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1. Introduction to Aspects of Confinement

1.1 Confinement

Confinement is a property of QCD which implies a growing force between color charged
particles when increasing their separation distance. The gluonic mediators of the strong force in
the confined phase between a quark bound state, are constrained in a tube like region. The basic
characteristic of confinement is that the potential energy between a static heavy quark-antiquark
potential is a linearly increasing function with the separation between the quarks. The proportion-
ality constant is defined as the string tension, and is an indication of how strong is the force. The
linear static potential corresponds to an area law for Wilson loop expectation values.

The linear growth in the potential is not indefinite. When the separation between the quark
bound state passes a critical value then the confining tube breaks and a creation of two new bound
states involving lighter quarks is energetically preferable. The potential of the initial bound state
at this phase becomes flat. In practice this phenomenon implies that in the confining phase the
color charged particle states are absent, a statement that can also serve as an alternative definition
of confinement.
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1.2 The Property of the QCD Spectrum

The hadronic bound states of baryons and mesons of the same flavor quantum numbers, have
spin that depends linearly with their squared mass. This is a striking feature and can be approxi-
mated by the spinning stick model, while rotating around its midpoint. The simple exercise gives
for the angular momentum and the mass the relation

J =
m2

2πσ
, (1.1)

with the constant 1/(2πσ) being the Regge slope. Comparing or fitting the result to the data, we
obtain an approximate value of the string tension σ ≃ 0.9GeV/ f m. Notice that the mapping of the
Regge trajectories to the solid stick problem is only a naive extrapolation. However, it is enough to
provide the physical intuitive picture that the QCD interactions have essential differences compared
to other interactions and approach an effective description by the "qcd string" and the formation of
the color electric flux tube.

1.3 How to Probe the Confinement

To examine whether or not the system is in a confined phase we should interact somehow with
it and make a measurement. There are certain observables that can be used for this purpose, where
few of them we list below.

1.3.1 The Wilson Loop and the Static Potential

The expectation values of the Wilson loop observable is possibly the most commonly used
quantity to probe confinement. The idea is to introduce in the theory a static heavy meson probe,
consisting of a static quark and antiquark separated by a distance L. The two fermions are consid-
ered to be very heavy, therefore as the time passes the quarks remain fixed in space, forming two
infinite-in good approximation- length lines, as trajectories in the space-time.

The Wilson loop is defined as the trace in the given representation of the path ordered expo-
nential

W (C) ∝ TrPeig
∮

C dxµ Aµ (x) , (1.2)

where the integral is taken along the orthogonal loop C and Aµ are the gauge fields of the theory.
It can be shown that the Wilson loop expectation value can be expressed in terms of the energy
eigenstates of the corresponding Hamiltonian. At the limit of large time T the energy that dominates
the sum is the interaction energy between the color sources

⟨W (C)⟩= ∑
n
|cn|2e∆EnT ∼ e−∆EnT ∼ e−V (L)T ,T → ∞ . (1.3)

Therefore, in the confined phase of the theory, V (L)∼ σL, implies an area law for the expectation
value of the Wilson loops

W (C)∼ e−σLT = e−σArea(C) . (1.4)

Notice that in certain large N Wilson loop computations may be a problem in the order of taking
the large T and N limits, where special care need to be taken.
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1.3.2 Center Symmetry and Other observables

There are several other probes of confinement additional to the Wilson loop that are re-
lated to the center symmetry. The center of the group is made by the group elements which
commute with all the elements of the group. In the case of the SU(N) group, this is the ZN :
{exp(2πin/N)IN} := {znIN} of SU(N). There are only N representations of ZN , and the N-ality
k of a given representation is given by the number of boxes modN in the corresponding Young
Tableau. Having a matrix representation M of N-ality k of the Lie group, then the zg element in
the representation follows: M[zg] = zkM[g], where z ∈ ZN , g ∈ SU(N). Notice that the N-ality will
appear also in the k-strings, and their dual description of the higher representation Wilson loops.

A probe of confinement is the Polyakov loop which is a Wilson loop winding around a finite
lattice in the periodic time direction. This is an observable that is affected under center symme-
try transformations unlike the action which remains invariant and therefore its expectation value
signals the center symmetry breaking. In an SU(N) gauge theory with N-ality zero matter fields,
it is known that the unbroken ZN center symmetry phase corresponds to the zero Polyakov loop
expectation value and can be identified with the confined phase. In higher temperatures the center
symmetry is broken and the expectation values of the Polyakov loop is non-zero. This is the de-
confined phase of the theory. Therefore the Polyakov loop may serve as an excellent observable of
confinement.

