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de Sitter vacua at the end of inflation.
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1. Old-minimal higher curvature supergravity

Supersymmetric theories contain an equal number of fermionic and bosonic degrees of free-
dom. On-shell this leads to an equal number of propagating fermionic modes and propagating
bosonic modes. Off-shell, the number of propagating modes do not always match, and auxiliary
fields are essentially introduced. For the old-minimal supergravity [1] we have the multiplet

ea
m , ψ

α
m , M , bm. (1.1)

The graviton ea
m and the gravitino ψα

m contain the propagating modes whereas M is a complex
auxiliary scalar and bm a real auxiliary vector. This assignment of auxiliary and propagating modes
holds only for the supergravity theories with no higher curvature terms. When higher curvature
terms are introduced some of the auxiliary fields become propagating [2]. For the old-minimal one
finds a pair of massive chiral multiplets [3] and for the new-minimal one finds a massive vector
multiplet [4]. The 20/20 R+R2 has been constructed in the linearized level [5], using a formalism
which can also describe higher superspin theories [6–8].

Here we will work with the old-minimal supergravity. As we will see, these new multiplets
which arise due to the dynamical auxiliary fields can have novel applications for supersymmetry
breaking, inflation, initial conditions problem and late time cosmology. Therefore, higher curvature
supergravity is equipped with the tools to address various aspects of modern cosmology.

We will work with a generic form of old-minimal higher curvature supergravity [3, 9–11]

L =−3
∫

d4
θ E f (R,R̄) (1.2)

which can be also written as

L =
3
8

∫
d2

Θ2E (D̄2−8R) f (R,R̄)+ c.c. (1.3)

up to total derivatives. Here R is the supergravity chiral superfield and 2E is the chiral density,
while E is the full superspace density. For the moment we set MP = 1; we will restore dimensions
later. In component form, the bosonic sector of (1.3) is [10, 11]

e−1L =− 1
2
( f +M fM + M̄ fM̄−4MM̄ fMM̄−2bmbm fMM̄)R− 3

4
fMM̄R2

+3 fMM̄ ∂M∂M̄−3 fMM̄ (∇mbm)
2 + i( fM∂

mM− fM̄∂
mM̄)bm

− i( fMM− fM̄M̄)∇
mbm−

1
3

MM̄ { f −2( fMM+ fM̄M̄)+4MM̄ fMM̄}

+
1
3

bmbm { f + fMM+ fM̄M̄−4MM̄ fMM̄−bnbn fMM̄}

(1.4)

where f = f
(
−1

6 M,−1
6 M̄
)
, fM = ∂ f/∂M and fM̄ = ∂ f/∂M̄. A very interesting discussion on

(1.4) can be found in [10]. Note that this is a theory of curvature and curvature square terms only,
as far as gravitation is concerned. Nevertheless it does not propagate the same degrees of freedom
as standard gravity. The R+R2 theory on top of the dynamical degrees of freedom of the metric,
also gives rise to an additional real scalar propagating degree of freedom known as the scalaron. For
a gravitational theory the counting of the degrees of freedom ends here. For the supergravitational

2



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
4
7

Supergravity cosmology Fotis Farakos

embedding, as can be seen from (1.4), the scalaron comes with supersymmetric scalar partners (and
of course fermion superpartners which we have not included (1.4)). The counting of the total scalar
supersymmetric degrees of freedom is [2, 10–12]

• M: 2 real scalar degrees of freedom,

• ∇mbm: 1 real scalar degree of freedom,

• R2→ scalaron: 1 real scalar degree of freedom.

The above degrees of freedom reside inside appropriate supersymmetric multiplets as shown in [2],
and are the reason why one needs exactly two chiral superfields (S and T ) to perform the duality
of the theory (1.4) to standard supergravity; the degrees of freedom should match.

These generic pure supergravity self-couplings can be brought in first order form by introduc-
ing appropriate Lagrange multipliers, giving rise to an equivalent theory which contains two chiral
superfields coupled to standard supergravity, denoted by T and S . We start from the Lagrangian

L =
3
8

∫
d2

Θ2E (D̄2−8R) f (S ,S̄ )+ c.c.+6
∫

d2
Θ2E T (S −R)+ c.c. (1.5)

Indeed, from the superspace equations of motion of T we have S =R which leads to Lagrangian
(1.3). On the other hand we may rewrite Lagrangian (1.5) as

L =
3
8

∫
d2

Θ2E (D̄2−8R)
[
T + T̄ + f (S ,S̄ )

]
+ c.c.

