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Introduction

Since the 1990’s and the COBE experiment, cosmology has entered into an era of high pre-

cision. Measurements of the anisotropies in the Cosmic Microwave Background (CMB) have be-

come increasingly accurate. Observations of Type Ia supernovae have permitted to put in evidence

the present acceleration of the Universe expansion. Combined with the distribution of the Large

Scale Structures (LSS), these observations have lead to the establishment of the standard cosmo-

logical model. Its main ingredients are the dark matter and the dark energy (or a cosmological

constant), whose origins still have to be understood. But the model faces other theoretical prob-

lems: the CMB temperature is the same in apparently causally disconnected regions in the sky;

the Universe is very flat and its density must have been extremely fine-tuned to the critical density

in the past; most Grand Unified Theories (GUT) predict that magnetic monopoles are produced in

the early Universe and they should dominate the density of the Universe. Moreover the standard

cosmological model alone does not provide a mechanism for the generation of Gaussian and nearly

scale-invariant initial density fluctuations. All these problems are naturally solved if the Universe

underwent an early phase of quasi-exponentially accelerated expansion, called inflation.

In the inflationary paradigm, Gaussian and nearly scale-invariant density perturbations arise

naturally from the quantum fluctuations of one (or more than one) scalar field(s) slowly evolving

along its (their) potential during inflation. Besides theoretical motivations, inflation is supported

by strong observational evidences. The amplitude As and the spectral index ns of the power spec-

trum of the primordial curvature perturbations have been measured with accuracy by experiments

probing the Cosmic Microwave Background (CMB) temperature anisotropies and polarization,

such as the Planck spacecraft [1, 2], the Atacama Cosmology Telescope [3] and the South Pole

Telescope [4], giving As = 2.196+0.051
−0.06 ×10−9 and ns = 0.9603±0.0073 in agreement with many

inflation models [5]. A strong bound have also been established on the level of local primordial

non-Gaussianity, f loc
NL = 2.7±5.8 [6]. In 2015, BICEP2 has claimed the detection of primordial B-

mode polarization of the CMB [7], attributed to the gravitational waves produced during inflation.

The ratio between tensor and scalar perturbations r = 0.20+0.07
−0.05 favors super-Planckian excursions

of the scalar field responsible for inflation, called the inflaton, and points towards an energy scale

associated to inflation close to the GUT energy. Since then, it has been argued that galactic dust

could contribute more importantly to the signal than initially expected, and net detection has been

transformed in a lower bound on the tensor to scalar ratio, r < 0.11 (95% C.L.). Nevertheless this

question is still puzzling and future observations are required to affirm or disclaim the discovery of

primordial gravitational waves [8, 9, 7].

The simplest way to realize a phase of inflation is to assume that the Universe was filled with

a scalar field slowly evolving along its potential. Depending on the shape of the potential, the

primordial scalar and tensor perturbations have different statistical properties. Despite the accurate

measurements of the scalar power spectrum amplitude and spectral index and the limits on the

tensor-to-scalar ratio, many single-field models are still consistent with observations, from various

high energy frameworks.

In these notes, based on a short series of lectures given in summer 2015 at the 10th Modave

school of Mathematical physics, I give an overview of the theory of inflation, going from theoret-

ical motivations to the field dynamics, both at the background and linear perturbation levels. A
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particular care is given to detail the derivation of the scalar and tensor power spectra. Results for a

simple power-law scalar field potential are presented as a worked example. The second objective

is to put in evidence and discuss the status of inflation after Planck and BICEP2. After introducing

basic notions of Bayesian statistics, I will comment the recent results of J. Martin, C. Ringeval, R.

Trotta and V. Vennin [5, 10] on model comparison.

The lectures were intended for young researchers working in the domain of mathematical

physics, not necessary familiar with the theory of inflation. Therefore these notes may be useful

for master students and young PhD in various fields of cosmology, gravitation, theoretical and

mathematical physics, wanting to acquire a general and up to date culture on the topic of inflation.

I tried to make the notes as pedagogical as possible, detailing some derivations, but basic notions

of cosmology and general relativity are nevertheless obvious pre-requisites. My objective is also to

give them practical tricks to derive the observational predictions for any single scalar field potential

that could arise in their work, and to confront their model to the most recent observations.

After introducing the motivations for an early phase of inflation in Section 1, I will define the

usual observable quantities in Section 2. In Section 3, the equations governing the homogeneous

dynamics for a single scalar field model are given and the common slow-roll approximation is

introduced. The linear theory of cosmological perturbation will be used in Section 4 to derive

the power spectrum of scalar and tensor perturbations at first order in slow-roll. Observational

predictions for a simple large field model are calculated in Section 5 as an example. In Section 6

a classification of single-field potentials is presented. The most important results of Planck and

BICEP2 experiments are presented and discussed in Section 7. In Section 8, after an introduction

to Bayesian analysis for model constraints and comparison, I will comment on the favored single-

field scenarios based on Planck only and on Planck+BICEP2. Finally I will mention in Section 9 a

few open theoretical questions linked to inflation.

Note that a lot of material has been borrowed directly from the first and second chapters of

my PhD thesis [11]. These notes are also based on previous but recent lectures notes and reviews

by D. Langlois [12], A. Linde [13], D. Baumann and L. McAllister [14], to which the interested

reader may refer to get further information about the topic. An exhaustive analysis of all single

field inflationary models proposed so far can be found in Ref. [15]. As already mentioned, the

section on model analysis and Bayesian theory is based on Refs. [5, 10].

Any comments about these lecture notes are welcome.
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1. Motivations

The standard hot Big-Bang cosmological model suffers from several problems. In this section,

they are briefly explained, and then it is shown how a sufficiently long phase of inflation naturally

solve them.

1.1 Problems of the standard cosmological model

1.1.1 Horizon problem

Before to express and explain the horizon problem, it is useful to define the various notions of

horizon in cosmology. It is convenient to define the conformal time

η(t) =

∫ t

ti

dt ′

a(t ′)
, (1.1)

where a is the scale factor and t denotes the cosmic time. It is the comoving distance covered by

light between an initial hyper-surface at time ti and the hyper-surface at time t. Assuming that the

Universe evolution starts at ti, two points separated by a comoving distance larger than the confor-

mal time η do not have a causal link. Usually, the initial hyper-surface is set at the Planck-time,

and all points separated by a comoving distance larger than η are said to be causally disconnected.

For an observer in O at a time t0 (see Fig. 1), η(t0) is the comoving radius of the sphere centered in

O separating particles causally connected to the observer of particles causally disconnected. η(t)

is called the comoving horizon or the particle horizon. It is important to distinguish between the

particle horizon and the event horizon, which is, for the observer, the hypersurface separating the

universe in two parts, the first one containing events that have been, are or will be observable, the

second part containing events that will be forever unobservable. Mathematically, the event horizon

exists only if the integral
∫ ∞

ti

dt ′

a(t ′)
(1.2)

converges. Finally, it is useful to define the comoving Hubble radius, 1/(aH). It is smaller than the

conformal time, that is the logarithmic integral of the Hubble radius.

The horizon problem is linked to the isotropy of the CMB and can be expressed in the following

way: how to explain that regions in the CMB sky have the same temperature whereas their angular

separation is too large to correspond to causally connected patches at the time of last scattering,

assuming that the standard cosmological model is valid down to the Planck time?

In the standard cosmological model, the early Universe is dominated by the radiation and the

chemical potentials can be neglected most of the time. One has therefore aT = constant, and in a

comoving coordinate system, any physical distance grows like

d(t) =
T (t0)

T (t)
d(t0) . (1.3)

The temperature of CMB photons today is T0 ≈ 2.7K ≈ 2.3 × 10−13GeV. On the other hand,

assuming that the expansion rate is governed by the standard cosmological model at every time,

the radius of the observable universe, i.e. the radius of the spherical volume in principle observable
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Figure 1: Scheme [16] illustrating the horizon paradox. The CMB is observed from the hypersurface t = t0.

The AB′ region at last scattering is isothermal in the CMB sky, although it appears to be constituted of

causally disconnected patches.

today by an observer at the center of the sphere, is dH0
(t0) ≈ 1026m. At the time of last scattering

tLSS, the radius of the observable universe was

dH0
(tLSS)≈ 7×1022m . (1.4)

Under the same assumption, at recombination, the maximal distance between two causally con-

nected points would roughly be

dHLSS
(tLSS)≈ 2×1021m . (1.5)

At last scattering, our observable Universe would therefore have been constituted of about 105

causally disconnected regions. But CMB photons emerging from these regions are observed to

have all the same temperature, to a 10−5 accuracy. At the Planck time, the number of causally

disconnected patches would have been much larger, about 1089.