There exist similar observables generalizing the idea of the Polyakov loop. This is done by
generalizing the center symmetry transformation to a singular gauge transformation, which is not
a true gauge transformation

U0(x, t)→ g(x, t)U0(x, t)g(x+1, t) , (1.5)

Aµ → g(x)Aµg†(x)− i
g

g(x)∂µg†(x) , (1.6)

where g(x, t) is a non-periodic function in the periodic time direction, up to a center symmetry
transformation g(x,T0 +1) = z∗g(x,1). The singular gauge transformation does not leave the action
invariant and create a singular loop of quantized magnetic flux, a center vortex. To create the center
vortex along the loop C at time t we need an operator B(C), the ’t Hooft loop operator. To examine
the behavior of the loop in the confining theory, we need to consider in 3-dim timeslice a loop
C that is topologically linked to another loop C′ (in a similar way two rings linked in a chain).
The transformation then gives B(C)U(C′) = zU(C′)B(C) , with z ∈ ZN . U(C) is the Wilson loop
holonomy defined as

U(C) ∝ ei
∮

dxµ Aµ (x) . (1.7)

’t Hooft [1] showed that an area law behavior for W (C) implies a perimeter law fall of for B(C)

which signals confinement.
There are additional probes of confinement which we do not mention in this short review, for

a more complete discussion see [2]. In this section we have shortly introduced the Wilson loops,
where an area law implies confinement. The Polyakov lines, where a vanishing expectation value
shows confinement. The ’t Hooft loops where a perimeter law indicates that we are in the confined
phase of the theory. The probes we have mentioned are different but can be thought as being
generalizations of each other, along the lines we have briefly described.
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1.4 The String Tension

The static potential between a heavy meson in zero temperature is a linearly increasing func-
tion at large separation distances L with the proportionality constant given by the string tension σ
as

V (L) = σL+
c
L
. (1.8)

For the linear behavior is responsible the shape of the world-sheet of the string, while the quantum
fluctuations of the string generate the universal subleading Lüsher term. At zero temperature the
string tension is constant. Departing from the zero temperature and remaining in the confined phase
of the theory, the string tension is decreased. More particularly for large separation lengths, the low
temperature expansion of the string tension was found to be [3, 4]

σ(T ) = σ0 −
(d −2)π

6
T 2 + ∑

n≥3
αnT n , (1.9)

where σ0 is string tension in zero temperature. The second term is similar to the Lüsher term of
the static potential and is independent of the gauge group of the theory considered. Certain higher
order terms can be found to be absent using a version of open-closed string duality [5].

1.5 The Chromo-Electric Flux Tube

The chromo-electric flux tube formed by the color electric field energy density between the
static QQ̄ pair and is constrained in a tube-like region. Equivalently the tube can be thought as
being created by the fluctuations of the color fields, which are constrained in tube-like shape.

The chromo-electric flux tube has interesting properties and is of almost equal importance
with the string tension in confining theories. Its broadening related to the width of the flux tube at
the middle of the QCD string has been found to be increased logarithmically with the size of the
bound state [6]. This is a characteristic of the confining force and it could serve as a property of
confinement itself. This phase is called the rough phase where the mean squared width of the flux
tube diverges logarithmically with the inter-quark distance when it goes to infinity. Lattice compu-
tations have verified the logarithmic broadening using heavy mesons as probes in zero temperature,
for example in [7, 8]. Interestingly, it appears that the logarithmic broadening is a property of even
the baryonic flux tube junction [9]. This clearly signals a universal behavior in chromo-electric
field energy density in the confining phase, which is irrelevant of the probe used. Departing from
the zero temperature studies to the finite temperature, it has been found that the broadening changes
to linear close to the phase transition [10, 8].

To compute the logarithmic broadening we need to study the effective width of the flux tube.
This can be done by placing the heavy QQ̄ bound state in our confining theory, which is associated
with the orthogonal Wilson loop W (C). The loop has one large time direction and another spatial
with length L, being the size of the bound state. Along this direction is where the flux tube is
formed. To probe the flux tube, we use another smaller Wilson loop P(c) on the plane above the
QQ̄ Wilson loop in the center of the large loop and we measure the flux passing through it. The
mean square width of the flux tube is defined as

w2 =

∫
dx⊥x2

⊥E (x)∫
dx⊥E (x)

, (1.10)
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where x⊥ are the transverse directions and E (x) is the chromo-electric field energy density

E (x) =
⟨W (C)P(c)⟩−⟨W (C)⟩⟨P(c)⟩

⟨W (C)⟩
(1.11)

measured with the use of the two Wilson loops W (C) and P(c).