+6
∫

d2
Θ2E T S + c.c.

(1.6)

which is nothing but standard supergravity

L =
3
8

∫
d2

Θ2E (D̄2−8R)e−
1
3 K + c.c.+

∫
d2

Θ2E W + c.c. (1.7)

with Kähler potential

K =−3ln
{
T + T̄ + f (S ,S̄ )

}
(1.8)

and superpotential

W = 6T S . (1.9)

Thus, the bottom line of the above discussion is that the standard supergravity theory coupled
to the chiral superfields T and S with a Kähler potential given by (2.4) and a superpotential
given by (2.5) is equivalent to a supergravity theory containing only pure supergravity sector and
its higher derivatives. This procedure was initially established in the language of superconformal
supergravity in [3], and here we have followed it closely. The function f (R,R̄) in principle may
contain terms which violate the R-symmetry [11] .
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2. R-symmetric models: Starobinsky inflation

The embedding of the Starobinsky model of inflation in old-minimal supergravity in super-
space consists of reproducing the Lagrangian

e−1L =−M2
P

2
R+

M2
P

12m2 R2. (2.1)

This is achieved by [3, 9, 11, 13]

L =−3M2
P

∫
d4

θ E
[

1− 4
m2 RR̄+

ζ

3m4 R2R̄2
]
. (2.2)

Modifications and further properties can be found in [12,14–25]. Lagrangian (2.2) when expanded
to components yields R2 terms and kinematic terms for M and bm. One may work directly with
(2.2) but it is more convenient to turn to the dual description in terms of two chiral superfields: T

and S . The equivalent description of the above higher curvature supergravity reads

L =
∫

d2
Θ2E

[
3M2

P

8
(D̄2−8R)e

− K
3M2

P

]
+ c.c.+

∫
d2

Θ2E W + c.c., (2.3)

with Kähler potential

K =−3M2
P ln
{

1+
T + T̄

MP
−4

S S̄

M2
P

+
1
3

ζ
S 2S̄ 2

M4
P

}
, (2.4)

and superpotential

W = 6mT S . (2.5)

For the lowest components we have S |= S and T |= T . For appropriate ζ -parameter values one
can see that the fields ImT and S are strongly stabilized to S = 0 and ImT = 0 [9,11,13]. Therefore
one finds the effective model

e−1L =−M2
P

2
R− 1

2
∂ϕ∂ϕ− 3

4
m2M2

P

(
1− e−

√
2
3 ϕ/MP

)2
. (2.6)

From the analysis of the perturbations during inflation [26] and Planck data [27, 28] we get

m' 1.3×10−5MP. (2.7)

For a discussion on the new-minimal supergravity embedding and the massive vector multiplet
see [9, 29–35].

3. Initial conditions problem

In this section we work with the R-symmetric models and we also assume large ζ -parameter
in (2.4), such that S is strongly stabilized. We want to study the impact of the dynamical auxiliary
fields of supergravity on the initial conditions problem [35].
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Let us first remind the reader that for R+ R2 gravity, the minimum initially homogeneous
region required for inflation to start has radius

Dhomog(tP, wR2) = devent(tP, tmax)+ H−1(tINF)
a(tP)

a(tINF)

∼ 4884 lP + H−1(tINF)
1
47
∼ 8.7×103 lP

(3.1)

which is a rather large number. This is a result of the kinetic energy domination for ρ � m2M2
P,

since the Starobinsky model inflationary potential is bounded from above.
Supergravity on the other hand, allows to have access to M4

P energy densities, if ImT takes
large values. First, for large ImT values this component also becomes dynamical and after the
redefinition

ϕ =

√
3
2

MP ln [1+2(ReT/MP)] ,

b =
√

6ImT,
(3.2)

we have

e−1L = −M2
P

2 R− 1
2 ∂ϕ∂ϕ− 1

2 e−2
√

2
3 ϕ/MP∂b∂b−VsugraR2(ϕ,b), (3.3)

where

VsugraR2(ϕ,b) =
3
4

m2M2
P

(
1− e−

√
2
3 ϕ/MP

)2
+

1
2

m2e−2
√

2
3 ϕ/MPb2. (3.4)