1.1.2 Flatness problem

The Einstein equations in a homogeneous and isotropic FLRW Universe give the Friedmann-

Lemaître (FL) equations

H2 =
8π

3m2
pl

ρ − K

a2
+

1

3
Λ , (1.6)

ä

a
= − 4π

3m2
pl

(ρ +3P)+
1

3
Λ , (1.7)

where H ≡ ȧ/a is the Hubble expansion rate, a the scale factor, K = 0,±1 is the curvature, ρ the

energy density and P the pressure. mpl is the 4-th dimensional Planck mass, which should not be

5
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confused with the reduced Planck mass Mpl ≡ mpl/
√

8π . Starting from the Friedmann-Lemaître

equations and neglecting the cosmological constant1, one can find the evolution equation for the

curvature density ΩK, defined as

ΩK ≡− K

a2H2
= 1−Ω. (1.8)

where Ω ≡ 8πρ/(3H2m2
pl). One gets

dΩK

dlna
= (3w+1)(1−ΩK)ΩK , (1.9)

where w ≡ P/ρ is the equation of state parameter. This equation is easily integrated when w is

constant. One has

ΩK0

ΩK(a)
= (1−ΩK0)

(

a

a0

)(−1−3w)

+ΩK0 , (1.10)

where ΩK0 is the curvature today. Since it is constrained by observations (|Ω−1|. 0.01 [17]) one

has roughly at radiation-matter equality

|Ω(aeq)−1|. 3×10−6 , (1.11)

and at the Planck time,

|Ω(ap)−1|. 10−60 . (1.12)

If the Universe is not strictly flat, the ΛCDM model does not explain why the spatial curvature is

so small.

1.1.3 Problem of topological defects

In Grand Unified Theories (GUT), the standard model of particle physics results from several

phase transitions induced by the spontaneous breaking of symmetries. Such symmetry breakings

are triggered during the early Universe’s evolution due to its expansion and cooling, and they can

lead to the formation of topological defects like domain walls, cosmic strings and monopoles.

These defects correspond to configurations localized in space for which the initial symmetry re-

mains apparent (see Fig. 2).

Let us consider the symmetry breaking of a group G resulting to an invariance under the sub-

group H : G → H . The vacuum manifold M is isomorphic to the quotient group G /H [18].

Domain walls are formed when the 0th-order homotopy group of M is not trivial. They can be

due to the breaking of a Z2 symmetry, or if the resulting vacuum contains several distinct elements.

Cosmic strings are formed when the first homotopy group of M is not trivial, for instance for the

breaking scheme U(1)→ {Id}. Monopoles are formed when the second homotopy group π2(M )

of the vacuum manifold is not trivial. This is the case for the breaking of a SO(3) symmetry into

H = {Id}. For higher homotopy groups, the resulting topological defects are called textures.

Groups involved in GUT are such that the first and second homotopy groups are trivial,

π1(G ) ∼ π2(G ) ∼ Id. In the SM, there remains a U(1) invariance corresponding to electromag-

netism. The first homotopy group of U(1) is π1 [U(1)] ∼ Z. Therefore, by using the property of

1This is a good approximation because Λ dominates the energy density only at late times.
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homotopy groups [16]

πn(G )∼ πn−1(G )∼ Id.⇒ πn(M ) ∼ πn−1(H ) , (1.13)

one obtains that the second homotopy group of the vacuum manifold corresponding to the breaking

of a GUT group is not trivial. That induces necessarily the formation of monopoles [19].

However, monopole annihilation has been found to be very slow [20, 21]. As a consequence,

their energy density today should be 15 orders of magnitude larger than the current energy density

of the universe. Domain walls can also lead to catastrophic scenarios, but they can be avoided in

the schemes of symmetry breaking in GUT. Cosmic strings are observationally allowed, but their

contribution to the CMB angular power spectrum [22] is constrained [23].

V

φ

(φ)

Figure 2: Illustration [24] of the formation of cosmic strings due to the breaking of the group U(1) into

{id}. After the transition, the Higgs field φ takes a different value at each point in space. When the Higgs

field makes a complete loop in the field space along a closed path in the real space, there exists a point inside

the path for which the phase is not defined. At this point, the Higgs field vanished, the symmetry is restored

and the resulting string configuration contains energy. This process is called the Kibble mechanism (for a

review, see [24]).

1.1.4 Nearly scale-invariance of the primordial scalar power spectrum

The density perturbations at the origin of the CMB temperature fluctuations start to oscillate

when their size becomes smaller than the Hubble radius. On the contrary, the perturbations whose

wavelength is much larger at recombination have remained constant and thus conserve their initial

amplitude. In the CMB angular power spectrum, these super-Hubble perturbations correspond to

temperature fluctuations at low multipoles (l . 20). The CMB temperature fluctuations at large

angular scales therefore directly probe the initial state of those density perturbations.

7
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With CMB observations, it has been established that the primordial power spectrum of density

perturbations is (nearly) scale invariant. The present measurements of the shape of the primordial

power spectrum will be given in details in Section 2. This constrains the possible physical processes

at the origin of the initial density perturbations.

1.1.5 Absence of iso-curvature modes

There are two different kinds of primeval fluctuations: the curvature (or adiabatic) and iso-

curvature (or entropic).

The adiabatic density fluctuations are characterized as fluctuations in the local value of the

spatial curvature (hence the name of curvature perturbations). By the equivalence principle, all the

species contribute to the density perturbation and one has for any fluid f ,

δρ

ρ
=

δn f

n f

=
δ s

s
, (1.14)

where s ≡ S/a3 is the entropy density. Furthermore, one can write

δ
(n f

s

)

=
δn f

s
− n f δ s

s2
= 0 . (1.15)

That means that the fluctuation in the local number density of any species relative to the entropy

density vanishes.

The entropic fluctuations are perturbations for which δρ = 0 and therefore they are not char-

acterized by fluctuations in the local curvature (hence the name iso-curvature). They correspond to

fluctuations in the equation of state.

With observations one has determined that the CMB temperature fluctuations are sourced by

curvature perturbations, and one has constrained the possible contribution of iso-curvature pertur-

bations [17]. The mechanism producing the initial inhomogeneities needs to generate only (or at

least mostly) curvature perturbations.

1.1.6 Why are perturbations Gaussian?

The statistical properties of the CMB anisotropies are encoded in the power spectrum of the

temperature fluctuations, i.e. in the two-point correlation function in the Fourier space, as well as in

the three-point (bispectrum), four-point (trispectrum), and higher order correlation functions. But

if the fluctuations follow a Gaussian statistic, these latter ones are all vanishing. CMB experiments

have not detected with a high significance a non-zero value neither for the three-point neither for

higher-order correlation functions. Since the temperature fluctuations in the CMB are induced by

density perturbations, the mechanism generating them must be to be such that their statistics is

Gaussian.

1.2 Cosmic Inflation

Inflation is a phase of quasi-exponentially accelerated expansion of the Universe. By combin-

ing the Friedmann-Lemaître equations and assuming K = 0, one obtains a necessary condition for

inflation to take place,

ä > 0 ⇐⇒ ρ +3P < 0 . (1.16)

8
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The amount of expansion during inflation is measured in term of the number of e-folds, defined

as

N(t)≡ ln

[

a(t)

ai

]

, (1.17)

where ai is the scale factor at the onset of inflation.

The inflationary paradigm is well motivated because it provides a solution to all the problems

of the standard cosmological model that have been mentioned:

• The horizon problem: Inflation solves naturally this paradox if the number of e-folds of

expansion is sufficiently large. Indeed, isothermal regions in the CMB apparently causally

disconnected at recombination, can actually be in causal contact because of a primordial

phase of inflation. Assuming that the expansion was exponential during inflation,

a(t) = aie
H∆t , (1.18)

(it will be shown later that this condition is nearly satisfied) one can evaluate the number of

e-folds required to solve the horizon problem. At the end of inflation, the size of the current

observable Universe dH0
must have been smaller than the size of a causal region at the onset

of inflation dHi
,

dH0
(t0)

aend

a0

< dHi

aend

ai

= dHi
(ti)e

N , (1.19)

where aend is the scale factor at the end of inflation. If inflation ends at the Grand Unification

scale (ρ
1/4

end ∼ 1016 GeV), one needs

N ∼ ln

(

T0dH0
(t0)

TenddHi
(ti)

)

& 57 , (1.20)

where T0 is the photon temperature today, and for which we have assumed dHi
(ti)∼ lPlTPl/Tend,

where lPl and TPl are respectively the Planck length and the Planck temperature. If this condi-

tion is satisfied, the entire observable Universe emerges out of the same causal region before

the onset of inflation.

• The flatness problem: During inflation, the Universe can be extremely flattened. Indeed, if

we assume H to be almost constant during inflation, one has

|ΩK(aend)|= |ΩK(ai)|e−2N , (1.21)

and with N & 70 and a curvature of the order of unity at the Planck scale, the flatness problem

is naturally solved.

• Topological defects: During inflation, topological defects are diluted due to the volume

expansion and are conveniently stretched outside the observable Universe.

• The primordial power spectrum: Models of inflation generically predict a nearly scale

invariant power spectrum of curvature perturbations, and thus can provide good initial con-

ditions for the density fluctuations in the radiation era. We will give more details on how to

calculate the curvature power spectrum in the case of single-field inflation later in the notes.

9
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• Gaussian perturbations: In inflation, all the structures in the Universe are seeded by quan-

tum fluctuations. As the Universe grows exponentially, the quantum-size fluctuations be-

come classical, are stretched outside the Hubble radius, and source the CMB temperature

fluctuations. All the pre-inflationary classical fluctuations are conveniently stretched outside

the Hubble radius today and can be safely ignored. The Gaussian statistic of the perturbations

therefore takes its origin in the Gaussian nature of the quantum field fluctuations.