1.6 More Involved Bound States

The meson bound states is a common way to probe confinement. More involved states in an
SU(N) theory exist and have very interesting properties. Such states are the k-strings, combinations
of QQ̄ pairs where each quark it is separated by the anti-quark by distance L and each pair is
separated by the other by distance ε , with L ≫ ε . There is a common flux tube for the bound state
with a static potential

V = σkL+
c
L
, (1.12)

where σk is the tension of the tube. The k-strings probe in a way also the interaction of the gluonic
strings to each other and their study is expected to give an improved understanding of the dynamics
of confinement. A direct question to ask, is if and how the string tension σk is related to the
fundamental string tension σ1. The answer is still under debate, and there are at least two main
proposals. The Casimir scaling [11, 12], where the expansion in large N leads to the string tension
in terms of 1/N

σk = k
(

1− k−1
N

+O

(
1

N2

))
σ1 , (1.13)

and the sine formula, where the large N expansion is in terms of 1/N2 powers

σk = k

(
1−

π2
(
k2 −1

)
6N2 +O

(
1

N4

))
σ1 . (1.14)

There are several models that find the Casimir or sine formula, for example [13, 14, 15, 16, 17, 18]
and [19, 20]. However, the answer may be that the exact function of the string tension is none of
these two proposed, although several other formulas have been excluded [21, 22]. A more extensive
discussion on the topic can be found in the [23] and references therein.

2. Confinement in Gauge/Gravity Duality

Let us start with a generic background and place there a probe to check the presence of con-
finement. The probe is the static heavy meson QQ̄ bound state where in the space-time it generates
an orthogonal Wilson loop, with one edge being the spatial distance between the quarks L and the
other larger edge T the time, satisfying T ≫ L.

The background is homogeneous with the metric elements depending on the holographic di-
rection. It has the form

ds2 =−g00(u)dx2
0 +g11(u)dx2

1 +g22(u)dx2
2 +g33(u)dx2

3 +guu(u)du2 + . . . (2.1)

where the dots refer to metric elements of the rest of the space and include the internal space. This
part of the space does not play any role in our computations since the probes there are localized con-
sistently. This is due to the fact that the equations of motion of the string world-sheet we consider,
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are decoupled between the internal space and the rest of the space and as a result the string can be
consistently always localized in the internal space. Notice that our metric (2.1) accommodates as
special cases the anisotropic homogeneous spaces.

The string world-sheet corresponding to the orthogonal Wilson loop is parametrized as

x0 = τ , xp = σ , and u = u(σ) , (2.2)

where we have chosen the static gauge and have allowed the string to enter the bulk. The xp, is the
space direction along which the pair is aligned, it has metric element gpp and can be chosen as we
like without any loss of generality. Notice that the translational invariance of the string along the
time direction is essential for the computation. The shape of such string can be found by solving
ordinary differential equations and not partial differential equations. The approximation is valid
since we have taken the time edge to be much larger than the spatial edge.

From the Nambu-Goto action we can derive the length of the Wilson loop in the boundary in
terms of u0, the deeper distance of the world-sheet in the bulk. The length of the two endpoints of
the string is given by

L = 2
∫ ∞

u0

du

√
−guuc2

(g00gpp + c2)gpp
, (2.3)

where c is a constant satisfying

G00(u0)Gpp(u0) =−c2 . (2.4)

The energy of the string after subtracting the mass of the two free quarks is

2πα ′E =
√

g00(u0)gpp(u0)L+2

[∫ ∞

u0

du
√

−GuuG00

(√
1+

c2

GppG00
−1

)
−
∫ u0

uk

du
√

−G00Guu

]
,

(2.5)

where uk is the horizon or an other cut-off of the metric. The first term of the expression (2.5)
may act as an effective string tension Te f f . In fact if this factor is non-zero, has a minimum at
the bottom of the geometry and is monotonic with the holographic coordinate u, then the other
integrals in the energy are exponential corrections to the linear term [24]. This is the case when our
gravity background is dual to a confining theory.

Confinement may be achieved using the bottom-up hard-wall models where a cut-off is intro-
duced at some finite radius uhwall as in [25, 26, 27] 1. These models are not solutions of the super-
gravity equations and therefore the correspondence to the dual gauge theory may be problematic.
However, the bottom-up models, have proven useful and considering the fact that the computa-
tions are more tractable than in the more involved top-down models models and the results can be
obtained analytically, they can teach us interesting things for the gauge/gravity correspondence.