Second, the field S remains strongly stabilized and will not affect the evolution.
We now turn to a flat FLRW background and study the evolution of the fields and of the

spacetime. The equations of motion for the fields ϕ and b read

ϕ̈ +3Hϕ̇ +

√
3
2

m2MPe−
√

2
3 ϕ/MP

(
1− e−

√
2
3 ϕ/MP

)
−
√

2
3

e−2
√

2
3 ϕ/MP

(
m2b2− ḃ2)= 0,

(3.5)

and

b̈+3Hḃ−2

√
2
3

ϕ̇ ḃ+m2b = 0. (3.6)

The Friedmann equation reads

3H2M2
P =

1
2

ϕ̇
2 +

1
2

e−2
√

2
3 ϕ/MP ḃ2 +VsugraR2(ϕ,b). (3.7)

We want to study the evolution of this system which has been also discussed in [36–38] and in a
different context in [39]. We choose initial conditions such that the initial energy density, ρinit =

M4
P, is equally partitioned between the kinetic and the potential terms,

V (ϕinit, binit) = ρkin, init =
1
2

M4
P. (3.8)
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An example of such a set of values that realize these initial conditions is,

(ϕinit,binit) = (0,
M2

P

m
) and ϕ̇init = ḃinit =

1√
2

M2
P . (3.9)

The system of the fields (ϕ,b) starts from nonzero values such that V (ϕinit,binit) ∼M4
P. Due

to the small mass of the b field, mb�H, the ϕ will roll down the potential (3.4) which for constant
b has the form

VsugraR2(ϕ)∼V0e−2
√

2
3 ϕ/MP . (3.10)

Initially, the approximation ḃ∼ 0 is a good one according to the numerical results. For the potential
(3.10) the Friedmann equation have an exact solution of power law form given by the expressions

a ∝ ainittn , n = 3/4

ϕ =

√
3
2

ln

(√
16
15

V0

M2
P

t

)
.

(3.11)

We see that n = 2/[3(1+w)] = 3/4. This corresponds to a barotropic fluid with equation of state
w = −1/9, that is a negative pressure. Numerically we find that in the pre-inflation period the
energy density decreases with a slower rate,

wsugraR2 .−1/9, asugraR2(t)& t3/4, ρsugraR2 & ρinita−8/3 , (3.12)

because the actual system is a two-field one.
The approximation (3.11), to consider a constant equation of state w =−1/9, yields an event

horizon radius devent ∝ (tmax/tP)1/4 ∼ 87 lP for tmax = 105 tP. The exact result can be obtained
numerically for the varying equation of state wsugraR2 (3.12). When we integrate from the Planck
time until the beginning of inflation, which is found to be tINF = 0.74×105 tP, we numerically take

devent
(
tinit = tP, tINF, wsugraR2

)
∼ 29H−1

P . (3.13)

As in the R+R2 gravity case, the event horizon increases as long as w > −1. It remains con-
stant when the field configuration lies in the plateau with vanishing kinetic energy, w ∼= −1. The
numerical value of the total event horizon reads

devent
(
tinit = tP, tmax, wsugraR2

)
∼ 46H−1

P ∼ 80 lP . (3.14)

The minimum initially homogeneous region required for inflation to start in the supergravity case
has radius

Dhomog(tP, wsugraR2) = devent(tP, tmax)+ H−1(tINF)
a(tP)

a(tINF)

∼ 80 lP + H−1(tINF)
1

5407
∼ 98 lP .

(3.15)

That is, right after the Planck time the initial homogeneous volume is required to have radius at
least 68 times the Planck length. The minimum number of the CDR is here

Vflat(Dhomog,wsugraR2)

Vflat(lP)
=

4
3 πD3

homog
4
3 πl3

P
∼ 106 CDR . (3.16)
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Compared to the non-supersymmetric case, in the R+R2 supergravity the required initial homoge-
neous volume is about half a million times smaller,

#CDRR2

#CDRsugraR2
=

D3
homog(tP, wR2)

D3
homog(tP, wsugraR2)

∼ 7×105 . (3.17)

This is a significant relaxation of the initial conditions problem.
In recent work [11] there has been found a new class of R-symmetry violating R+R2 models

which can both provide an inflationary sector and a hidden supersymmetry breaking sector, without
invoking any matter superfields. These models we review in the next section. The new properties of
these models which distinguish them from the R-symmetric R+R2 old-minimal supergravity is that
at the end of inflation the S field contribution starts to become important and the field configuration
is driven towards the supersymmetry breaking vacuum. For these models it is also expected that
the initial conditions problem is similar to the R-symmetric case that we analyzed here.

