line. Finally, the double-dot dashed boundary lines from the limit on mg̃ in Eq. (2.3b)
provide the maximal and minimal A0/M1/2’s. Note that the allowed regions are almost symmetric about
A0/M1/2 ≃ 2.5. Also, we remark that µ remains almost constant ≃ 100± 20 GeV on the solid lines
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Figure 2: Allowed (shaded) areas in the M1/2 −m0 [mLSP −A0/M1/2] plane (left [right] plot) for tanβ = 48 and
m0 ≫ M1/2. In the left plot we take various A0/M1/2’s indicated in the graph and the black lines correspond to
mh = 125.5 GeV. In the right plot we set mh = 125.5 GeV.

from Eq. (2.3), while it reaches about 1 TeV when the bound in Eq. (2.8) is saturated. Close to the
latter portion of the parameter space ΩLSPh2 calculation is dominated by the χ̃/χ̃2 − χ̃+

1 coannihilation
processes whereas in the region where mχ̃± is near its lower limit in Eq. (2.3a), the χ̃ − χ̃ annihilation
processes contribute more efficiently to the resulting ΩLSPh2. All in all, we obtain −12.8 . A0/M1/2 .
15.8 and 92 . mLSP/GeV . 1084.2. In this area δaµ is well below the lower limit in Eq. (2.7), i.e.
δaµ ≃ (0.04−0.27)×10−10. Therefore, Eq. (2.7) is satisfied only at the level of 2.83 to 2.86−σ .

In the m0 ≫ M1/2 region, where χ̃ has a significant higgsino component – see Table 2 –, σ SI
χ̃ p is

dominated by the t-channel Higgs-boson-exchange diagram contributing to the neutralino-quark elastic
scattering process – for the relevant tree-level interaction terms see e.g. the appendix of Ref. [6]. Espe-
cially for large tanβ ’s, which is the case here, the couplings of H to down-type quarks are proportional
to tanβ and so are the dominant ones. More explicitly, σ SI

χ̃ p behaves as

σ SI
χ̃ p ∝ tan2 β |N1,1|2|N1,3|2/m4

H , (3.3)

where N1,1, N1,2, and N1,(3,4) are the elements of the matrix N which diagonalizes the neutralino mass
matrix and express the bino, wino, and higgsino component of χ̃ , respectively. As a consequence, σ SI

χ̃ p
can be rather enhanced compared to its value in the M1/2 > m0 region, where χ̃ is a pure bino.

This conclusion can be clearly induced by Fig. 3, where we show the allowed (shaded) regions in
the mLSP−ξ σ SI

χ̃ p plane for tanβ = 48. The left [right] panel corresponds to A0/M1/2 ≤ 0 [A0/M1/2 ≥ 0].
The numbers on the various points of each boundary line indicate the corresponding values of A0/M1/2.
The solid, double dot-dashed, and dashed lines correspond to the bounds from Eqs. (2.3a), (2.3b), and
(2.8), respectively – cf. right plot in Fig. 2. The dotted lines arise from the LUX data, whereas the
dot-dashed lines give the lowest possible ξ σ SI

χ̃ p in each case, with ξ ranging from from about 0.013 to
1 (along the dashed line). From these graphs, we infer that, the maximal [minimal] ξ σ SI

χ̃ p is located
in the upper right [lowest left] corner of the allowed regions, at the junction point of the dashed and
dotted [dot-dashed and solid] lines. The overall minimum of ξ σ SI

χ̃ p is obtained in the right plot of Fig. 3
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Figure 3: Allowed (shaded) regions in the mLSP −ξ σ SI
χ̃ p plane for m0 ≫ M1/2, mh = 125.5 GeV and tanβ = 48.