• Iso-curvature modes: Most models of inflation source only curvature perturbations. Never-

theless, for some models (like multi-field models), the iso-curvature mode contribution can

be potentially important and eventually observable (e.g. in Ref. [25]). In multi-field models,

these are induced by field fluctuations orthogonal to the field trajectory.

2. Observables

The shape of the CMB angular power spectrum is sensitive to the initial conditions of the

density and curvature fluctuations. Inflation provides these initial conditions and can therefore be

confronted to CMB observations.

Observations of CMB temperature anisotropies and polarization have permitted to measure

precisely the amplitude of the power spectrum of scalar curvature perturbations, its spectral index

that quantifies the deviation from scale-invariance, and to put strong limits on the ratio between

curvature and tensor metric perturbations. We skip here the details of the CMB theory relating

initial conditions to temperature and polarization anisotropies. This is a difficult topic that goes

beyond the scope of these notes. Instead we focus directly on the quantities that are commonly

used to constrain inflation.

2.1 Power spectrum of primordial curvature perturbations

The primordial power spectrum of the curvature perturbation ζ is defined from,

〈ζ̂ (k)ζ̂ (k′)〉= (2π)3Pζ (k)δ
3(k−k′) , (2.1)

where ζ̂ (k) is the 3-dimensional Fourier transform of ζ (x). The spectral index of this power

spectrum ns is defined as

ns ≡ 1+
dln
[

k3Pζ (k)
]

dlnk

∣

∣

∣

∣

∣

k∗

, (2.2)

where k∗ is a pivot scale in the observable range, k∗ = 0.05 Mpc−1 for Planck. A power spectrum

increasing on large angular scales (ns < 1) is called red-tilted, if it increases with small scales it is

called blue-tilted. Deviation from a scale invariant primordial power spectrum have been detected

by recent CMB experiments. The power spectrum is observed to be red-tilted, and the case ns = 1

is today ruled out. The 1-σ bound on the spectral index measured by WMAP was [17] were

ns = 0.968±0.012. Planck has improved by roughly a factor two the measurement of the spectral

index [1, 2], giving ns = 0.9603±0.0073.

On the other hand, the power spectrum amplitude measured by Planck is

As ≡ Pζ (k∗)≡
k3
∗

2π2
Pζ (k∗) = 2.196+0.051

−0.06 ×10−9. (2.3)

10
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2.2 Tensor-to-scalar ratio

The tensor metric perturbations, characterized by a power spectrum Ph(k) at the end of infla-

tion, can also affect the CMB angular power spectrum, and especially the B-mode polarization of

the CMB (for details, see e.g. [16]). CMB observations by WMAP and Planck have established a

strong limit on the amplitude of primordial gravitational waves. Usually, this limit is given as an

upper bound on the ratio r between tensor and scalar power spectrum amplitudes at the pivot scale.

After WMAP, the 2-σ bound on the tensor to scalar ratio was [17],

r ≡ Ph

Pζ
< 0.24 . (2.4)

With WMAP polarization data plus Planck observations of temperature anisotropies, this limit is

reduced to [1, 2] r < 0.11, whereas BICEP2 claimed in 2014 a tensor to scalar ratio r = 0.20+0.07
−0.05

2.3 Other observables

There are other observable quantities of interest to further constrain inflation models. Some of

these are defined below:

• The running of the spectral index αs: it is defined as

αs ≡
dns

dlnk

∣

∣

∣

∣

k=k∗

. (2.5)

Present data are compatible with αs = 0. Planck 1σ limits give [1, 2] αs =−0.0134±0.0090.

• The fNL parameter: this parameter characterizes the amplitude of the so-called local form of

the bispectrum of ζ ,

Bζ =
6

5
fNL

[

Pζ (k1)Pζ (k2)+ (2 perm.)
]

, (2.6)

defined as the Fourier transform of the three-point correlation function,
〈

3

∏
i=1

ζ (ki)

〉

= (2π)3δ 3

(

3

∑
i=1

ki

)

Bζ (k1,k2,k3) . (2.7)

A non-zero bispectrum results from non-Gaussian curvature perturbations. Inflation can be

a source of small non-Gaussianities, but also the reheating phase, eventual cosmic strings,

and various astrophysical processes. In the squeezed limit, corresponding to k3 ≪ k1 ≃ k2, it

has been shown that all single-field models of inflation yield to f loc
NL = 5

12
(1−ns)≃ 0.02 [26,

27]. For multi-field models the f loc
NL value can take higher values, potentially detectable by

experiments. For the other processes, the amplitude should be f loc
NL ∼ O(1) (see [28] for a

review), thus a convincing detection of f loc
NL ≫ 1 would have ruled out most2 single field

inflation models. For WMAP, the best limit was obtained in Ref. [31]

f loc
NL = 32±21 (68%C.L.) . (2.8)

The Planck satellite have reduced the error bars by a factor of four and the present limits are

f loc
NL = 2.7±5.8 [6].

2However, non-Gaussianities in single field models could be generated by trans-planckian effects [29] or slow-roll

violation [30]
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• The τNL parameter: this parameter characterizes one of the amplitudes of the local-form

trispectrum of ζ ,

Tζ = τNL

[

Pζ (k1 +k3)Pζ (k3)Pζ (k4)+ (11perm.)
]

, (2.9)

which is the Fourier transform of the four-point correlation function,

〈

4

∏
i=1

ζ (ki)

〉

= (2π)3δ 3

(

4

∑
i=1

ki

)

Tζ (k1,k2,k3,k4) . (2.10)

The present limits are still relatively weak (τNL < 2800 (95% C.L.) ) and in agreement with

τNL = 0

3. 1-field inflation: Background dynamics

The easiest realization of the condition (1.16) is to assume that the Universe is filled with an

unique homogeneous scalar field φ , called the inflaton. The lagrangian reads

L =−√−g

[

1

2
∂µφ∂ µφ +V (φ)

]

, (3.1)

where V (φ) is the scalar field potential and g is the determinant of the FLRW metric. The equation

of motion (e.o.m.) for this lagrangian is the Klein-Gordon equation in an expanding spacetime,

φ̈ +3H φ̇ +
dV

dφ
= 0 . (3.2)

On the other hand, the energy momentum tensor reads

Tµν =− 2√−g

δL

δgµν
. (3.3)

The energy density and the pressure are therefore

ρ =
φ̇2

2
+V (φ) , (3.4)

P =
φ̇2

2
−V (φ) . (3.5)

The condition (1.16) is satisfied if the scalar field evolves sufficiently slowly, so that φ̇2 ≪ V (φ).

The expansion is governed by the Friedmann-Lemaître equations

H2 =
8π

3m2
pl

[

1

2
φ̇2 +V (φ)

]

, (3.6)

ä

a
=

8π

3m2
pl

[

−φ̇2 +V (φ)
]

. (3.7)

12
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One can rewrite them in e-fold time N

H2 =
8π

m2
pl

V (φ)

3− 4π

m2
pl

(

dφ

dN

)2
, (3.8)

1

H

dH

dN
= − 4π

m2
pl

(

dφ

dN

)2

, (3.9)

1

3− 4π
m2

pl

(

dφ
dN

)2

d2φ

dN2
+

dφ

dN
= −

m2
pl

8π

dlnV

dφ
, (3.10)

and one sees that the scalar field evolves independently of the Hubble rate dynamics.

3.1 Slow-roll approximation

For inflation to be very efficient, the kinetic terms in the F.L. equations must be very small

compared to the potential. The slow-roll approximation consists in neglecting the kinetic terms

and the second time derivatives of the field,

φ̇2 ≪V (φ) , φ̈ ≪ 3H φ̇ . (3.11)

In the slow-roll regime, one has therefore

H2 =
8π

3m2
p

V (φ) , (3.12)

3H φ̇ = −dV

dφ
. (3.13)

Using the number of e-folds as a time variable, the field evolution is governed by

dφ

dN
=−

m2
pl

8π

1

V

dV

dφ
. (3.14)

One sees that a large number of e-folds is realized in a small range of φ when the logarithm of the

potential is very flat.

The slow-roll regime is an attractor [32] such that typically a few e-folds after the onset of

inflation, the slow-roll approximation is valid. As shown later, studying inflation in the slow-roll

regime is very convenient because in this case model observable predictions for the scalar and

tensor power spectra are directly related to the scalar field potential and its derivatives. Now let us

introduce the Hubble-flow functions [33],

ε1 ≡ − Ḣ

H2
< 1 ⇐⇒ ä > 0 , (3.15)

εn+1 ≡ dln |εn|
dN

. (3.16)

Using these functions, the F.L. and K.G. equations can be rewritten as

H2 =
8π

m2
p

V

3− ε1

, (3.17)

φ̇ =
−1

(

3+
1

2
ε2 − ε1

)

H

dV

dφ
, (3.18)

13
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and one sees that the slow-roll regime is recovered when

ε1 ≪ 3 , ε2 ≪ 6−2ε1 . (3.19)

One sees also that ε1 < 3 is required for satisfying the condition H2 > 0. In the slow-roll approx-

imation, they can be expressed as a function of the potential and its derivatives. For the first and

second Hubble-flow functions, one has [34]

ε1(φ) ≃
m2

pl

16π

(

1

V

dV

dφ

)2

+O(ε2
i ) ,

ε2(φ) ≃
m2

pl

4π

[

(

1

V

dV

dφ

)2

− 1

V

d2V

dφ2

]

+O(ε2
i ) .

