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A certain degree of linear polarization has been measured in several GRB afterglows. More

surprisingly, circular polarization has been recently measured in GRB121024A. For synchrotron

emission, the polarization level depends on: (i) the local magnetic field orientation (ii) the ge-

ometry of the emitting region with respect to the line of sight and (iii) the electron pitch-angle

distribution. For this reason, polarization measurements are a valuable tool to probe afterglow

micro-physics. We present numerical estimates of linear and circular polarization for different

configurations (i.e., magnetic fields, geometries and pitch-angle distributions). For each different

scenario, we study the conditions for reaching the maximum and minimum linear and circular po-

larization and provide their values. We discuss the implication of our results to the micro-physics

of GRB afterglows in view of recent polarization measurements.
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1. Introduction

Circular polarization at the level of ∼ 0.6% has been recently detected in the optical afterglow

of GRB 121024A [1]. This is the first claim of detection of circular polarization in GRB afterglow

radiation. The same burst also shows linear polarization at a level of ∼ 4%, implying Pcirc/Plin ≃
0.15. Assuming that synchrotron radiation is dominating the optical afterglow, both the measured

Pcirc and the ratio Pcirc/Plin are large as compared to expectations and they are difficult to explain:

they are both expected to be not larger than 1/γe, where γe is the random Lorentz factor of the

radiating electrons, and its value is estimated to be ∼ 104 at the time of polarization measurements.

Anisotropies in the pitch angle distribution have been invoked as a possible explanation [1].

In this paper we estimate Pcirc in a uniform magnetic field in the plane of the shock and in a

radial magnetic field, both for isotropic and anisotropic distributions of the electron velocities. First

we present the equations to derive the local circular polarization Pcirc
0 =V0/I0 (where V0 and I0 are

the Stokes parameters) at each point of the emitting surface. Then, the total polarization (i.e. in-

tegrated over the emitting surface) is found. Before integration the contribution coming from each

point of the surface must be weighted by the contribution dFν of that region to the total flux
∫

dFν

reaching the observer. For a given direction of the magnetic field, the other Stokes parameters are

given by Q0/I0 = Plin
max cos(2θp) and U0/I0 = Plin

max sin(2θp), where θp is the polarization position

angle, Plin
max = (δ +1)/(δ +7/3), and δ is the slope of the electron energy distribution (dNe/dE ∝

E−δ ). The local linear polarization is given by Plin
0 =

√

Q2
0 +U2

0 /I0 = Plin
max. To total linear polar-

ization is given by Plin =
√

Q2 +U2/I, where Q/I =
∫ Q0

I0
dFν/

∫

dFν and U/I =
∫ U0

I0
dFν/

∫

dFν .

The total circular polarization will be computed as Pcirc =V/I =
∫ V0

I0
dFν/

∫

dFν .

2. Circular polarization

To understand why synchrotron radiation can be circularly polarized, we first consider emis-

sion from one single electron with a pitch angle α gyrating in a uniform magnetic field B (figure 1,

left panel). Let ψ be the angle between the electron velocity βe and the direction of the observer n,

and let consider three different observers detecting radiation from the same electron. In general, the

observed radiation is elliptically polarised, with the axes of the ellipse parallel and perpendicular to

the projection of B on to the plane transverse to the direction of the observer n [2, 3]. The major

axis of the polarization ellipse is perpendicular to the projection of B for |ψ | close to zero, but

as |ψ | increases the form of the ellipse changes to a circle and then to an ellipse with major axis

parallel to the projection of B. The direction is right-handed (RH) or left-handed (LH) according

with ψ ≷ 0. The polarization is linear if ψ = 0. We note that if |ψ |> 1/γe =
√

1−β 2
e , the emission

in the direction of the observer is negligible.

Let’s now consider a distribution of electrons with different pitch angles, and a single observer,

located at some angle ϕ with respect to the magnetic field (figure 1, right panel). First we note that

only electrons with pitch angle ϕ − 1/γe < α < ϕ + 1/γe contribute to the emission detected by

the observer. As follows from the previous discussion, photons corresponding to ψ = 0 (i.e., the

one emitted by the electron with α = ϕ) are linearly polarized. Photons for which ψ 6= 0 instead

will be elliptically polarised. The elliptical polarization is the same for photons at ψ and −ψ , but

with opposite direction of the rotation. If the number of electrons with pitch angle α = ϕ +ψ is
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Figure 1: Left panel: polarization of the radiation emitted by an electron with pitch angle α as detected

by different observes. The angle ψ represents the angle between the electron velocity βe and the observer

direction. Right panel: polarization detected by one observer from a distribution of electrons with different

pitch angles. ϕ is the angle between the magnetic field and the direction of the observer.

different from the number of electrons with pitch angle α = ϕ −ψ their contributions to the total

polarization do not cancel out. In particular, for the case of isotropic pitch angle distribution, if