The left [right] panel corresponds to A0/M1/2 ≤ 0 [A0/M1/2 ≥ 0] and the values of A0/M1/2 at the various points
of the boundary lines are indicated. The conventions adopted for the various lines are also shown.

whereas the maximal one is practically the same in both plots. Namely we obtain

1.66×10−12 . ξ σ SI
χ̃ p/pb . 1.03×10−8. (3.4)

As a consequence, the obtained values of ξ σ SI
χ̃ p are within the reach of the forthcoming experiments

like XENON1T [43] and superCDMS [44].
Note, finally, that similar results, as regards the allowed ranges of mLSP and A0/M1/2 and the

predicted ξ σ SI
χ̃ p can be obtained [13] for other tanβ ’s in the range 40−50 too.

3.4 M1/2 > m0 Versus m0 ≫ M1/2 Region

Comparing the right panels of Figs. 1 and 2 we notice that the allowed areas in the M1/2 > m0 and
m0 ≫ M1/2 regions share common A0/M1/2’s for tanβ = 48. Focusing on a such A0/M1/2 value and
selecting the remaining input parameters so that we achieve the central values for mh and ΩLSPh2, we
can implement a more direct comparison between the M1/2 > m0 and m0 ≫ M1/2 solutions found in
our work. To this end, we arrange in Table 2 the values of the input and some output parameters, the
mass spectra and some low energy observables of the model for two characteristic points of the allowed
parameter space with tanβ = 48, A0/M1/2 = −1.5 resulting to ΩLSPh2 = 0.12 and mh = 125.5 GeV.
The various masses of the SUSY particles (gauginos/higgsinos χ̃ , χ̃2, χ̃3, χ̃4, χ̃±

1 , χ̃±
2 , g̃, squarks t̃1, t̃2,

b̃1, b̃2, ũL, ũR, d̃L, d̃R, and sleptons τ̃1, τ̃2, ν̃τ , ẽL, ẽR) and the Higgs particles (h, H, H±, A) are given in
TeV – note that we consider the first two generations of squarks and sleptons as degenerate. From the
values of the various observable quantities, we can verify that all the relevant constraints, but the one
of Eq. (2.7), are met – cf. Sec. 2. For the interpretation of our results, mainly on ΩLSPh2, we also list
the values of the various ∆P’s in Eq. (2.9), the bino, |N1,1|2, and the higgsino, |N1,3|2+ |N1,4|2, purity of
χ̃ . We also include an estimate for the EWSB fine-tuning parameter ∆EW – see Sec. 5.

9
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INPUT PARAMETERS

tanβ 48
−A0/M1/2 1.5
M1/2/TeV 2.821 2.157
m0/TeV 2.522 9.219

OUTPUT PARAMETERS

ht/hτ(MGUT) 1.117 1.107
hb/hτ(MGUT) 0.623 0.763
ht/hb(MGUT) 1.792 1.45

µ/TeV 3.514 0.936
∆EW 2972 216.2

∆τ̃1 (%) 0.35 615
∆H (%) 1.14 94
∆χ̃+

1
(%) 89.96 1.56

∆χ̃2 (%) 89.95 1.928
|N1,1|2 1 0.145

|N1,3|2 + |N1,4|2 0 0.852
MASSES IN TeV OF SPARTICLES AND HIGGSES

χ̃, χ̃0
2 1.305,2.478 0.943,0.960

χ̃0
3 , χ̃0

4 3.509,3.512 1.034,1.959
χ̃±

1 , χ̃±
2 2.479,3.512 0.956, 1.959

g̃ 6 4.936
t̃1, t̃2 3.998,4.729 6.309,7.270
b̃1, b̃2 4.692,4.772 7.267,7.887
ũL, ũR 5.880,5.625 10.1,10.004
d̃L, d̃R 5.880,5.592 10.1,9.992
τ̃1, τ̃2 1.309,2.661 6.749,8.202
ẽL, ẽR 3.162,2.744 9.359,9.276
ν̃τ , ν̃e 2.656,3.160 8.201,9.359
h,H 0.1255,2.640 0.1255,3.67