Another way is to introduce confinement in a top-down way, where the backgrounds used are
coming as solutions of the supergravity equations of motion. The cut-off in these geometries is
introduced by an extra dimension which shrinks to zero size at a holographic radial distance uk

1Later bottom-up models include [28], while other studying in some depth the string tension include [29, 30, 31].
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from the boundary. This geometry is sometimes called a cigar-type geometry because of its shape.
The most commonly used confining background is the D4 Witten background [32]

ds2 =
( u

R

)3/2 (
ηµνdxµdxν + f (u)dx2

4
)
+

(
R
u

)3/2( du2

f (u)
+u2dΩ2

4

)
, (2.6)

eϕ = gs

( u
R

)3/4
, F4 = dC3 =

2πNc

V4
ε4 , f (u) = 1−

u3
k

u3 , R3 = πgsNcl3
s ,

where µ = 0, ..,3. dΩ2
4, ε4 and V4 = 8π2/3 are the line element, the volume form and the volume

of a unit S4, respectively. The string length is ls =
√

α ′ and the couplings satisfy the following
relations:

g2
5 = (2π)2gsls , g2

4 =
g2

5
2πρ

= 3
√

π
(

gsuk

Ncls

)1/2

, λ5 = g2
5Nc .

There exist other top-down confining backgrounds with more involved geometries. In this short
review we will not mention them, while some of them may be found in the review [33].

Our theories do not have matter in the fundamental representation and therefore, several prop-
erties of confinement can not be studied with the models presented so far. To add these fundamental
degrees of freedom we need to introduce in our background higher dimensional flavor branes that
touch the horizon of the original supergravity background [34, 35]. Strings ending on the original
branes and the flavor branes correspond to quarks in the fundamental representation, while open
string ending between only the flavor branes correspond to new lighter mesonic degrees of freedom.

Such a confining example is the Witten-Sakai-Sugimoto model [36], which consists of the
near horizon limit of the D4-branes mentioned above and the additional flavor D8 branes. In this
model the set of D8-branes touch the boundary at two points and can be thought to represent a
U(N f )×U(N f ) global symmetry, which is the chiral symmetry of fermions. The action for the D8-
brane in the background (2.6) specifies the shape of the branes that have to be connected smoothly
close to the bottom of the cigar-type geometry. This reduces the group to a single U(N f ) global
symmetry which corresponds to the chiral symmetry breaking.

Using the flavor models described above we can study the meson spectrum, and any other
observables where the fundamental degrees of freedom are affected by the gluonic ones. This is
the probe limit of the D7 flavor branes. In other words, the number N f of the flavor branes is
much smaller than the number of colors N, and the heavy branes do not backreact to the initial
background. This corresponds to the quenched approximation in the dual field theory, where the
fermionic determinant is neglected during the computation of the relevant observables.

In this approximation the screening of the static potential and the effective string breaking
can not be computed since the virtual quarks are not present. To observe these phenomena in the
context of AdS/CFT one needs to consider backreacting flavor branes on the geometry, which is
dual to the unquenched limit in field theory. This can be done in the Veneziano limit

Nc → ∞ , N f → ∞ ,
N f

Nc
→ fixed, λ = g2

Y MNc → f ixed . (2.7)

The static potential computed in holographic models that exhibit realistic behavior regarding the
fundamental quarks, is expected to fully qualitatively reproduce the phenomena associated to
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screening and the QCD string breaking. Due to certain difficulties to obtain such holographic
models, the problem is still considered as open.

In this review we will focus mostly on the properties of confinement using holography in the
quenched approximation. Nice reviews on the large N gauge theories from the lattice point of view
include [37, 38, 39]

3. Properties of Confinement in Holography

3.1 The String tension

As we have already described the string tension of a mesonic bound state in holography is
specified by computing the expectation value of the orthogonal Wilson loop. This has been done in
several cases in the zero temperature confining models applying the formalism used to obtain the
equation (2.5).

However, one may try to question the dependence of the sting tension on the temperature while
in the confining phase. Before studying the problem in holography, let us first review quickly the
main details of the string model computation. We require all the bosonic fields to be periodic with
the β = T−1, and the boundary of the world-sheet to be

X(0,τ) = X(L,τ) = 0 , X(σ ,0) = X(σ ,β ) , (3.1)

with L ≫ β . In the limit of low temperature the expansion in lowest order of T 2 gives

σ(T )≃ σ0 −
π(d −2)

6
T 2 + . . . . (3.2)

Notice the decrease of the string tension with the temperature, an effect which is naturally expected.
Moreover, the decrease is related to the universal Lüsher term in the linear potential at zero temper-
ature. In principle this can be worked out in the context of Wilson loops with appropriate boundary
conditions, in backgrounds of AdS/CFT with confinement and to our knowledge this problem is
not fully solved so far.