ϕ < 90◦ the number of electrons with ψ > 0 is larger than the number of electrons with ψ < 0 and

the total polarization is negative (as in the case in figure 1, right panel). Viceversa, if ϕ > 90◦ the

total polarization is positive. The local circular polarization Pcirc
0 ≡V0/I0 is given by [4, 5]:

Pcirc
0 =−4(δ +1)(δ +2)

3δ (δ +7/3)

Γ
(

3δ+8
12

)

Γ
(

3δ+4
12

)

Γ
(

3δ+7
12

)

Γ
(

3δ−1
12

)

(

cotϕ +
1

δ +2

1

Y (ϕ)

dY (ϕ)

dϕ

)(

3νH sinϕ

ν ′

)1/2

(2.1)

where νH = eB/(2πmec), and ν ′ is the photon frequency. The function Y (α) accounts for the

possible anisotropy of the velocity electron distribution: the number density per solid angle of

electrons with energy E and pitch angle α is N(E,α) ∝ E−δY (α). The factor (3νH sinϕ/ν ′)1/2 is

≃ 1/γe, where γe is the random Lorentz factor of the electrons emitting at the frequency ν ′.
Note that in the isotropic case dY/dϕ = 0, and Pcirc

0 simply reduces to:

Pcirc
0 =− f (δ )Plin

max

cot(ϕ)

γe

(2.2)

The function f (δ ) assumes the value f (δ )≃ 2 for δ in the range δ = [2.1−2.5].

Equation 2.2 shows that locally Pcirc
0 is of the order 1/γe ≪ 1, i.e. it is strongly suppressed due

to cancellation between electrons contributing with positive and negative polarization (as shown

in figure 1, right panel). For those configurations where the magnetic field has a given direction,

Plin
0 = Plin

max ≃ 0.7, and the ratio between circular and linear polarization is also of order 1/γe ≪ 1.

2.1 Polarization maps

Consider a spherical fireball radially expanding with relativistic velocity Γ ≫ 1 (see figure 2).

We call θ the angle between the line of sight and the local fluid velocity: this is also the angle

between the direction of the photon that reaches the observer and the electron bulk velocity β =

(Γ 2−1)−1/2 (not to be confused with the random electron velocity βe in the local fireball comoving

3
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Figure 2: Representation of a polarization map: each point of the map, identified by polar coordinates (r,φ),

corresponds to a point-like region of the emitting surface, located at angular distance θ from the observer

(located in the center of the map). The coordinate r is equal to unity for a region located at θ = 1/Γ . The

contribution from regions at r > 1 is negligible. In the fluid frame the photon is emitted at an angle θ ′ from

the direction of the fluid velocity β , but in the laboratory frame it is beamed in the direction of the observer.

frame). Due to beaming effects, in the fluid frame the angle between β and the photon is different

from the one measured in the observer frame. We call this angle θ ′ (figure 2).

A polarization map is the projection on the plane of the sky (perpendicular to the line of sight)

of the polarization of radiation travelling in the direction of the observer, and coming from different

regions of the emitting surface (figure 2). We choose to locate the observer in the center of the map.

Each point of the map is identified by polar coordinates (r,φ ). The r-coordinate is normalised such

that r = 1 corresponds to radiation coming from a region located at sin θ = 1/Γ : r = sinθΓ ≃ θΓ ,

for r ≪ Γ . We will also use the coordinate y in place of r, defined as y ≡ (θΓ )2 = r2. With this

notation the Doppler factor is D ≃ 2Γ /(1+y) (where we used the approximation θ ≪ 1 and β ≃ 1)

and the angle relativistic transformations take the form sinθ ′ = 2
√

y/(1+ y).

In the following we consider the case of both isotropic and anisotropic pitch angle distributions,

and two different configurations of the magnetic field: a) uniform in the plane of the shock, and b)

radial. Three different geometries of the emitting region are discussed: i) a sphere, ii) a jet with

θ jΓ = 1, and iii) a jet with θ jΓ = 1/3. We present the maps for the local flux-weighted polarization,

and estimate the total polarization. Through this paper, we will perform calculations in the spectral

range νm < ν < νc (where νm is the injection frequency and νc is the cooling frequency), and we

use δ = 2.5, which implies Plin
max = 0.72.

2.2 Uniform magnetic field in the plane of the shock

The equations for the angle ϕ between the field and the photon (estimated in the fluid frame)

and for the polarization angle can be found in [6]. From equation 2.1 we obtain:

Pcirc
0 × γe,min =−

√

sinϕ

1+ y
cotϕ f (δ )Plin

max (2.3)

where γe,min is the minimum Lorentz factor of those electrons radiating at the relevant frequency

ν . Figure 3 shows the polarization maps for a uniform field (oriented from left to right) for the

local (flux-weighted) circular (left column) and linear (right column) polarization, for the case of

4
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Figure 3: Maps for circular (left column) and linear (right column) polarization for the case of electrons

with isotropic pitch angle distribution radiating in a uniform magnetic field in the plane of the shock. Three

geometries are considered: a sphere (upper panels), a jet with θ jetΓ = 1 (middle panels), and a jet with

