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We study analytically and numerically the formation of the collisionless shock around super-
nova shock breakout. Following core collapse, a radiation-dominated shock travels through the
supernova progenitor. The collisionless shock (CS) is usually expected to form during break-
out, when the radiation-dominated shock reaches the optically thin layers of the progenitor. In
this work, we show that for some progenitors surrounded with optically thick winds, the colli-
sionless shock forms before breakout. An X-ray flash would occur at shock breakout, even for
’slow’ shocks. High-energy neutrinos with E & 100GeV−1TeV would precede the photon flash
by typically a few minutes (Wolf-Rayet progenitors), up to ∼ 10 hours (red supergiants) [1].
SN 2008D/XRF 080109 may have been an event for which a CS is formed before breakout.
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1. Introduction

During a core-collapse supernova (SN), a radiation-dominated shock (RDS) propagates inside
the (optically thick) hydrostatic core of the progenitor. The pressure in the downstream of the
shock is dominated by radiation pressure [2, 3]. The width of a RDS (' λc/3us, where us is the
shock velocity and λ the photon mean free path) is larger than the gyroradius of suprathermal
particles, which therefore cannot be accelerated via diffusive shock acceleration. When the shock
reaches the optically thin outer layers of the star, photons cannot remain confined in its immediate
downstream, and escape, emitting a flash of photons –shock breakout (SB). The RDS then stalls.
See e.g. [4, 5, 6, 7, 8] for more details on SB, and e.g. [9, 10, 11, 12, 13] for recent works on the
subject. A few SB flashes have been detected [14, 15, 16, 17, 18, 19, 20, 21]. A collisionless shock
(CS) is expected to form later [5, 6, 22, 23]. Once the CS is formed, particle acceleration may start.
Some SN progenitors are thought to shed mass at a remarkable rate prior to the explosion [24], and
some are likely to be surrounded with optically thick winds [25, 26]. For the case of an optically
thick wind, shock breakout occurs in the wind, at an optical depth τbr approximately equal to
c/us = β−1

s [9]. A CS must appear during SB [27, 28, 29, 30, 31, 32].
In this study, we demonstrate that the CS forms before shock breakout for some progeni-

tors enshrouded in thick winds [1]. We predict that for such progenitors, X-rays would be emit-
ted from the very beginning of shock breakout, even for ’slow’ shocks. We find that supernova
SN 2008D/XRF 080109, discovered by Swift [19], may be an explosion where the CS formed
before shock breakout –see Section 4.

2. Formation of a collisionless shock before supernova shock breakout from a thick
wind

For progenitors surrounded with optically thin winds, the flash of photons at SB accelerates
the low density circumstellar medium to a velocity about ∝ r−2 (r is the distance to the center of
the progenitor). The shocked outer layers of the star then push supersonically into the more slowly
moving circumstellar material at larger r, which leads to the formation of a collisionless shock. We
verified, with the 1D spherical radiation-hydrodynamics code presented in [1], that a CS forms after
SB for a progenitor in an optically thin wind. In this case, the RDS stalls when entering optically
thin material.

However, in some situations, the RDS can also stall inside optically thick material, and lead
to the formation of a (radiative) CS. We find that this happens for some supernovae exploding in
optically thick winds. For thick winds, shock breakout occurs at a radius rbr, which is larger than
the radius of the star r∗. When the progenitor is surrounded with a very dense wind, such as for
Type IIn SNe, the RDS survives the transition from the core to the thick wind at r = r∗. On the
contrary, we find that when the wind is only moderately thick, the RDS stalls when exiting the
hydrostatic core at r = r∗, and a radiative CS forms in the wind at r∗ < r < rbr, before SB (i.e.
before photons start to escape from the thick layers of the wind).

Let us consider two concentric shells in the thick wind, with respective radii r1(t) and r2(t),
and velocities u1 = us and u2 –see Fig. 1 (left panel). They are chosen such that r1(t = 0) = r∗,
and r∗ < r2(t = 0) < r∗+λ/βs, where λ is the photon mean free path in the wind at r ' r∗. In
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Figure 1: Left panel: Schematic description of the problem. A star with radius r∗ = r1(t = 0) (yellow) is
surrounded with an optically thick wind (part at r < rbr in blue). Shock breakout occurs at rbr � r∗. The
density of the core is � than the density of the surrounding wind. The radiation-dominated shock leaves the
core and enters the wind at t = 0. A collisionless shock forms when the shell at r1(t) hits supersonically the
shell at r2(t) (r2(0) > r1(0)), which can happen at r < rbr, before breakout; Right panel: Simulation of a
red supergiant exploding in a thick wind. Zoom around the region where the CS appears (discontinuity in
the green –velocity– curve around r ≈ 5.3 · 1013 cm, at ≈ rbr/2 and ≈ 1.6r∗ for this simulation). Spikes in
fluid pressure pfld and electron temperature Te can be seen in the CS immediate downstream.

the limiting case where all photons that have accelerated the shell at r1 also pass through the shell
at r2 (no absorption), the velocity reached by the latter shell cannot exceed u2 ≤ u1 (r∗/r2(0))

2 +

κEr/4πcr2
2(0), where κ is the opacity and Er '

∫ r2(0)
r∗ 4πr2 1

2κλ u2
s dr is an upper limit on the energy

that can be radiated through the shell at r2 by the fluid between r1 and r2. If Er is sufficiently large,
it can compensate for the (r∗/r2(0))2 factor : u2 then remains ≥ u1 and the RDS survives in the
wind. If the wind between the two shells cannot radiate enough photons through the shell at r2 to
compensate for the dilution of photons due to shock curvature, then the shell at r1 can catch up and
hit supersonically the shell at r2, at a radius r < rbr (i.e. before SB). A CS then forms before shock
breakout. One can show that this happens when [1]: βs . 10λ/r∗. For a r−2 wind, this condition
becomes :