(3.20)

The Hubble flow functions are usually referred as the slow-roll parameters. Finally, let remark that

there exists several definitions for the slow-roll parameters, e.g. ε and ηSR defined as

ε ≡ ε1 , (3.21)

ηSR ≡ − φ̈

H φ̇
= ε − ε̇

2Hε
≃

m2
pl

4π

V ′′

V
, (3.22)

such that the relation ε2 =−ηSR +4ε is verified.

4. Theory of cosmological perturbations

A major success of inflation is that it provides a mechanism for the generation of density

perturbations that seed all the structures in the Universe. The classical density perturbations orig-

inate naturally from quantum fluctuations that grow and become classical due to the exponential

expansion.

The theory of cosmological perturbations describes how the scalar field and the metric fluctu-

ations evolve during inflation. At the linear level, the homogeneous metric is perturbed by δgµν ,

gµν(x) = gFLRW
µν +δgµν(x) . (4.1)

There are 10 degrees of freedom (d.o.f.) associated to the metric perturbation δgµν . They can

be decomposed in 4 scalar d.o.f. A,B,C,E , 4 vector d.o.f. Bi et Ei resulting from two space-like

vectors of null divergence, 2 tensor d.o.f. hi j resulting from a space-like tensor with vanishing trace

and divergence. The perturbed metric then can be rewritten as

ds2 = a2(η)
{

−(1+2A)dη2 +2(∂iB+Bi)dxidη +
[

(1+2C)δi j +2∂i∂ jE +2∂(iE j)+2hi j

]

dxidx j
}

.

(4.2)

4.0.1 The gauge freedom

One defines a local perturbation of a quantity Q as

δQ(x, t) = Q(x, t)− Q̄(t) , (4.3)
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where Q̄(t) denotes this quantity in the un-perturbed homogeneous space-time. Any perturbation

therefore depends on the choice of the coordinate systems on each manifold. In other words, if

a coordinate system is fixed for the un-perturbed space-time, one needs to define an isomorphism

identifying the points of same coordinates in the two space-times. The liberty in this choice implies

that four d.o.f. are non-physical and only linked to the choice of the coordinate systems on the two

manifolds.

Let us consider a transformation of the coordinate system

xµ → xµ +ξ µ , (4.4)

where ξ µ is a space-time like vector. ξ µ can be decomposed in two scalar (T and L) and two vector

(Li) d.o.f. via

ξ 0 = T , ξ i = DiL+Li , DiLi = 0 , (4.5)

where Di is defined as the spatial part of the covariant derivative. Fixing this transformation is

thus equivalent in fixing 4 d.o.f.. Under this transformation of the coordinate system, the metric

perturbation transforms as

δgµν → δgµν +Lξ gµν , (4.6)

where Lξ is the Lie derivative along ξ . The Lie derivative evaluates the change of a tensor field

along the flow of a given vector field. It is defined as

Lξ T
µ1... µp

ν1... νq
= ξ σ ∂σ T

µ1... µp

ν1... νq
−

p

∑
i=1

T
µ1... σ ... µp

ν1... νq
∂σ ξ µi +

q

∑
j=1

T
µ1... µp

ν1... α ... νq
∂ αξν j

. (4.7)

Applied to the symmetric metric, the Lie derivative gives

Lξ gµν = ∇µξν +∇νξµ , (4.8)

where ∇µ is the covariant derivative associated with the metric gµν . As a result, one can show that

scalar, vector and metric perturbations transform like [16]

A → A+T ′+H T , (4.9)

B → B−T +L′ , (4.10)

C → C+H T , (4.11)

E → E ′+L , (4.12)

E i → E i +Li , (4.13)

Bi → Bi +Li′ , (4.14)

hi j → hi j . (4.15)

In the same way, the perturbation δQ becomes

δQ → δQ+Lξ Q . (4.16)

A quantity is called gauge invariant when it is conserved by the transformation of the coordinate

system, i.e. when its Lie derivative vanishes. Gauge invariants are for instance the Bardeen vari-

ables [35]

Φ ≡ A+H (B−E ′)+ (B−E ′)′ , (4.17)

Ψ ≡ −C−H (B−E ′) . (4.18)
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If we set T = B−E ′, L =−E and L′
i =−Bi, one has

B = E = 0 , Bi = 0 , (4.19)

and the scalar metric perturbations are identified with the Bardeen variables

A = Φ, (4.20)

C = −Ψ . (4.21)

This choice is called the longitudinal gauge, which we adopt from now.

4.0.2 Scalar perturbations

Once the gauge is fixed, one can study the evolution of cosmological perturbations in the

linear regime. Interestingly, scalar and metric perturbations decouple and thus one can consider

them separately. We will show that vector perturbations decay quickly and can be safely neglected.

Let us consider first the scalar perturbations in the longitudinal gauge. The perturbed metric is of

the form

ds2 = a2(η)
[

−(1+2Φ)dη2 +(1−2Ψ)δi jdxidx j
]

. (4.22)

The scalar field filling the Universe at a given space-time point has an homogeneous part φ̄ plus a

small perturbation δφ ≪ φ̄ ,

φ(x, t) = φ(t)+δφ(x, t) . (4.23)

In the longitudinal gauge, it is identified to the gauge invariant variable

δφg.i. = δφ +φ ′(B−E ′) . (4.24)

After perturbing the energy momentum tensor, the (0,0) and (i, i) first order perturbed Einstein

equations read

−3H (Ψ′+H Φ)+∇2Ψ =
4π

m2
p

(

φ ′δφ ′−φ ′2Φ+a2 dV

dφ
δφ

)

, (4.25)

Ψ′+H Φ =
4π

m2
p

φ ′δφ , (4.26)

Ψ′′+2H Ψ′+H Φ′+ Φ
(

2H
′+H

2
)

+
1

2
∇2(Φ−Ψ)

=
4π

m2
p

(

φ ′δφ ′−φ ′2Φ−a2 dV

dφ
δφ

)

, (4.27)

where a prime denotes derivative with respect to the conformal time η , and where H ≡ a′/a = aH .

Moreover, because δT
j

i ∝ δ j
i in absence of vector perturbations, one has Φ= Ψ. On the other hand,

the perturbed Klein-Gordon equation reads

δφ ′′+2H δφ ′−∇2δφ +a2δφ
d2V

dφ2
= 2(φ ′′+2H φ ′)Φ+φ ′(Φ′+3Ψ′) . (4.28)
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One sees that δφ is directly related to Φ and its derivative, so that there remains only one scalar

d.o.f.. By combining Eq. (4.25) and Eq. (4.27), by using Eq. (4.26) as well as the background equa-

tions, and after a bit of algebra, an unique second order evolution equation for scalar perturbations

can be derived,

Φ′′+2

(

H − φ ′′

φ ′

)

Φ′−∇2Φ+2

(

H
′−H

φ ′′

φ ′

)

Φ = 0 . (4.29)

It is convenient to work in Fourier space, because in the linear regime each mode evolves indepen-

dently and one can solve the evolution equation for each of them. After a Fourier expansion, one

can define

µs ≡ −4
√

π

mp

a(δφ +φ ′Φ/H ) , (4.30)

ω2
s ≡ k2 − (a

√
ε)′′

a
√

ε
, (4.31)

where k is a comoving Fourier wavenumber, and equation (4.29) can be rewritten in a simpler form,

µ ′′
s +ω2

s (k,η)µs = 0 . (4.32)

This equation is similar to an harmonic oscillator with a varying frequency. Apart in some specific

cases, it cannot be solved analytically and one has to use numerical techniques. It is also possible

to solve it analytically after a Taylor expansion at first order in slow-roll parameters.

Instead of Φ or µs, it is a common usage to calculate the mode evolution and the power

spectrum of the curvature perturbation ζ 3 defined as

ζ ≡ Φ− H

H ′−H 2
(Φ′+H Φ) =−µs

1

2a
√

ε1

. (4.33)

Its power spectrum thus reads

Pζ (k) =
k3

8π2

∣

∣

∣

∣

µs

a
√

ε1

∣

∣

∣

∣

2

. (4.34)

By using Eq. (4.28), one can determine that ζ evolves according to

ζ ′ =
−2H

3(1+w)

(

k

H

)2

Φ , (4.35)

and as long as the modes are super-Hubble (k/H ≪ 1), ζ (k) remains constant in time. Therefore,

observable modes re-entering into the Hubble radius during the matter dominated era have kept

the value they had during inflation, when they exit the Hubble radius, independently of the details

of the reheating phase4 and the transition between inflation and the radiation dominated era. For

1-field inflationary models, they can be used to probe directly the inflationary era.

3ζ can be identified to the spatial part of the perturbed Ricci scalar in the comoving gauge, in which the fluids have

a vanishing velocity (δT 0
i = 0).

4Let notice that a non linear growth of density perturbations during preheating is expected in some models, possibly

affecting the linear curvature perturbations on very large scales [36, 37].
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l aα

areha*
aeqaend

1/ H

Radiation MatterReheating

P(k)Nreh ?