H±,A 2.641,2.640 3.671,3.67
LOW ENERGY OBSERVABLES

104BR(b → sγ) 3.27 3.3
109BR(Bs → µ+µ−) 3.74 3.02

R(Bu → τν) 0.984 0.991
1010δaµ 0.68 0.227
ΩLSPh2 0.12
σ SI

χ̃ p/pb 3.35 ·10−12 7.28 ·10−9

σ SD
χ̃ p /pb 6.67 ·10−10 8.57 ·10−6

Table 2: Input/output parameters, sparticle and Higgs masses, and low energy observables for tanβ = 48,
A0/M1/2 =−1.5 and M1/2 > m0 (second column) or m0 ≫ M1/2 (third column).
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The results of the two columns of Table 2 reveal that the M1/2 > m0 and m0 ≫ M1/2 solutions ex-
hibit a number of important differences: First of all, in the m0 ≫ M1/2 region, m0 acquires considerably
larger values, while µ remains quite smaller than its value for M1/2 > m0. As a consequence, the Higgs
bosons (H, H±, and A) acquire larger masses and the whole sparticle spectrum, with the exception
of the neutralinos and charginos, becomes heavier. As a by-product, the various observables besides
ΩLSPh2 acquire values closer to non SUSY ones. E.g., δaµ is even smaller than in the M1/2 > m0

region. Note that the latter region is tightly constrained by BR(Bs → µ+µ−), which is well suppressed
for m0 ≫ M1/2. Similar values for the ratios hm/hn with m,n = t,b,τ are obtained in both cases with
results slightly closer to unity for m0 ≫ M1/2.

To shed more light on the mechanisms which ensure ΩLSPh2 com-
M1/2 > m0 REGION

τ̃1τ̃∗
1 → bb̄ 69%

τ̃1τ̃∗
1 → ττ̄ 15%

m0 ≫ M1/2 REGION

χ̃ χ̃+
1 → ud̄ 18%

χ̃2χ̃+
1 → ud̄ 8%

χ̃ χ̃+
1 → tb̄ 7%

χ̃ χ̃+
1 → νeē 6%

χ̃ χ̃ →W−W+ 6%
χ̃ χ̃ → ZZ 5%

Table 3: Processes which
contribute to 1/ΩLSPh2 more
than 5% and their relative
contributions for M1/2 > m0

and m0 ≫ M1/2.

patible with Eq. (2.8) for M1/2 > m0 and m0 ≫ M1/2, we arrange in Ta-
ble 3 the relative contributions beyond 5% to 1/ΩLSPh2 of the various
(co)annihilation processes for the inputs of Table 2. From these results,
we infer that a synergy between χ̃ − τ̃1 coannihilation and the H-funnel
mechanism is well established in the M1/2 >m0 region thanks to the quite
suppressed ∆τ̃1 and ∆H achieved. On the other hand, for m0 ≫ M1/2 the
χ̃/χ̃2 − χ̃+

1 coannihilations are activated because of the low ∆χ̃+
1

’s and
∆χ̃2’s. However, in the latter case the annihilation channels to W−W+

and ZZ conserve their importance due to the large higgsino mixing of χ̃ .
Due to this fact mLSP is confined close to µ and, as a bonus, the result-
ing σSI

χ̃ p’s are accessible to the forthcoming experiments [43, 44]. On the
other hand, for M1/2 > m0, χ̃ is an almost pure bino with mLSP ≃ M1/2/2
and σSI

χ̃ p well below the sensitivity of any planned experiment. In both
regions, finally, σSD

χ̃ p turns out to be much lower than the reach of Ice-
Cube [45] (assuming χ̃ − χ̃ annihilation into W+W−) and the expected
limit from the large DMTPC detector [42]. Therefore, the LSPs predicted
by our model can be detectable only by the future experiments which will

release data on σSI
χ̃ p and for m0 ≫ M1/2.