On the other hand, there are other ways to compute the string tension dependence of the bound
heavy quark state in the gauge/gravity duality. One may compute the 1/N temperature dependent
corrections of the supergravity solution itself, while in confined phase. This is a difficult task, and
we are not aware of any such top-down solution.

A different but equally interesting approach is to bring the probe string in the thermal confining
background, to thermal equilibrium with the heat bath. This has been achieved in [40] in the top-
down approach that computes the string tension of the heavy quark bound state using the blackfold
methodology [41, 42]. For our purpose we use blackfolds to capture the thermal excitations of the
string world-sheet corresponding to a Wilson loop in a heat bath. The probe black string is placed
in a finite temperature background in thermal equilibrium with it. This method has been also used
for Wilson loops in finite temperature AdS and non-relativistic spaces [43, 44].

The expectation value of the Wilson loop is computed by using the free energy of the probe,
which in the zero temperature limit reproduces the result of the traditional Nambu-Goto action
approach [45]. The bound state considered consists of k separate, fundamental strings with 1 ≪

9
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k ≪ N. This is not to be confused with k-strings which correspond to Wilson loops in higher
symmetric and antisymmetric representations and in the dual gravity theory are represented as D3
and D5 branes respectively with supporting electric fluxes [46].

The methodology developed in [40] was applied in the thermal soliton AdS3 background in
the low temperature phase corresponds to a confining theory. The background reads

ds2 =
u2

R2

(
−dt2 +dx2

1 +dx2
2 + f (u)dϕ 2)+ R2

u2 f (u)
du2 , (3.3)

f (u) = 1−
u4

k
u4 . (3.4)

The tip of the cigar like topology is at u = uk and to avoid the singularity at the tip, certain period-
icity conditions are imposed: ϕ ∼ ϕ + 2πρ , ρ := R2/uk . The Euclidean time t has a periodicity
associated to the inverse temperature 1/T := 2πuh. In the confining phase the time circle never
shrinks to zero, while the circle in the ϕ direction shrinks to zero at the tip.

The static potential has the linear term indicating confinement and the higher order corrections
depending exponentially on the size −L of the bound state. In this limit the leading contributions
come from the region close to the turning point, where the string almost totally lies when u0 ≃ uk

[24, 47, 48, 49].
We parametrize the F-string probe with the radial gauge t = τ, u = σ and x = x(σ). In a

generic background the free energy and the size L of the bound state are 2

F = A
(

3
2πT

)6 ∫ σ0

σb

dσ
√

fu(u)
√

1+ f1u(u)x′2|g00|3
1+6sinh2 α

cosh6 α
, (3.5)

L
2
=
∫ σ0

σb

dσ
(

f 2
1u(σ)G2(σ)

f1u(σ0)G2(σ0)
− f1u(σ)

)−1/2

. (3.6)

where

fu(u) := |g00(u)|guu(u) , f1u(u) :=
g11(u)
guu(u)

, G(σ) :=
√

fu |g00|3
1+6sinh2 α

cosh6 α
. (3.7)

The parameter α is the dimensionless charge parameter, which turn out to be equal to

α ≃ 1
4

log
(

16B(σ)

κ

)
− 3

√
κ

8
√

B(σ)
+O

(
κ

B(σ)

)
, (3.8)

with

κ =
27

36
k
√

λ
N2 , B(σ) =

|g00|3

π6T 6R6 . (3.9)

R is the radius of the space and T is the temperature of the heat bath. The number k corresponds to
the k separate QQ̄ bound states, that do not interact at zero temperature.

We consider the approximation of large L, and by subtracting the infinities [50, 51] we obtain
the regularized energy expression to find the string tension

Flinear =

√
λk

2πR2

((uk

R

)2
−
√

κ
π3R4T 3

3uk

)
L , (3.10)

2Here we do not present the computational technicalities of the blackfold to ease the presentation and we focus
mostly on the results and properties of the confinement. The details can be found in the original work [40].
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where σ0 ∝ u2
k/R2, the string tension at zero temperature. This is a naturally expected result: the

string tension of the qcd string between the heavy quark bound state is decreased as the temperature
is increased. The first temperature dependent term in the tension is of T 3 order. This differs to the
result of the heavy meson string tension dependence with temperature presented in (3.2). Our
bound state may be interpreted as a state of non-interacting quarks pairs at zero temperature. By
increasing the temperature we find the energy of the k separate strings in thermal equilibrium with
the background. However, we see that the thermal terms in the energy depend on the number of
strings, in a way that can not be factorized as a common factor in the expression. While bringing
the separate strings into thermal equilibrium with the background, the strings appear to interact
although this interaction may be indirect. The limit to the single meson state can not be taken,
since the blackfold approach is not valid anymore, so a direct quantitative comparison can not be
done.