Inflation

N=ln(a)

N* ~ 50−70 efolds

Nobs ~ 10 efolds

Figure 3: This scheme form Ref. [38] illustrates how observable perturbation modes evolve during and

after inflation. The horizontal axis represents the number of e-folds generated from the onset of inflation.

Observable modes exit the Hubble radius on a range of about ten e-folds. From this time, inflation still lasts

from 50 to 70 e-folds, depending on the energy scale of inflation [39] and on the duration of the reheating

phase. The curvature and tensor perturbations are constant for super-Hubble wavelengths, until they re-enter

into the Hubble radius during the matter/radiation dominated era.

4.0.3 Tensor perturbations

The metric for the tensor perturbations reads

ds2 = a2(η)
[

−dη2 +(1+hi j)dxidx j
]

, (4.36)

and the metric perturbation hi j is gauge invariant. It is convenient to express the two d.o.f. in hi j as

hi j = a2







h+ h× 0

h× h+ 0

0 0 0






. (4.37)

As for the scalar perturbations, one can then write the first order perturbed Einstein equations,

h′′α +2H hα +∇2hα = 0, (4.38)

where α =+,×. By defining

µt ≡
1

2
ahi jδ

i j, (4.39)

after Fourier expansion, these two equations reduce to

µ ′′
t +ω2

t (k,η)µt = 0 , (4.40)
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where

ω2
t (k,η)≡ k2 − a′′

a
. (4.41)

The variable h= hi jδ
i j, is the analogous of ζ for the tensor perturbations and has similar properties.

Its power spectrum reads

Ph(k) =
2k3

π2

∣

∣

∣

µt

a

∣

∣

∣

2

. (4.42)

4.0.4 Vector perturbations

The metric for the vector perturbations in the longitudinal gauge reads

ds2 = a2(η)
[

−dη2 +2∂(iE j)dxidx j
]

, (4.43)

and the vector perturbations E j can be identified in this gauge to the gauge invariant variable

Φi = Ei −Bi . (4.44)

The perturbed energy-momentum tensor for a scalar field does not contain any source of vector

perturbations and the first-order perturbed Einstein equations read

Φ′′
i +2H Φ′

i = 0 . (4.45)

Vector perturbations therefore decay quickly, since Φ′
i ∝ a−2 and because a grows nearly exponen-

tially with the cosmic time. That is why vector perturbations are usually neglected.

4.0.5 Quantification of perturbations

In the context of inflation, quantum fluctuations are responsible for large scale structures of

the Universe observed today. The canonical commutation relations are the basis of the quantization

process. But to define them, one needs the canonical momenta, and thus the action. It is incorrect to

interpret directly the classical equations of motion [Eqs. (4.32) and (4.40)] quantum mechanically,

because it leads in general to an incorrect normalization of the modes [40].

Scalar perturbations: If we perturb the total action of the system up to the second order in the

metric and scalar field perturbations, one finds [40]

(2)δS =
1

2

∫

d4x

[

(v′)2 −δ i j∂iv∂ jv+
z′′s
zs

v2

]

. (4.46)

where v ≡ a(δφg.i.+φ ′Φ)/H can be identified to −µsmpl/4
√

π in the longitudinal gauge, and is

the so-called Mukhanov-Sasaki variable. The quantity zs is defined as zs ≡
√

4πaφ ′/H = a
√

ε1.

As expected, the e.o.m for this lagrangian reads

v′′−
(

∇2 +
z′′

z

)

v = 0 . (4.47)

The first step of the quantization process is to determine π , the conjugate of v,

π =
δL

δv′
= v′ . (4.48)
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Then the Hamiltonian reads

H =
∫

dx4

(

π2 +δ i j∂iv∂ jv−
z′′s
zs

v2

)

. (4.49)

In a quantum description, the classical variables v and π are promoted as quantum operators v̂ and

π̂ , satisfying the commutation relations

[v̂(x,η), v̂(y,η)] = [π̂(x,η), π̂(y,η)] = 0 , (4.50)

[v̂(x,η), π̂(y,η)] = iδ (3)(x−y) . (4.51)

In the Heisenberg picture, the operator v̂ can be expanded over a complete orthonormal basis of the

solution of the field equation Eq. (4.47). If one takes a basis of plane waves, one has

v̂(x,η) =
1

(2π)3/2

∫

d3k
(

vkeik·xâk + v∗ke−ik·xâ+k
)

, (4.52)

and the equation for the vk(η) is

v′′k (η)+

(

k2 − z′′

z

)

vk = 0 . (4.53)

If the normalization condition

v′k(η)v∗k(η)− v∗k
′(η)vk(η) = 2i (4.54)

is satisfied, the creation and annihilation operators âk and â+k satisfy the standard commutation

relations

[âk, âk′ ] = [â+k , â
+
k′ ] = 0 , [âk, â

+
k′ ] = δ (3)(k−k′) . (4.55)

At a time ηi, the vacuum |0〉 can now be defined, such that for all k one has

âk|0〉 = 0 . (4.56)

From Eq. (4.53), in the sub-Hubble regime, we have

lim
k/aH→+∞

vk(η) =
e−ik(η−ηi)

√
2k

. (4.57)

This can be used to give consistent initial conditions to Eq. (4.32).

Tensor perturbations: The quantification of the tensor perturbations is analogous. One can first

determine the second order perturbed action

(2)δS =−
M2

pl

2
∑

α=+,×

∫

d4x

[

(h′α)
2 −δ i j∂ihα ∂ jhα +

a′′

a
h2

α

]

. (4.58)

The perturbations hα(η ,x) are the canonical variables. They are promoted as quantum operators

and are expanded in plane waves,

ĥ j(x,η) =
1

(2π)3/2

∫

d3k
(

hk, je
ik·xâk, j +h∗k, je

−ik·xâ+k, j

)

. (4.59)

20



P
o
S
(
M
o
d
a
v
e
2
0
1
4
)
0
0
3

Inflation after Planck: from theory to observations Sébastien Clesse

The e.o.m. are

h′′k, j +

(

k2 − a′′

a

)

hk, j = 0 , (4.60)

similar to Eq. (4.40). The quantification process can be used to determine the sub-Hubble tensor

perturbation evolution,

lim
k/aH→+∞

hk, j(η) =
e−ik(η−ηi)

√
2k

. (4.61)

4.0.6 Expansion in slow-roll parameters

Eqs. (4.32) and (4.40) can be solved analytically if these are expanded at first order in the

Hubble flow-functions around some pivot scale. To do so, let us first rewrite

η =

∫

dt

a
=

∫

da

Ha2
=− 1

aH
+

∫

da
ε1

a2H
. (4.62)

In the slow-roll approximation, one has |εi|≪ 1. By definition, the derivative of the first and second

Hubble-flow functions with respect to the number of e-folds are second order in |εi|,
dε1

dN
= ε1ε2 ,

dε2

dN
= ε2ε3 . (4.63)

One can therefore neglect their variation over the time taken for observable modes to exit the

Hubble radius (it corresponds typically to ∆N ∼ 10 [39]). In this approximation, and by using

Eq. (4.62), one thus has

aH = − 1

η
+

aH

η

∫

ε1

a2H
da =− 1

η
+

aH

η

∫

ε1

a
dt ≃− 1

η
+aHε1 ≃

−1+ ε1

η
. (4.64)

By integrating the last expression, the scale factor is found to behave like

a(η)≃ l0|η |−(1+ε1) ≃ l0

|η | (1− ε1 ln |η |) , (4.65)

where l0 is an arbitrary parameter. Instead of choosing an arbitrary scale, it is more convenient to

chose an arbitrary conformal time η∗, and to relate it to the scale l0 via

H(η∗) =−1+ ε1∗
aη∗

≃ 1

l0
[1+ ε1∗(1+ ln |η∗|)]≡ H∗ , (4.66)

where a star subscript denotes the evaluation at the time η∗. We have fixed η∗ such that the follow-

ing relation is verified

k∗ = a(η∗)H(η∗) , (4.67)

where k∗ is the comoving pivot mode introduced in Section 2.1.

The scalar and tensor perturbations evolve according to Eq. (4.32) and Eq. (4.40). These

equations can now be expanded at first order in slow-roll parameters and then solved analytically.