4. R-violating models

In this section we will also introduce R-violating terms. These models can provide inflationary
candidates which fit the Planck data. Moreover, due to the supergravity dynamical auxiliary fields
there is a new class of vacua which break supersymmetry. Hence the issue of vacuum selection is
raised (see for example [40, 41]). It is interesting that the inflationary trajectory terminates in the
supersymmetry breaking vacua.

An extensive discussion on these models can be found in [11]. Here we discuss their properties
using a characteristic example

f (R,R̄) = 1+ γ
R

m
+ γ

R̄

m
−2

RR̄

m2 +
1
9

ζ
R2R̄2

m4 (4.1)

where the second and third term source the R-symmetry breaking, and the equivalent Kähler po-
tential is

K =−3M2
P ln
{

1+
T + T̄

MP
+ γ

S + S̄

MP
−2

S S̄

M2
P

+
1
9

ζ
S 2S̄ 2

M4
P

}
(4.2)

while the superpotential is

W = 6mT S . (4.3)

The scalar potential of this theory (which can be found in [11]) will in general have two classes
of vacuum solutions. First there is the trivial vacuum

〈T 〉= 〈S〉= 0 (4.4)

with no supersymmetry breaking and vanishing vacuum energy. Then there is the new class of
vacua

〈T 〉= MP〈t〉+ iMP〈b〉= MP t0
〈S〉= MP〈s〉+ iMP〈c〉= MP s0

(4.5)
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which will break supersymmetry with vanishing vacuum energy or small positive (or negative)
vacuum energy depending on the parameters ζ and γ . For a Minkowski vacuum it is possible to
relate s0 to ζ and γ as follows

ζ =
1+2s2

0

3s4
0

(4.6)

γ = −2s0 +
2+4s2

0
3s0

. (4.7)

Therefore, the parameters ζ and γ for Minkowski vacua are parameterized by the vacuum expec-
tation value of the s-field. An analysis of the inflationary properties of this model can be found
in [11], where it is shown that it gives predictions consistent with the Planck data.

To further illustrate the features of the model we turn to a simple example where

ζ = 8 , γ = 1. (4.8)

The scalar potential will have a supersymmetry preserving vacuum (4.4) and on top of that there
will be the vacuum

〈T 〉= MPt0 =
2
3

MP

〈S〉= MPs0 =
1
2

MP

(4.9)

which breaks supersymmetry with vanishing vacuum energy. A small deformation of the γ or ζ

parameters leads to de Sitter, or anti-de Sitter vacua

ζ = 8 , γ & 1→ de Sitter vacuum with small vacuum energy. (4.10)

Let us also give a qualitative explanation of the inflationary predictions for this example. First, the
fields b and c will be strongly stabilized to b = 0 and c = 0. Secondly, for large t values (t > 30) it
is consistent to approximate

st '
5
3

t−1� 1. (4.11)

This leads to the inflationary effective Lagrangian for t (s is strongly stabilized to s' 0)

e−1L =−M2
P

2
R− 3M2

P

(1+2st +2t)2 ∂ t∂ t−6m2M2
P

(t− st)
2

(1+2st +2t)2 . (4.12)

After a redefinition of the t field

t =
1
2

(
e
√

2
3 ϕ/MP−1−2st

)
(4.13)

we have (ignoring derivatives on st because they will be highly suppressed)

e−1L =−M2
P

2
R− 1

2
∂ϕ∂ϕ− 3

2
m2M2

P

(
1− (1+4st)e−

√
2
3 ϕ/MP

)2
. (4.14)
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From the number 2
3 in the exponential we see that the model is similar to the original Starobinsky

model and will give rise to the similar amount of gravitational waves which is favored by the Planck
collaboration data [27, 28]. Note that for the Starobinsky model in supergravity st = 0 always. For
an approximate number of N(t∗) ' 55 e-folds, we find the value t∗ = 50. Therefore the tensor-to-
scalar ratio r [26] is

r = 16ε(t∗)' 8×10−3 (4.15)

at the pivot scale t∗. Thus the model predicts very small amount of gravitational waves. Finally, for
a ζ -parameter of order 10, s0 is of order a half (as happens in our example), and the gravitino and
inflaton mass turn out to be

m2
3/2 ' m2 , m2

in f '
1
4

m2 . (4.16)

We see that these models imply a relation of the inflaton mass to the gravitino mass m3/2 via the
new scale m, but notice that

m2
3/2 > m2

in f . (4.17)

Therefore higher curvature supergravity may account both for the inflationary phase and for
the de Sitter vacuum at the end of inflation [11]. This property is related to the auxiliary fields
which have become dynamical, due to the R2 terms.
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