Therefore the blackfold obtained result, need not to necessarily match with the T n scaling
of the string tension for the single quark pair found using effective string models given the dif-
ferences between the two bound states, and the physics that they probe, but the results might be
complementary.

3.2 The Width of The Flux Tube

3.2.1 Connected Minimal Surface

The width of the flux tube can be measured by the connected minimal surface of the QQ̄ large
Wilson Loop C and the probe small Wilson loop c. For our purposes the orthogonal Wilson loop
can be taken as a cyclic to ease the computations, without affecting the results in the limit we work.
The two cyclic Wilson loops of radii R2 ≫ R1 need to be placed on the boundary of the confining
theory, say on the spatial plane x1x2 with the same center and along the direction x3 are separated
by a distance L.

In the following we describe very briefly some of the generic results of [52] 3. By making a
coordinate transformation on the metric (2.1) we work with the convenient form

ds2 =−g00(u)dx2
0 +g11(u)

(
dr2 + r2dθ 2 +dx2

3
)
+guu(u)du2 +dX5 . (3.11)

The string world-sheet we have described is parametrized by

θ = τ , x3 = σ , r = r(σ) , u = u(σ) . (3.12)

The function r(σ) specifies the diameter of the formed tube between the Wilson loops, while
u = u(σ) gives the profile of the surface in the bulk. The Nambu-Goto action

S =
1

2πα ′

∫
dσdτg11r

√
1+ r′2 +

guu

g11
u′2 (3.13)

gives a system of differential equations

1+ r′2 +
guu

g11
u′2 − g2

11r2

c2 = 0 , (3.14)

3In the bibliography there are few holographic studies on the flux tube, or configurations that related to it, for
example [53, 54].
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r′′− g2
11r
c2 = 0 , (3.15)

u′′
guu

g11
+u′2

1
2

∂u

(
guu

g11

)
− r2g11∂ug11

c2 = 0 , (3.16)

where c is a constant and the first equation can be thought as a constraint. The system has an
analytic solution only in the case of the AdS backgrounds since total derivatives are formed [54, 52].
In all the other cases we need to employ numerics or to consider sensible approximations in order
to get analytic solutions. The two-dimensional minimal surface projections of the exact numerical
solutions in the D4 Witten model [32] have been found in [52] and are presented here in Figures 1
and 2.

- 2

0

2

x1 - 2

0

2

x2

2

3

4

5

u

Figure 1: The minimal surface in the
(x1 = r cosθ ,x2 = r sinθ ,u) space. We observe
the two cyclic Wilson loops with the common center
on the boundary. As the surface attempts to minimize,
it enters in the bulk. The change in the radius of the
surface, happens almost totally around the tip of the
geometry uk.

-1

0

1

x1

-1

0

1

x2 8

9

10

x3

Figure 2: The minimal surface in the (x1,x2,x3)

space. We observe that is a rapid change of the size
of the tube as it departs from its boundaries. In the
particular plot, the spatial x3 extension of the tube is
five times enhanced for presentation purposes.

To obtain analytic solutions we consider particular limits. By considering large flux tubes with
R2 ≫ R1 it turns out that

L = f (uk) log
R2

R1
, (3.17)

where uk is the tip of the cigar type geometry along the holographic direction and the turning point
u0 of the surface is very close to the tip of the geometry, u0 ≃ uk . In this case we know that the
shape of the different projections of the string world-sheet takes a rectangular Π shape departing
from the boundary and entering to the bulk steeply. The action can be found to approach [52]

S ≃ σ

(
L2

log R2
R1

+R2
2 −R2

1

)
. (3.18)
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Using the equation (1.10) and (1.11) we show that all confining holographic models have the prop-
erty of the logarithmic broadening

w2 ∝ log
R2

R1
, (3.19)

where the position of the small loop along the x3 direction does not play any role as expected.