The first step is to use Eq. (4.64) to expand

(a
√

ε)′′

a
√

ε
≃ 2+3ε1 +

3
2
ε2

η2
, (4.68)

a′′

a
≃ 2+3ε1

η2
. (4.69)
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In the approximation that the slow-roll parameters are constant in time, a general solution to (4.32)

and (4.40) can be found

µs,t(kη) =
√

kη
[

AJνs,t(kη)+BJ−νs,t(kη)
]

, (4.70)

where νs =− 3
2
−ε1− 1

2
ε2 and νt =− 3

2
−ε1. It is convenient to express the Bessel function Jν(kη)

in terms of the Hanckel functions of first and second kind H
(1)
ν (kη) et H

(2)
ν (kη). The quantification

of the perturbations provide the initial conditions. By using the asymptotic behavior of the Hanckel

functions,

H
(1)
ν (z → ∞) =

√

2

πz
ei(z− 1

2
νπ− 1

4
π), (4.71)

H
(2)
ν (z → ∞) =

√

2

πz
e−i(z− 1

2
νπ− 1

4
π), (4.72)

(4.73)

and by comparing with the Eqs. (4.57) and (4.61), A and B can be determined. For scalar perturba-

tions, one has

A = 2i
π

mpl

√
k sin(πνs)e

i( 1
2

νs− π
4
+kηi) , (4.74)

B = −Ae−iπνs . (4.75)

On the other hand, one can use the limit condition

H
(1)
1/2−ν(z → 0) =− i

π
Γ

(

1

2
−ν

)

(

− z

2

)ν− 1
2
, (4.76)

as well as the recurrence relation

Γ(z+ ε) = εψ(z)Γ(z)+Γ(z) , (4.77)

ψ(1/2) = −γEuler −2ln2 , (4.78)

with γEuler ≃ 0.5772 and where ψ(z) is the polygamma function, to obtain the super-Hubble be-

havior of the perturbation modes. Since observable modes are super-Hubble at the end of inflation,

one obtain the power spectrum expanded at first order in slow-roll parameters around η∗, by using

Eqs. (4.65) and (4.66). For scalar perturbations, one obtains

Pζ (k) =
k3

8π2

∣

∣

∣

∣

µs

a
√

ε1∗

∣

∣

∣

∣

2

(4.79)

=
H2
∗

πm2
pε1∗

[

1−2(C+2)ε1∗+Cε2∗− (2ε1∗+ ε2∗) ln

(

k

k∗

)]

. (4.80)

For tensor perturbations,

Ph(k) =
2k3

π2

∣

∣

∣

µt

a

∣

∣

∣

2

(4.81)

=
16H2

∗
πm2

p

[

1−2(C+1)ε1∗−2ε1∗ ln

(

k

k∗

)]

, (4.82)
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with C = γEuler + 2ln2 − 2. All the slow-roll parameters are evaluated at η∗. At first order in

slow-roll parameters, the scalar spectral index is therefore

ns −1 =−2ε1∗− ε2∗ . (4.83)

For the tensor perturbations, it is

nt =−2ε1∗ . (4.84)

Finally the ratio between the tensor and scalar power spectrum is given by

r = 16ε1∗ . (4.85)

The amplitude and the spectral tilt of the scalar and tensor power spectra can thus be derived

easily in the slow-roll approximation, at first order in slow-roll parameters, for a given scalar field

potential. They are given only in terms of the potential and its derivatives with respect to the scalar

field.

Finally, note that r = −8nt is a generic prediction of single field inflation. Checking this

relation will be a major goal for future experiments. If observations show that it is satisfied, this

should be seen as a proof that inflation really took place, since most of the alternatives predict

different behaviors. This relation is called the consistency relation of inflation.

5. Worked example: the power-law large field potential

To illustrate the results of the two previous sections, let consider one of the simplest potential,

of the power-law form (the model is often referred as large field inflation or chaotic inflation):

V (φ) = M4

(

φ

Mp

)p

. (5.1)

The background dynamics in the slow-roll approximation is given by Eqs. (3.12) and (3.13). The

number of e-folds realized from an initial field value φi can be determined analytically,

N(φ) =
1

2p

[

(

φi

Mp

)2

−
(

φ

Mp

)2
]

. (5.2)

The first and second slow-roll parameters read

ε1(φ) =
p2M2

p

2φ2
, (5.3)

ε2(φ) =
2pM2

p

φ2
. (5.4)

Inflation stops when the first slow-roll parameter reaches ε1 = 1. This corresponds to the inflaton

value
φend

Mp

=
p√
2
. (5.5)
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For a given number of e-folds N∗ between the Hubble exit of the pivot mode and the end of inflation,

the inflaton value φ∗ and the slow-roll parameters can be obtained in a straightforward way. For

N∗ = 60 and p = 2, they read

φ∗ =

√

2p
(

N∗+
p

4

)

Mp ≃ 15.5Mpl ≃ 3.1mp , (5.6)

ε1∗ ≃ 0.0083 , ε2∗ ≃ 0.0166 . (5.7)

It is then straightforward to derive the scalar power spectrum spectral index and the scalar to tensor

ratio,

ns = 1−2ε1∗− ε2∗ ≃ 0.967 , r = 16ε1∗ ≃ 0.13 . (5.8)

These predictions are independent of the mass of the field and correspond to a point in the (ns,r)

plane. Nevertheless, they depend on the reheating history through N∗. The mass scale is fixed by

the scalar power spectrum amplitude given in section 2. One gets M ≃ 10−3mpl. For large field

models, inflation takes therefore place close to the GUT scale. Let remark that the inflaton field

must be initially super-Planckian in order for inflation to last at least 60 e-folds. Nevertheless, the

energy density remains much smaller than the Planck scale. General Relativity is thus valid and no

effect of quantum gravity is expected.
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Figure 4: Top: Scalar field potential and its logarithm for the large field model and for p = 2. Bottom-left:

evolution of slow-roll parameters ε1 (solid line) and ε2 (dashed line). Inflation stops when ε1 = 1 (dotted

line). Bottom-right: evolution of φ(N), for an initial field value φi = 5mpl
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6. Classification of single-field potentials

There exists a large variety of single-field models of inflation, from the simplest power-law

potentials to more complicated potentials arising in various high energy frameworks. For an ex-

haustive list of models and their analysis, one can refer to the Encyclopaedia Inflationaris [15].

Note that all those models are implemented numerically within the ASPIC library.

In this section, I introduce a classification of single-field potentials, depending on the values

taken by the scalar field and the slow-roll parameters. It is closed to the Schwartz-Terrero-Escalante

classification [41, 15]. Note however that it is not really complete since more complicated forms

of the potential could be envisaged. Moreover, some scalar field potentials can belong to several

classes depending on their parameters.

1. Small-field models: Slow-roll parameters are usually such that 0 < ε1 ≪ ε2, meaning that

the kinetic energy increases, as well as the ratio between the kinetic energy and the total

energy. The Higgs model as well as plateau potentials, e.g. of the form V ∝ [1− (φ/Mpl)
p],

belong to this class. The low value of ε1 ensures that many e-folds can be realized close

to φ = 0 at sub-Planckian field values. The spectral index deviates from unity due to the

concavity of the potential, which is negative (since ε2 ∼−V ′′/V ).

2. Large-field models: In this class of models, one has usually 2ε1 & ε2 > 0, meaning that

the ratio between kinetic energy and the total energy increases whereas the kinetic energy

decreases. The power-law potential (V ∝ φ p) belongs to this class. The spectral index devi-

ates from unity mostly due to the ε1 parameter, and given the present constraints this implies

super-Planckian field values. Note however that the energy density during inflation is still

much lower than the Planck scale.

3. Hybrid models: In this class of models, inflation takes place in a false vacuum dominated

regime, often along a nearly flat valley of some multi-field potential. Inflation can end due to

the presence of auxiliary fields inducing a tachyonic waterfall instability below some critical

field value φc, or due to a change in the shape of the potential. Both the kinetic energy and

the ratio between kinetic and total energy decrease. The potential is e.g. of the form V ∝

[1+(φ/µ)p] (original hybrid model) and many e-folds of inflation can be realized in the false

vacuum, at sub-Planckian field values. However in this model one gets ε2 < 0 and ε1 ≪ 1,

and thus the spectral index is blue, which is now ruled out. There are nevertheless hybrid

models, e.g. SUSY models (F-/D-term models and variants), where a flat direction of the

potential is lifted up by logarithmic radiative corrections. This leads to ε2 > 0 and thus a red

spectrum possibly in agreement with observations. Finally note that in hybrid models, multi-

field effects can be important, e.g. before field trajectories reach the inflationary valley [42,

43, 44], or during the final waterfall phase [45, 46, 47].

7. Observational constraints from Planck and BICEP2

7.1 Planck results

In 2013 the Planck mission has delivered its measurements of the CMB temperature anisotropies.

The CMB angular power spectrum has been measured with a high accuracy down to very small
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scales. It is found to be in a very good agreement with the best fit of the standard cosmological

model, assuming that primordial perturbations are well described by the amplitude and the spec-

tral index of their power spectrum. With Planck combined to observations of the Baryon Acoustic

Oscillations and type 1-a supernovae, the cosmological parameters have been measured with an

unprecedented accuracy [1, 2]. As already mentioned, the scalar power spectrum amplitude and

spectral index are respectively given by As = 2.196+0.051
−0.06 × 10−9 and ns = 0.9603 ± 0.0073. An

important point is that ns < 1 at more than 4σ , which rules out models predicting a scale invariant

or a blue tilted scalar power spectrum (such as the original hybrid model). An upper bound on

the tensor to scalar ratio (r . 0.11) has also been derived by combining Planck data to the mea-

surements by WMAP of the CMB polarization. The Planck limits in the plane (ns,r) are given in

Fig. 6, together with the predictions of some of the most well-known inflation models. One can

observe that the limit where convex potentials will be disfavored at the 95% C.L. is not far, and that

simple potentials like V ∝ φ4 and V ∝ φ3 are already strongly disfavored. Simple supersymmetric

models like F-term and D-term inflation are also in strong tension with Planck data, because they

predict typically that 0.98 . ns . 1.

Planck also give the best constraints on the level of local non-Gaussianities, with a bound

f loc
NL = 2.7± 5.8 [6]. This excludes many multi-field inflation scenarios and tends to favor single-

field models. Planck has also improved the limits on a possible contribution of a cosmic string

network to the CMB temperature anisotropies.