4. Deviation from Yukawa Unification

In the overall allowed parameter space of our model [12, 13], we find the following ranges for the
ratios hm/hn with m,n = t,b,τ:

0.98 . ht/hτ . 1.29, 0.60 . hb/hτ . 0.65, and 1.62 . ht/hb . 2 for M1/2 > m0; (4.1a)

1.00 . ht/hτ . 1.50, 0.75 . hb/hτ . 0.79, and 1.20 . ht/hb . 2 for m0 ≫ M1/2 (4.1b)

We observe that, the required deviation from YU is not so small and turns out to be comparable to the
one obtained in the monoparametric case – cf. Ref. [10]. In spite of this, the restrictions from YU
are not completely lost but only somewhat weakened. Actually, our model is much closer to YU than
generic models with lower tanβ ’s where the Yukawa coupling constants can differ even by orders of
magnitude. Also, the deviation from YU is generated by Eq. (1.2) in a natural, systematic, controlled
and well-motivated way.

11



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
1
5

CMSSM with Generalized Yukawa Quasi-Unification: An Update C. Pallis

-1.5 -1.0 -0.5 0.0 0.5 1.0
1.0

1.5

2.0

2.5

3.0

  ρ = 0.5 
  ρ = 0.4     
  ρ = 0.3

 

 

Im
 α

 1

Re α
 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

  ρ = 0.5 
  ρ = 0.4     
  ρ = 0.3

 

 

Im
 α

 2

Re α
 2

-1.5 -1.0 -0.5 0.0 0.5 1.0
1.0

1.5

2.0

2.5

3.0

  ρ = 0.5 
  ρ = 0.4     
  ρ = 0.3

 

 

Im
 α

 1

Re α
 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

  ρ = 0.5 
  ρ = 0.4     
  ρ = 0.3

 

 

Im
 α

 2

Re α
 2

Figure 4: The complex parameters α1 and α2 for various ρ’s indicated in the graphs for tanβ = 48, A0/M1/2 = −1.5,
mh = 125.5 GeV and M1/2 > m0 (upper plots) and m0 ≫ M1/2 (lower plots) – see Table 2.

To show explicitly it, we below extract values of ρ , α1, and α2, which leads to the ratios hm/hn with
m,n = t,b,τ , encountered in the characteristic examples presented in Table 2. Since from Eq. (1.2) we
have only two equations and five real unknowns we can find infinitely many solutions. Some of these
solutions are shown Fig. 4 for M1/2 > m0 (upper plots) and m0 ≫ M1/2 (lower plots) and various ρ’s
indicated therein. Since the equation for hb/hτ depends only on the combination ρα1 its solutions, for
fixed ρ , lie on a certain curve in the α1 complex plane, as shown in the left upper and lower panels of
Fig. 4. For each α1 and ρ in these panels, we find various α2’s, depicted in the right panels of Fig. 4,
solving the equation for ht/hτ . Observe that the equation for ht/hτ depends separately on α2 and ρ
and, thus, its solutions do not follow any specific pattern in the α2 complex plane. Scanning the range
of ρ from 0.3 to 3 and we can find solutions in the α1 and α2 planes only for the lower values of this
parameter (up to about 0.6) for both allowed regions of the model. These solutions are very similar to
the ones displayed in Fig. 4 for all the possible values of the ratios of hm/hn with m,n = t,b,τ allowed
by the constraints of Sec. 2. Consequently we can safely conclude that these ratios can be readily
obtained by a multitude of natural choices of the parameters ρ , α1, and α2 everywhere in the overall
allowed parameter space of the model.
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Figure 5: M1/2 and ∆EW as functions of mLSP for mh = 125.5 GeV, ΩLSPh2 = 0.125 and various A0/M1/2’s indicated on
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5. Naturalness of the EWSB

The fact that, in our model, M1/2, m0, and µ generally turn out to be of the order of a few TeV
puts under some stress the naturalness of the radiative EWSB giving rise to the so-called little hierarchy
problem. To quantified somehow this issue we introduce the EWSB fine-tuning parameter

∆EW ≡ max
(

|Ci|
M2

Z/2

)
with

(
Cµ ,CH1CH2

)
=

(
−µ2,

m2
H1

tan2 β −1
,−

m2
H2

tan2 β
tan2 β −1

)
. (5.1)

Here i= µ,H1,H2 and mH j is the soft SUSY breaking mass of H j with j = 1,2. In most of the parameter
space explored, ∆EW is dominated by the term Cµ .