3.2.2 String Fluctuations

An alternative way to compute the width of the flux tube is to consider time-dependent trans-
verse fluctuations of the string connecting the static heavy quarks. The width is given by the
expectation values of the square transverse deviations of the string, e.g. as in [8, 55]

w2(x) = ⟨δx(σ ,τ)2⟩ ≡ lim
ε→0

⟨δx(σ ,τ)δx(σ ′ = σ + ε,τ ′ = τ + ε)⟩

= lim
ε→0

G(σ ,τ;σ ′ = σ + ε,τ ′ = τ + ε)) (3.20)

where G is the appropriate Green function.
The corresponding computation is involved even in the flat space. In the limit of large com-

pactified Euclidean time β compared to the distance of the bound state L, β ≫ L, the width is given
by [8, 55, 56]

w2(L/2) =
1

2πσ
log

L
L0

+
1

πσ
logη(2τ) , (3.21)

where η is the Dedekind function.
In a curved space, the Nambu-Goto action after the perturbation of the Wilson loop

t = τ , x1 = x1(σ)+δx1(σ) , x2 = δx2(σ) , u = σ , (3.22)

becomes

S2 =
1
2

∫
dσ

(
g2

00guug11

F3/2 δx′21 +
g00g22√

F
δx′22 − g11guu√

F
δ ẋ2

1 −
g22

√
F

g00
δ ẋ2

2

)
, (3.23)

where

F :=
g2

00guug11

g00g11 −g000g110

(3.24)

and g000 := g00(σ0), g110 := g11(σ0). The turning point of the string is σ0. The general equations
of motion an be found

d
dσ

(
g2

00guug11

F3/2 δx′1

)
− g11guu√

F
δ ẍ1 = 0 , (3.25)

d
dσ

(
g00g22√

F
δx′2

)
− g22

√
F

g00
δ ẍ2 = 0 , (3.26)

valid for any diagonal homogeneous background of the form (2.1). The analytic form of the Green
function of the differential equation (3.26) of the transverse fluctuations with appropriate boundary
conditions, in a confining background is a difficult problem to be solved. A discussion on the
subject can be found in [52].

13



P
o
S
(
C
O
R
F
U
2
0
1
4
)
1
5
0

Confinement in Holography Dimitrios Giataganas

3.3 The k-strings

The single string corresponds to the Wilson loop in the fundamental representation [45], while
for Wilson loops in higher symmetric and antisymmetric representations are appropriate the D3
branes and the D5 branes with electric flux [46]. There are several holographic studies on the k-
string tension, the Lüsher term and other observables, for example the references in [57]. Moreover,
in [58] it has been shown that the energy of higher representation Wilson loops in very special
backgrounds with trivial dilaton is expressed in terms of the energy of the loop in the fundamental
representation.

It turns out that this observation is true for a much wider class of backgrounds. In [23] it has
been found that the observables of k-strings can be expressed in terms of observables of single
strings when a condition of the background is satisfied. This means that for example the string
tension of the k-string in these theories can be read directly from the final result in the analysis that
follows.

Let us consider the d +1 dimensional homogeneous space with the metric

ds2 = g00(u)dx2
0 +gii(u)dx2

i +guu(u)du2 +gX (u)
(
dθ 2 + s2

θ dX 2
q
)
, (3.27)

where i = 1, . . . ,d and the internal space consists of the angle θ and the q dimensional manifold
X . The background has additional non trivial dilaton and appropriate forms. Let us work with
q = 4 and d = 3 dimensional spaces without loss of generality. In this theory we place a D5-
brane describing the heavy bound state. Its extension in the space-time should be as the one of the
fundamental Wilson loop and it should also wrap the X manifold. It is parametrized by

x0 = τ , x1 = σ , u = u(σ) , θ = θ(σ) and wrapping X4 , (3.28)

The action for the D5-brane is

S = TD5

∫
dτd5σe−ϕ√g+2πα ′Fµν − igstTD5

∫
2πα ′Fµν ∧C4 , (3.29)

where

λ = gsN , TD5 =
N
√

λ
8π4 , C4 :=−D(θ)

gst
volX (3.30)

and volX is the volume form of the X space. The electric flux is rescaled Fτσ = iF/2πα ′ and the
equations of motion of the brane come with and additional charge quantization condition

δS
δF

=− k
2πα ′ . (3.31)

In order to express the D5-brane action in terms of the Nambu-Goto action, we need to find a
constant θ solution to the equations of motion

4s3
θ cθ h

√
Gs −F2 −F∂θ D = ∂1

(
s4

θ G00Gθθ θ ′√
Gs −F2

)
, (3.32)

√
Gs −F2 =

s4
θ hF

−D+ k̃
, (3.33)
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where h(u) := e−ϕ g2
X , Gs is the induced metric of the fundamental string and k̃ is a rescaled number

of the QQ̄ pairs:

Gs = g00
(
g11 +guuu′2 +gθθ θ ′2) and k̃ :=

4π3k
NVolX

. (3.34)

It turns out that the equation of motion for θ becomes [23]

4h2cθ s7
θ +D∂θ D− k̃∂θ D = 0 , (3.35)

which has non-trivial solutions for θ = θ0 when the function h(u) satisfies

e−ϕ(u)gX (u)2 = c , (3.36)

where the metric cancels the dilaton contribution. This condition is satisfied by several top-down
backgrounds, even anisotropic ones [23]. The condition (3.36) is part of the expression e−ϕ√g,
with g being the induced metric related to the wrapping of the internal space. This is known to
be conserved under T-dualities, and therefore it is natural to expect that should be independent of
the holographic coordinate u, in order to be able to map at the level of equations of motion the
T-dualized action of (3.29) to the Nambu-Goto action.