θ jetΓ = 1/3 (bottom panels).
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a sphere (upper panels), a jet with θ jetΓ = 1 (middle panels) and a jet with θ jetΓ = 1/3 (lower

panels). In the case of a sphere the total integrated polarization Pcirc = 0, and can differ from zero

only for an off axis jet. In this case its value depends on the position of the jet axis with respect to

the observer and on θ jet . We derive the total polarization for each different position (r,φ) of the jet

axis in the plane of the map. The minimum polarization is always zero and is reached when the jet

axis is located at φ =±90◦. The maximum polarization instead is around 0.35/γe,min and is reached

when φ = 0,180◦ and y = 0.3 (y = 1) for the narrower (larger) jet (these particular configurations

are the ones shown in figure 3). The total linear polarization in the spherical case is Plin = 0.61,

and ranges from 0.61 to 0.72 for the jetted geometries.

Summarizing, in a uniform magnetic filed in the plane of the shock both the absolute value of

Pcirc and the ratio Pcirc/Plin can vary between 0 and . 1/γe, and cannot explain the large values

observed in the optical afterglow of GRB 121024A.

2.3 Radial magnetic field

In the case of a magnetic field perpendicular to the plane of the shock, B is parallel to the fluid

velocity β, ϕ = θ ′, and cos ϕ = cosθ ′ = 1−y
1+y

. We obtain:

Pcirc
0 × γe,min =−4

3

(3y)1/4

(1+ y)
cotϕ f (δ )Plin

max (2.4)

Polarization maps are shown in Fig. 4. For y < 1 (i.e., the region that mainly contributes to the

observed flux) the angle ϕ is always smaller than 90◦ and the circular polarization is negative. Its

contribution to the total polarization is not canceled by the positive contribution coming from the re-

gion at y> 1, and the total polarization is Pcirc =−0.37/γe,min and is in the range [0.43−1.3]/γe,min

for jetted geometries. The linear local polarization is still equal to Plin
max, while the polarization angle

is θp = φ + 90◦ [7, 8]. When integrated over all the emission region the total polarization Plin is

null in the spherical case, and ranges from 0 to 0.4 in the two considered jetted geometries.

This implies that for a radial B, the ratio Pcirc/Plin can reach very large values, and explain

the observations. However, the absolute value of Pcirc is still limited to be of the order of 1/γe,min.

3. Anisotropic pitch angle distribution

We now investigate the case of an anisotropic pitch angle distribution. As an example, we

consider a gaussian distribution Y (α) ∝ exp
[

− (α−α0)
2

2σ2
α

]

with α0 = 30◦ and σα = 5× 10−2, and a

uniform magnetic field. A more general and accurate calculation will be presented in Nava et al.

2015 (in preparation). The polarisation map for this case is shown in figure 5 (right panel) and is

the convolution of the map for the local circular polarization derived from equation 2.1 (left panel

in figure 5) and the emissivity (middle panel). The number of electrons with |α −α0| > σα is

negligible, and the flux from these regions is suppressed due to the lack of electrons with such

pitch angles. Only electrons with |α − α0| . σα contribute to the emission. This is why the

radiation can reach the observer only from a small annular region for which the corresponding

pitch angle is around α0 (see figure 5, right panel). For α > α0 (α < α0) the local polarization is

positive (negative). Using |α −α0| ≃ σα we derive Pcirc
0 γe,min ≃ σ−1

α , that gives local values close

to the measured one. However, when integration over the emitting surface is performed, partial

6
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Figure 4: Maps for circular (left column) and linear (right column) polarization for the case of electrons

with isotropic pitch angle distribution radiating in a radial magnetic field, perpendicular to the plane of the

shock. Three geometries are considered: a sphere (upper panels), a jet with θ jetΓ = 1 (middle panels), and

a jet with θ jetΓ = 1/3 (bottom panels).
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Figure 5: Maps for the local circular polarization (left), weighting factor (middle), and flux-weighted local

circular polarization (right) in the case of an anisotropic gaussian distribution of pitch angles centred around

α0 = 30◦ and σα = 5×10−2. The magnetic field is uniform in the plane of the shock. White circles represent

the region of the sphere located at θ = 1/Γ t. The yellow circle (right panel) shows the position and extent

of a jet required to obtain a circular polarisation of the order of the one observed in GRB 121024A.

cancellation from contributions with opposite rotation directions takes place. We find that an extra

factor σα arises from the integration, and the total circular polarization is again of the order of

1/γe,min . This can be avoided only by considering a jet with an unrealistically small opening angle

(θ jet ∼ 1/20Γ ), whose position allows the observer to see only the part of the emitting region

contributing with positive (or negative) polarization (see figure 5, right panel, yellow circle).

We conclude that the circular polarization observed in GRB 121024A cannot be explained as

intrinsic to the radiation, if this is dominated by synchrotron from external shocks.
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