βs . 0.1
(

uw

10km/s

)( r∗
1013 cm

)(5 ·10−4 M�/yr
Ṁ

)
, (2.1)

where uw and Ṁ are respectively the wind velocity and the mass-loss rate of the progenitor. Wolf-
Rayet stars and red supergiants with relatively large Ṁ before the explosion are good candidates,
but not progenitors of Type IIn SNe. SN 2008D may satisfy this inequality, see discussion in
Section 4. For progenitors with wind densities ∝ r−2, this corresponds rbr ≈ 10r∗. However, this
scenario can also be satisfied for progenitors with rbr/r∗ � 10, if, for example, the wind density
profile is flatter than r−2 at r < rbr, due to a change in the mass-loss rate with time.

We verified this with our radiation-hydrodynamics code : Fig. 1 (right panel) shows the forma-
tion of a CS before breakout for a red supergiant exploding in a thick wind, see caption for details.
Once formed, the CS continues to propagate to r � rbr.
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Figure 2: Simulation of a red supergiant exploding in a thick wind, see text for parameters. Orange line
for the luminosity L(t). The green line shows the arrival time of the first secondary ∼TeV neutrinos from
particles accelerated at r < rbr. Around the peak, and at later times, most of the energy is radiated in X-rays,
which are emitted by the CS propagating, at these times, in the thin part of the wind at r > rbr.

3. Particle acceleration and high-energy neutrinos preceding an X-ray flash

When the CS forms before shock breakout, it injects X-ray photons with energies & (1−
10) keV in the optically thick wind. Thus, we predict that for progenitors following our scenario,
the photon flash at breakout will contain X-rays since the very beginning of SB, even for ’slow’
shocks. These hard photons reflect the presence of the hot downstream of the CS. If no CS were
present before SB, the first photons to escape at SB would be softer : ∼ (10−100) eV for a ’slow’
RDS (βs ≈ 0.1).

We have shown in [1] that particles can be accelerated at the CS, at r < rbr, via diffusive shock
acceleration. Energies E & (1−10)TeV can be reached. Secondary high-energy neutrinos are then
produced in the optically thick layers of the wind and can reach the observer before the flash of
photons at breakout. For an event following this scenario and occurring in the Milky Way or in the
Magellanic Clouds, high-energy neutrinos would be detectable by IceCube before photons from
breakout [1]. More neutrinos would be produced later, in the post-shock breakout phase.

We simulate the explosion of a red supergiant with r∗ = 1013 cm and βs ' 0.09, in a thick wind
with density ∝ r−2 and rbr ' 1014 cm. We show in Figure 2 the evolution with time of its luminosity
L. The arrival time of the first ∼TeV neutrinos, for a given observer, is shown in green : In this
case, secondary neutrinos arrive several hours before SB. For a Wolf-Rayet progenitor, they would
rather arrive a few minutes before SB.

4. SN 2008D / XRF 080109

The X-ray flash XRF 080109, observed by Swift [19], has been suggested to be the signature of
shock breakout for Type Ibc supernova SN 2008D. We suggest here that the CS may have formed
before SB for SN 2008D/XRF 080109. Svirski & Nakar [34] proposed that the progenitor was a
Wolf-Rayet star surrounded with a moderately thick wind (rbr . 10r∗). They suggested that the
progenitor underwent enhanced mass-loss prior to the explosion, for . 10 d, with mass-loss rate

4



P
o
S
(
S
W
I
F
T
 
1
0
)
1
3
8

Collisionless shock formation around shock breakout Gwenael Giacinti

Ṁ ≈ 2 · 10−4 M� yr−1 and wind velocity uw ≈ 1000 km s−1. For a shock velocity βs ≈ 0.25, and
progenitor radius r∗ ≈ 1011 cm, SN 2008D would satisfy Inequality (2.1), making it a possible
candidate for our theory.

This may ease the tension between duration of the flash of photons, and radiated energy
(e.g. [13]). A relatively ’low’ flux of photons at SB would be consistent with our scenario, where
a fraction of the energy would already be in the thermal plasma in the downstream of a CS, when
the shock starts to reach rbr.

A more detailed modelling of the spectrum a breakout should lead to a better understanding of
when the radiative CS of SN 2008D was formed.

5. Conclusions and perspectives

For a SN occurring in an optically thin wind, the collisionless shock always forms during or
after shock breakout, which implies that particle acceleration cannot start before the beginning of
the photon flash.

We have shown here that for some stars exploding in optically thick winds, the RDS stalls in
the wind at r < rbr, and a radiative CS starts to appear before SB, within the remains of the former
RDS. See condition in Section 2. We find that particles can be accelerated to &TeV energies at the
CS. If such an event were to occur within ∼ 100 kpc from Earth, IceCube would be able to detect
secondary high-energy neutrinos (from these cosmic rays), arriving before the flash of photons at
shock breakout : ≈ a few minutes before SB for Wolf-Rayets, up to ∼ 10 hours for red supergiants.

A CS may have formed before SB for SN 2008D/XRF 080109, assuming a progenitor with
the parameters proposed in Reference [34]. This gives another important reason to search for
SN 2008D-like events in the future. One can use them to study the formation times of CS with
respect to shock breakout, and understand better the onset of particle acceleration and magnetic
field amplification at supernovae occurring in dense winds. Higher energies are reached after SB :
Protons (and nuclei) are expected to be accelerated to energies E & PeV during the first few days
or decades following a SN in a dense circumstellar wind [33].
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