The system can be solved analytically for constant θ provided that the condition (3.36) is
satisfied. The electric flux is found to be

F = Z(θ)
√

Gs , (3.37)

where

Z(θ) :=
√

Gs√
1− sθ ∂θ D

4cθ

. (3.38)

The action of the string needs to be regularized due to the present divergences [50, 51, 59] by
adding the following terms to the action

SD5 b =−
∫

∂
dσxµ δSD5

δ∂σ xµ +

√
λ

2π

∫
dτdσkF . (3.39)

The first term is the string action infinity subtraction term, where xµ is taken as the radial direction.
By using the equations of motion and subtracting the infinities we end up with a compact result

SD5 =
NVolX

4π3
s4

θ√
1−Z(θ)2

SNG,normalized . (3.40)

Notice then that θ is given in terms of the number k by solving the equation (3.35), when the (3.36)
is satisfied. Therefore, the energy of the brane configuration is proportional to the energy of the
fundamental string configuration in the same space, with a constant of proportionality depending
on k.

Theories that satisfy the condition (3.36), have k-strings observables like the dragging of the
k-string in the quark-gluon plasma that can be expressed proportional to the observables of the
fundamental strings. The treatment of the k-string observables can be done in full generality for the
different backgrounds like the fundamental string observables following the analysis of [60, 61].
Moreover, several other features of the bound states should be possible to be expressed in terms
of the fundamental ones. For example, the width of the k-string should be proportional to the
fundamental string, as follows directly from the (3.40).
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4. Concluding Remarks

In this short review we have discussed properties of confinement and ways to probe it. Few
new ideas and open problems have been also presented. The probes that have been discussed are
the Wilson loop, the Polyakov loop and the t’ Hooft loop. All three objects have unique features
that signal the confined phase. Moreover we have mentioned the k-string bound states, involving
several Quarks and anti-Quarks in an SU(N) theory. These states may be important in teaching us
lessons for the dynamics of the confinement that the single meson states can not reveal. The debate
for the form of the string tension of these states is quickly presented.

Looking at the confinement from the holographic point of view we have focused more on the
Wilson loop operator. We have discussed a way to compute the dependence of the string tension
on the temperature while the theory is still in the confined phase. There are certain difficulties
to find supergravity top-down solutions in confined phase with temperature dependence in their
metric. For this reason we use the blackfold approach to capture the thermal excitations of the string
world-sheet corresponding to a Wilson loop in a heat bath. The probe string is brought to a thermal
equilibrium with the background introducing in the relevant analysis the heat bath temperature. The
results are qualitatively to the correct direction, showing decrease of the string tension in presence
of the finite temperature. We have also discussed the reasons of the discrepancies with the effective
string models.

Then we have presented the width of the chromo-electric flux tube formed between a heavy
meson bound state. To measure the width, two Wilson loops need to be inserted in the theory.
The original QQ̄ Wilson loop C and a test small Wilson loop c that measure the flux though it.
The configuration to study in the holography is a connected minimal surface which ends at these
two loops. We have shown that the logarithmic broadening of the flux tube is a property of all the
confining theories. This is due to the common properties that the connected minimal surface has in
all the confining backgrounds. We argue that there is an alternative way to compute the width of the
flux tube through the time dependent transverse fluctuations of the original Wilson loop, in a way
similar to the effective string models. The computation is highly involved due to the complicated
differential equations of the fluctuations in the curved holographic spaces. A further question to be
answered using holography is on the temperature dependence of the width of the flux tube while in
the confining phase.

Finally we have presented properties of the k-string bound states. We have studied the string
tension of the multi-quark bound state, and have found when it can be written in terms of the sting
tension of the meson bound state. It turns out that when the background theory satisfies a condition
we provide, the static potential of the k-string is proportional to the potential on the fundamental
string. In fact this is true not only for the static potential and string tension but for other observables,
for example the dragging of the k-quarks moving in the quark-gluon plasma. It is not unexpected
since looking macroscopically at the flux tube of this composite bound state, it is natural to behave
as the usual qcd string with a different tension. However, we expect that higher order corrections in
finite temperature theories will modify the proportionality relation and the k-strings will be related
in a more complicated way to the fundamental string.
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