We review in more details the implications of the Planck results for inflation models in the

next section.

Figure 5: CMB temperature anisotropy angular power spectrum seen by Planck [1, 2], with the predictions

for the best fit of the standard cosmological model parameters, assuming a scalar power spectrum described

by an amplitude As and a spectral index ns.
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Figure 6: 1-σ and 2-σ contours in the plane (ns,r) from Planck plus BAO or WMAP polarization [1, 2].

The predictions for several inflation models are also reported.

7.2 BICEP2 results

The BICEP2 experiment is based at the South Pole in Antarctica and measures the CMB polar-

ization on large scales, in a small patch of the sky. In March 2014 it has reported the measurement

of B-mode polarization of the Cosmic Microwave Background [7] and claimed that it is of pri-

mordial origin. The signal can be attributed to the tensor modes generated during inflation for a

tensor to scalar ratio r = 0.20+0.07
−0.05. They also claimed to exclude r = 0 at more than 7σ . Combined

Planck and BICEP2 constraints in the plane (ns,r) are reported on Fig. 7. Both experiments are in

agreement but one can note some tension between them. As explained in the next section, this is

translated in many models of inflation that are incompatible with both Planck and BICEP2.

The theory of the CMB polarization is rather complex and goes beyond the scope of these

lecture notes. Here I only briefly comment the principal result. The polarization of the CMB is

due to the Compton diffusion that tends to polarize the radiation in the orthogonal direction to the

diffusion plane. In the case of perfect isotropy of the radiation, or in the case of dipolar anisotropy,

there is no net effect and the CMB would not be polarized. However, for quadripolar anisotropies,

the CMB radiation becomes polarized in averaged. On can distinguish two types of polarization,

designated by E-mode and B-mode by analogy to the electromagnetism because they correspond

to curl free gradient and divergence free curl polarizations. The important point is that tensor

perturbations generate both E-mode and B-mode polarization whereas scalar perturbations generate

only E-modes. By measuring primordial B-modes, one therefore has access to the amplitude of the

power spectrum of tensor perturbations, which has been calculated in a previous section.

Measuring the tensor to scalar ratio has profound implications for inflation. Indeed, the tensor

to scalar ratio is directly related to the first slow-roll parameter, r = 16ε1. Knowing the value of

ε1∗ together with the amplitude of the power spectrum of scalar perturbations then permits to fix

H∗ as well as the value of the field and of the potential at the time of Hubble exit of the pivot
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Figure 7: Planck and BICEP2 combined constraints in the plane (ns,r). Figure fom [7].

scale. Measuring r therefore gives direct access to the energy scale of inflation. Combined with

measurements of the scalar spectral index, this gives also the curvature of the potential via the

second slow-roll parameter ε2. The energy scale of inflation is given by

ρ1/4 ≃ 2.2
( r

0.2

)

1016 GeV (7.1)

and therefore BICEP2 results point toward an energy scale of inflation close to the GUT scale. One

can also note that BICEP2 results lead to a relatively large value of ε1 which implies superplanckian

field excursions and excludes the class of small field models.

7.3 Controversy about BICEP2 results

It must be noted that BICEP2 results are still controversary. Planck dust polarization maps

have been recently published, and they suggest that the polarization fraction has considerable un-

certainties, higher than the previous predictions that where used by BICEP2. In the case there is no

assumption about dust polarization, except the power spectrum shape

C
BB,dust
l ∝ l−2.3 (7.2)

then it has been shown that solutions with no gravitational waves and r < 0.11 are favored at 2σ

level. It is currently impossible to affirm with certainty that gravitational waves from inflation have

been measured [8, 9, 7]. One has to wait early 2015 for the Planck results on the CMB polarization.

Planck is able to detect a tensor to scalar ratio r ≃ 0.2, but not r ≃ 0.1. Therefore it is likely that

we will have to wait for further observations, e.g. by BICEP3. Note also that a joint more precise

analysis between Planck and BICEP has been planned.

7.4 Future experiments

There exists several projects of CMB experiments that could take place in the next 15 years.

Besides BICEP3, one can mention LiteBIRD [48], the Cosmic Origin Exporer (COrE) [49] and the
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Polarized Radiation Imaging and Spectroscopy (PRISM) missions [50], the latter two being now

gathered in the COrE+ proposal. One aim is to detect primordial gravitational waves at the r ∼ 10−3

level. It is also possible to have access to a broader range of wavelength modes by measuring

spectral distortions of the CMB black-body spectrum, e.g. with the Primordial Inflation Explorer

(PIXIE) [51] or with PRISM. Silk damped acoustic oscillations induce some energy injection in

the CMB monopole, which results in spectral distortions that can therefore probe the scalar power

spectrum on much smaller scales than with CMB temperature anisotropies. A variety of inflation

models could be tested with CMB distortions [52]

From 2020, additional constraints should come from large scale structure observations with

Euclid, which is expected to improve by a factor 2-3 the present limits on the parameters describ-

ing the shape of the scalar power spectrum [53]. The 21cm signal from reionziation and from the

end of the dark ages could be also a powerful probe for cosmology (see e.g. Refs. [54, 55, 56]),

and especially for inflation. Future giant radio-telescopes like the Square Kilometre Array (SKA)

should inaugurate the detection of the 21cm signal, and an interesting concept of full digital kilo-

meter size radio telescope dedicated to 21cm cosmology has been proposed [57], the Fast Fourier

Transform Telescope (FFTT).

8. Model comparison: a Bayesian approach

Considering only single field models, a plethora of scalar field potentials have been proposed,

arising in various high energy frameworks like axions, non-minimally coupled Higgs field, super-

symmetry, supergravity, Grand Unified Theories, extra-dimensions, string theory, brane cosmol-

ogy, loop quantum gravity. Most models proposed so far have been listed in Ref. [15] and their

compatibility with observations has been analyzed. But in order to compare models and to hunt

what is the best one given the data, one needs to use Bayesian statistical methods.

In this section, we briefly review the basics of Bayesian inference and define the Bayes factor

that gives the posterior odds of some model given a reference model. Then, the results for single

field models of inflation and Planck data are presented. Even if they must be taken with caution,

the results for a joint Planck and BICEP2 analysis are also discussed.

This section is mostly based on the recent work by J. Martin, C. Ringeval, R. Trotta and V.

Vennin [5, 10], to which we invite the interested reader to refer for further details.

8.1 Notions of Bayesian inference

Bayesian inference is based on the Bayes’ theorem that determines how likely are some hy-

pothesis given new data and some prior information. To illustrate how works the theorem, let first

consider a simple wikipedia example: suppose that a friend told you he met someone at a party.

If you don’t have any further information and assuming that your friend does not talk more likely

to women than men, then the probability that the person is a women is 50%, which is denoted

P(W ) = 0.5 and P(M) = 0.5 (M for man and W for woman). Now if you understand in the con-

versation that this person had long hair, you may want to calculate the probability that the person

was a woman. If it is known that 75% of women have long hair, which we denote P(L|W ) = 0.75

(L for long hair), and that only 15% of men have long hair, P(L|M) = 0.15 (those are conditional

probabilities), then you can calculate the probability that a person is a women given that he or she
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is a long-haired person, P(W |L). It is obvious that P(W |L)P(L) = P(L|W )P(W ), which can be

rewritten

P(W |L) = P(L|W )P(W )

P(L|W )+P(L|M)
=

0.75×0.50

0.75×0.50+0.15×0.50
=

5

6
(8.1)

Now let us consider a model Mi having continuous parameters θi j, and that we want to evaluate the

probability of some parameter values given some new data D. The Bayes’ theorem is generalized

as follows:

p(θi j|D,Mi) =
π(θi j|Mi)L (θi j)

E (D|Mi)
, (8.2)

where L (θi j) ≡ P(D|θi j,Mi) is the the so-called likelihood function for the model parameters.

The function π contains the prior information on the model parameters. E is called the Bayesian

evidence and is defined as

E (D|Mi) =

∫

dθi jL (θi j)π(θi j|Mi). (8.3)

Note that it is just a normalization factor, and therefore it is not required to evaluate the Bayesian

evidence if one just want to constrain the parameters θi j. On the other hand, if one needs the

posterior probability of some model, one has to evaluate

p(Mi|D) =
π(Mi)E (D|Mi)

∑i π(Mi)E (D|Mi)
(8.4)

and then the Bayesian evidence needs to be computed. In one consider that all single field models

are known and that none of them is a priori favored, one has π(Mi) = 1/Nmodels. The posterior odds

of some model Mi compared to another reference model MRef are encoded in the Bayes factor

Bi
Ref ≡

E (MRef|D)

E (Mi|D)
=

p(Mi|D)

p(MRef|D)
. (8.5)

It is interesting to note that the Bayes factor take into account the Occam’s razor effect, in the

sense that models with less parameters will be favored against models with more parameters and

same predictions. Another important point is that the Bayes factor depends on the prior given to

the parameters θi j. Different priors change the model Bayesian evidence. Thus for inflation, it

is actually possible that a same scalar field potential arising in different frameworks, motivating

different priors, has different Bayes factor depending on the considered scenario.

