
P
o
S
(
S
W
I
F
T
 
1
0
)
0
6
0

The GRB’s Sky Exposure Function

Zsolt Bagoly∗

Eötvös University, Budapest, E-mail: zsolt.bagoly@ttk.elte.hu

Lajos G. Balázs
Research Centre for Astronomy and Earth Sciences

István Horváth
National University of Public Service, Budapest

István Rácz
Research Centre for Astronomy and Earth Sciences

L. Viktor Tóth

Eötvös University, Budapest

Jon Hakkila
College of Charleston, Charleston, SC

The spatial distribution of GRBs can help to expose the large scale structure of the Universe.
Any real spatial analysis should include the GRBs’ detection probability on the sky. Here we
try to reconstruct this exposure function using kernel based methods and nonparametric density
estimators.
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1. Introduction

The detection probability on the sky of the GRBs with measured z is a combined probability,
depending on the triggering space instrument (mission orbit, pointing, detector sensitivity, back-
ground and trigger mechanism) and the corresponding optical follow up (e.g. telescope/instrument
aviability, timing/day phase/Moon phase, running observations and observers).

Albeit it is possible to integrate e.g. the Swift pointing (Fig. 1.,[2]) and simulate the triggering,
the synthetic way is not viable: on Fig. 2. we plotted the N(> b) cumulative number of GRBs as
a function of the b latitude, for every month, for GRBs with measured z only (total of 361 GRBs,
observed between 28/02/1997-11/10/2013).

Figure 1: The integrated BAT sky exposure map between 16/04/2005-01/02/2011 (seconds, in
Galactic coordinates, [1]).
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Figure 2: Monthly cumulative number of N(>b) number of GRBs as a function of the b latitude,
GRBs with measured z only. The red line (June) is an outlier, with ≈ 13 missing GRBs.

We expect any reasonable technical model (geographic position, visibility, etc.) to produce
a smoothly varying distribution. However, in the reality the red line (June) is a clear outlier,
caused probably by other factors (e.g. project’s/academic year’s end/beginning, deadlines, tele-
scope schedules, personnel vacation, other projects etc.).

Without the detailed knowledge about both the technical and human factors we can use only
the observational data itself to reconstruct the dection probability on the sky. It is not a paradox:
assuming the sky distribution independent from z, the dataset-averaged sky dection probability can
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Figure 3: MC simulated Σi|xi−xi,re f erence| error (solid blue), between the reference exposure func-
tion (Fig. 1.), and the reconstructed function using ρdavg width Gaussian). The error’s errors (dotted
red) are also shown.

be reconstructed and used as a refererence. Any specially selected group (e.g. [3, 5]), or a slice
in z (e.g.[6]) can be tested for isotropy in this a way. Using a density estimator with a given scale
length usually do not prohibit features below that scale to be detected.

2. Kernel smoothing

There exists several methods reconstructing the two-dimensional continuous probability den-
sity of a Poisson process from point observations. One such family uses a kernel (Epanechnikov,
Gaussian etc.) as a smoother for observed points ([7]). The kernel shape usually influences the
higher order smoothness only, therefore we used the Gaussian kernel here.

For the “one for all” kernel the width is the fixed, scaled as ρdavg (davg is the average distance
between the points). The optimal ρ factor could be determined by Monte-Carlo simulations. Using
the integrated BAT sky exposure map between 16/04/2005-01/02/2011 (Fig. 1.) as a template we
generated 1000 mock catalogs witheach×361 points each. We used the Healpix ([4]) discretization
with N pix = 196608. The best ρ parameter can be estimated by minimizing the ΣN

i=1|xi−xi,original|
error between the original (xi,original) and the reconstructed (xi) density (using χ2 gives almost the
same results).

One change the size of a Gaussian using adaptive kernel smoothing: here the kth nearest-
neighbor dk distance can be used for the ith point, as a base for the smoothing kernel. The MC
results for the first 4 neighbor’s optimized values are listed in Table 1. Clearly this method does
not outperform the average kernel with ρ ≈ 6.

3. Delaunay and Voronoi field estimator

The DTFE (Delaunay Tessellation Field Estimator) estimates the density linearly interpolating
within the point distribution Delaunay tessellation’, using the weight as the inverse of the area of
its surrounding Delaunay triangles [8].

The VDFE (Voronoi Diagram Field Estimator) approximates the local cells’ density the inverse
of the area of the Voronoi cell [9].
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Table 1: Optimal values for kernel smoothing

neighbor distance optimal width ρ minimum error (Σi|xi− xi,re f |)
average 5.78 0.10340

1st 14.591 0.13413
2nd 10.47 0.12457
3rd 8.57 0.11876
4th 7.46 0.11631

(a) Optimal Gaussian (b) 4th neighbor adaptive kernel smoothing

Figure 4: Examples of the sky detection probability function’s reconstruction (MC simula-
tion#29123.1412, normalized units). Compare with Fig. 1.

(a) DTFE method (b) Smoothed DTFE method

Figure 5: Reconstructed sky detection probability function of MC#29123.1412 (normalized units).
Compare with Fig. 1.

(a) VDFE method (b) VDFE method + kernel smoothing

Figure 6: Sky detection probability function of MC#29123.1412 (normalized units).
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Figure 7: Sky detection probability of the GRBs, reconstructed with optimal Gaussian smoothing (normal-
ized units), based on the 361 GRBs with measured z.

(a) Smoothed DTFE (b) Smoothed VDFE

Figure 8: Reconstructed sky detection probability function of the GRBs, based on the 361 GRBs
with measured z (normalized units).

Both estimator gives hot spots (red color) near to the NGP (Figs. 6a. and 5a.). One would
expect a function like Fig.1: we can use the kernel smoother to remove the (bogus) hot spots
(Figs. 5b and 6b).

4. The GRB detection probability on the sky

The simulations allow us to reconstruct the celestial detection probability function of the
GRBs, based on 361 real GRBs with measured z. We used optimal Gaussian smoothing, the
smoothed DTFE and the smoothed VDFE method.

There are only a small differences between the reconstructions, all differences are concentrated
around the SGP. The 361 events clearly allows us to determine the large-scale variability of the sky
detection probability only (the mean distance is 10.7o). However observing Fig. 1. one would not
expect any sharp features like Figs. 6a. and 5a. Presumably the optimal Gauss kernel slightly over-
smooths the real sky detection probability function: this effect is a topic of an ongoing investigation.

5. Two-point correlation function

The empirical sky detection probability function allow us to determine other statistics too. The
ξ (ϑ) two-point correlation function is a widely used tool to quantify the large scale structure of
galaxies. The Landy-Szalay method [10] is optimal for a known vignetting to calculate the ξ (ϑ)

5



P
o
S
(
S
W
I
F
T
 
1
0
)
0
6
0

The GRB’s Sky Exposure Function Zsolt Bagoly

estimator. On Fig. 9 the two-point correlation function of the 361 GRBs with measured z is shown,
here we’ve used the sky detection probability function given by the optimal Gaussian kernel.

Figure 9: The ξ (ϑ) two-point correlation function of the 361 GRBs with measured z.

For a full isotropic GRB distribution ξ (ϑ) = 0 is expected. One can see that the method is
self-consistent: above ϑ ≈ 6davg ≈ 65o the Gaussian kernel smooths out the real sky detection
probability function, hence there the restored two-point correlation function is noise-like.
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