Focusing on the values of the parameters which ensure ΩLSPh2 ≃ 0.125, we present, in the left
[right] panel of Fig. 5, M1/2 (solid line) and ∆EW (dashed line) as functions of mLSP for M1/2 > m0

[m0 ≫ M1/2], tanβ = 48, mh = 125.5 GeV, and negative A0/M1/2’s indicated in the graphs. The
A0/M1/2’s fulfilling these conditions are shown in Fig. 3 of Ref. [12] for M1/2 > m0 and in the left panel
of Fig. 3 for m0 ≫ M1/2. We clearly see that, in both regions, the resulting ∆EW is almost constant and
∆EW ∼ 2000 for M1/2 > m0 whereas ∆EW ∼ 200 for m0 ≫ M1/2 in agreement with the values shown in
Table 2. In other words, ∆EW in the M1/2 > m0 area becomes about a factor of ten larger than its value
in the m0 ≫ M1/2 area despite the fact that the resulting mLSP’s are comparable. The crucial difference
between the two regions, though, is the lower µ’s encountered for m0 ≫ M1/2 – see Table 2 – which
largely influences the ∆EW computation – see Eq. (5.1). We can conclude, therefore, that the m0 ≫M1/2

solutions are more natural regarding the EWSB fine-tuning than those for M1/2 > m0.

6. Conclusions

We investigated the compatibility of the generalized asymptotic YQUCs in Eq. (1.2), which yield
acceptable masses for the fermions of the third family, with the CMSSM for µ > 0 and 40≤ tanβ ≤ 50.
We imposed phenomenological constraints originating from the mass of the lightest neutral CP-even
Higgs boson, the lower bounds on the masses of the sparticles, and B-physics. We also considered
cosmological constraints coming from ΩLSPh2 and the LUX data on ξ σ SI

χ̃ p.
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We found that χ̃ can act as a CDM candidate in the following two separated regions classified in
the HB of the EWSB:

• The M1/2 > m0 region, where the LSP turns out to be an essentially pure bino and ΩLSPh2 is
reduced efficiently, thanks to H-pole enhanced stau-antistau coannihilations, so that it is compat-
ible with the recent data on BR(Bs → µ+µ−). The LHC preferred values mh ≃ (125−126) GeV
can be accommodated for 48 . tanβ . 50, whereas mLSP comes out to be large (∼ 1 TeV). As a
consequence, the χ̃ direct detectability is very difficult and the EWSB fine-tuning becomes rather
aggressive since ∆EW

−1 ∼ 0.035%.

• The m0 ≫ M1/2 region, where the LSP is a bino-higgsino admixture and has an acceptable
ΩLSPh2 thanks to χ̃ − χ̃ annihilations (for low mLSP’s) and the χ̃/χ̃2 − χ̃+

1 coannihilations (for
large mLSP’s). Fixing mh = 125.5 GeV favored by the LHC, we found a wider allowed parameter
space with 40 . tanβ . 50, −11 . A0/M1/2 . 15, 0.09 . mLSP/TeV . 1.1 and milder EWSB
fine-tuning since ∆EW

−1 ∼ 0.5%. The LSP is possibly detectable in the planned CDM direct
search experiments which look for σ SI

χ̃ p.

In both cases above, the restriction on δaµ is only satisfied at a level of above 2− σ and the
required deviation from YU can be easily attributed to a multitude of natural values of the relevant
parameters within a PS SUSY GUT model.
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