The principal difficulty is to estimate the likelihood function L (θi j) = P(D|θi j,Mi) in the

full parameter space, for each model. Usually, this is done by using Markov-Chain-Monte-Carlo

(MCMC) methods. Compared to standard Monte-Carlo that samples the parameter space with

points randomly distributed, a Markov chain in which each point depends on the previous one is

built and the statistical distribution of the points converges through the likelihood function. The

main advantage of MCMC methods is that the convergence is nearly linear, which allows to probe

high-dimensional parameter spaces.

8.2 The best inflationary model after Planck

The Bayes actor has been calculated in [5] for Planck data and for all the 193 single field

scenarios listed in Ref. [15], using the Higgs model (the only single field model with no free
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parameter) as a reference. Those results are reported in Fig. 8. One can use the Jeffrey’s scale

for evaluating the Bayesian evidence between two models: if | ln Bi
Ref| < 1 the result is said to be

inconclusive; in the range 1 < | lnBi
Ref|< 2.5 there is a weak evidence; for 2.5 < | lnBi

Ref|< 5 there

is a moderate evidence; if | lnBi
Ref|> 5 there is a strong evidence.

The first important result is that Planck data rule out at a strong evidence level about one third

of the models. This demonstrates that Planck results are very impressive. Only one fourth of models

are found to be inconclusive compared to the best model. Interestingly, all the favored scenarios

have a scalar field potential of plateau-type. Among them, Higgs inflation (or equivalently the

Starobinsky model) is at the top, whereas it is totally predictive since it has no free parameter.

In Higgs inflation, the inflaton field is identified to the Higgs field h recently discovered at the

Large Hadron Collider. But for being in agreement with data, the model requires that the Higgs is

non-minimally coupled to gravity. This is the simplest model arising in the context of the standard

model of particle physics. In the Einstein frame, the scalar field potential is of the form

V (φ) = Λ4
(

1− e−
√

2/3φ/Mpl

)2

, (8.6)

and the only parameter Λ is fixed by normalizing the scalar power spectrum amplitude to Planck

measurement, so that there no remaining free parameter. The Higgs model is equivalent to the

Starobinsky model, based on the action S = 1
2

∫

dx4√−g(M2
plR+R2/6M2).

8.3 The best inflationary model after Planck+BICEP2

A similar analysis has been performed for Planck plus BICEP2 [10], assuming that the B-

modes detected by BICEP2 are of primordial origin, and using only the first four band powers (the

others prefering a large value of the tensor-to-scalar ratio already strongly disfavored by Planck

and WMAP).

The principal finding is that there exist a net tension between Planck and BICEP2 data, most

models favored by Planck alone being disfavored by BICEP2 alone (in terms of Bayesian evidence),

and inversely. There nevertheless remains a series of models that are compatible both with Planck

and BICEP2, and whose Bayes factor is reported in Fig. 9. Note that the reference model is not

Higgs inflation (which is not compatible with BICEP2) but a slow-roll model with ε1, ε2 and ε3 as

free parameters. In this case, it is found that large field models are favored and the simple potential

V (φ) = m2φ2 is one of the best models.

9. Open problems

In this section I briefly mention a discuss a few open issues related to inflation.

9.1 Inflation vs. alternatives:

Alternative to inflation exist and include string gas cosmology, matter bounces, ekpyrotic/cyclic

scenarios (for a review, see e.g. Rev. [58]). But most of them do not solve simultaneously all the

problems of the standard cosmological scenario, and thus the inflationary paradigm is often con-

sidered as the best option, even if it must be seen as a model among others and in no way a theory

already proved by observations. Even the detection of B-modes should not be considered as a
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Schwarz-Terrero-Escalante Classification:
1 1-2 2 2-3 3 1-2-3 Displayed Evidences: 193

Bayesian Evidences ln(E/EHI) and ln(Lmax/EHI)

J.Martin, C.Ringeval, R.Trotta, V.Vennin
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Figure 8: Figure fom [5] displaying the Bayes factors for all inflationary scenarios listed in the ASPIC

library [15], using Higgs inflation as a reference model. The bar color denote the class to which the model

belongs (using Schwartz-Terrero-Escalante classification). Arrows indicate the maximum likelihood

proof of inflation. Nevertheless, single field models of inflation have specific predictions such as

the consistency relation between the scalar and tensor spectral indexes. Checking observationally

that it is verified would strongly disfavor alternatives to inflation, and thus this will be one major

objective of future CMB experiments.

9.2 Reheating:

At the end of inflation, the energy stored in scalar field potential must decay into standard

model particles. It is thought that when inflation stops, the field start to oscillate around the min-

imum of the potential. The coherent oscillations can be considered as a collection of independent

scalar particles. If they couple to other particles, the inflaton can decay perturbatively to produce

light particles. Another possibility is a phase of tachyonic preheating, which occurs in hybrid

inflation scenarios due to the exponential grow of the modes of an auxiliary field during the wa-

terfall phase. The modes become quickly non-linear and reheating occurs with the dissipation of

interacting classical field oscillations

As we have shown, the observable predictions for a single field model in slow-roll are easily

calculated when one knows t∗, the time at which the observable pivot scale k∗ exit the Hubble radius

during inflation. But to find t∗, one does not only needs to solve the dynamics of inflation but also

all the subsequent expansion history. The simplest assumption is to consider that the reheating is
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Figure 9: Figure fom [10] displaying the Bayes factors for all inflationary scenarios listed in the ASPIC

library [15] compatible both with Planck and BICEP2, using a slow-roll model as a reference. As in the

previous figure, the bar color denote the class to which the model belongs and arrows indicate the maximal

likelihood value

instantaneous and that a radiation era is immediately triggered at the end of inflation. But if this

is not the case, then the reheating history affects the observable predictions for a given inflation

model. One has therefore to derive reheating consistent constraints on its parameter space, e.g. by

parametrizing the reheating phase by its duration and its mean equation of state (see e.g. [59]).

9.3 Initial homogeneity problem:

The question of how homogeneous must have been the initial conditions for inflation to be

triggered has been tackled for more than twenty years by several authors [60, 61, 62, 63, 64, 65].
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It has been shown for the simplest scalar field potentials that the Universe must have been initially

homogeneous on scales larger than the Hubble radius. To draw this conclusion, relativistic simula-

tions of the pre-inflation era have been conducted, either by using gradient expansion methods or

by solving the full Einstein equations, in 1+1 dimensions (spherically symmetric case) or in 3+1

dimensions. Thus inflation merely transforms one problem of homogeneity into another one, since

an incredibly homogeneous initial state is required. This issue is called the Homogeneity Problem

for inflation.

9.4 Trans-Planckian problem:

In inflation observable scales exit the Hubble radius about 60 e-folds before the end of infla-

tion. But if inflation lasted for much more than 60 e-folds, then the observable wavelength modes

were initially not only sub-Hubble but also sub-Planckian, in a regime where the physical princi-

ples which underlie the calculations of the power spectrum are possibly not valid anymore. This

occurs whereas the energy density itself is well below the Planck scale and so the homogeneous

classical field dynamics is perfectly valid. There are several approaches to model trans-planckian

effects, e.g. by modifying the dispersion relation, k → w(k). One of them is to assume that Fourier

modes are created when their wavelength equals some critical scale denoted by Mc. This modifi-

cation of the infrared behavior of the perturbation modes induce oscillations in the scalar power

spectrum [66, 67]

Pζ (k) = P
std
ζ ×

{

1−2|x|σ0 cos

[

2ε1

σ0

ln

(

k

kp

)

+ψ

]}

(9.1)

where σ0 ≡ H/Mc, ε1,ε2 are the usual Hubble-flow parameters. x is a complex number of modulus

|x| and phase φ that parameterises the initial conditions for the modes. Constraining the presence of

oscillatory features in the scalar power spectrum therefore also constraints trans-Planckian physics.

9.5 Avoiding the Big-Bang singularity

Models of inflation alone are insufficient to describe the initial state of the Universe. They do

not solve the initial singularity problem so that a quantum theory of gravitation is needed to describe

the Universe at the Planck energy scale. But it is possible that the Universe was dominated by

curvature just before inflation is triggered. In this case general relativity allows that the Universe

has performed a classical bounce, thus avoiding the initial singularity, followed by a phase of

inflation to explain the apparent flatness today. This scenario leads to specific signatures in the

scalar power spectrum, taking the form of superimposed oscillations [68]. Compared to the case

of trans-Planckian effects, there are two important differences: for trans-planckian effects, the

oscillatory term has a lnk dependance rather than a linear k dependance for bounding cosmologies.

9.6 Eternal inflation:

In most inflation models, there exist regions in the field space where the potential is so flat

that its quantum fluctuations ∆φqu ∼ H/2π in a Hubble time dominate over its classical evolution

∆φ cl = φ̇/H . Regions in the real space where quantum fluctuations push the field through values

where the potential is more flat expand faster than others, and they can experience in turn quantum
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fluctuations pushing the field towards more flat regions of the potential, which expand faster, and so

on, so that they occupy a never-ending increasing part of the total volume. Inflation globally never

ends, this is called the eternally self-reproducing regime. In this picture, our observable patch of the

Universe emerges from an eternally inflating multiverse. The problem is that most models contains

a self-reproducing regime. But eternal inflation leads to a collection of difficult problems like the

measure non-normalisability and the apparent lost of unitarity (see e.g Refs. [69, 70] for a review

on eternal inflation and related issues).
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