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A future high-luminosityZ-factory has the potential to investigate lepton flavour violation. Rare

decays such asZ → ℓ∓1 ℓ
±
2 can be complementary to low-energy (high-intensity) observables of

lepton flavour violation. Here we consider two extensions ofthe Standard Model which add to

its particle content one or more sterile neutrinos. We address the impact of the sterile fermions

on lepton flavour violatingZ decays, focusing on potential searches at FCC-ee (TLEP), and tak-

ing into account experimental and observational constraints. We show that sterile neutrinos can

give rise to contributions to BR(Z → ℓ∓1 ℓ
±
2 ) within reach of the FCC-ee. We discuss the comple-

mentarity between a high-luminosityZ-factory and low-energy charged lepton flavour violation

facilities.
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1. Introduction

Several extensions of the Standard Model (SM) add sterile neutrinos to the particle content in order
to account for neutrino masses and mixings. These models arefurther motivated by anomalous (os-
cillation) experimental results, as well as by certain indications from cosmology (see [1,2] and ref-
erences therein). The existence of these sterile states maybe investigated at colliders: for instance,
the case for a high luminosity circulare+e− collider (called FCC-ee), operating at centre-of-mass
energies ranging from theZ pole up to the top quark pair threshold is being actively studied [3]. Its
characteristics should allow to obtain a typical peak luminosity at theZ pole of∼ 1036cm−2s−1.
A year of operation at theZ pole centre-of-mass energy would yield∼ 1012 Z boson decays to be
recorded. Motivated by the design study for such a powerful machine, we investigate the prospects
for searches for sterile neutrinos by means of rarechargedlepton flavour violating (cLFV)Z de-
cays [4].

2. Leptonic Z decays in the presence of sterile neutrinos

Lepton-flavour changingZ decays are forbidden in the SM due to the GIM mechanism [5], and their
rates remain extremely small (∼ 10−54−10−60) even when lepton mixing is introduced. The obser-
vation of such a rare decay would therefore serve as an indisputable evidence of new physics [6,7].
We consider here two extensions of the SM which introduce sterile Majorana fermions. The mixing
in the neutral lepton sector induced by these states also opens the possibility for flavour violation
in Zνiν j interactions (flavour-changing neutral currents), coupling both the left- and right- handed
components of the neutral fermions to theZ boson. Together with the charged-current LFV cou-
plings, these interactions will induce an effective cLFV vertex Zℓ∓1 ℓ

±
2 .

Inverse Seesaw The Inverse Seesaw (ISS) mechanism [8] is an example of low-scale seesaw
realisation which in full generality calls upon the introduction of at least two generations of SM
singlets. Here, we consider the addition of three generations of right-handed (RH) neutrinosνR and
of extraSU(2) singlets fermionsX, to the SM particle content. BothνR andX carry lepton number
L =+1. The ISS Lagrangian readsLISS = LSM−Yν

i j ν̄Ri H̃†L j −MRi j ν̄RiXj − 1
2µXi j X̄c

i Xj + h.c.,
wherei, j = 1,2,3 are generation indices and̃H = iσ2H∗. Lepton numberU(1)L is broken only
by the non-zero Majorana mass termµX , while the Dirac-type RH neutrino mass termMR does
conserve lepton number. In the(νL,νc

R,X)T basis, and after the electroweak symmetry breaking,
the (symmetric) 9×9 neutrino mass matrixM is given by

M =







0 mT
D 0

mD 0 MR

0 MT
R µX






, (2.1)

with mD =Yνv the Dirac mass term, v being the vacuum expectation value ofthe SM Higgs boson.
Under the assumption thatµX ≪ mD ≪ MR, the diagonalization ofM leads to an effective Majo-
rana mass matrix for the active (light) neutrinos [9],mν ≃ mT

D MT
R
−1 µX M−1

R mD . The remaining
six (mostly) sterile states form nearly degenerate pseudo-Dirac pairs. The possibility of having
sizeable mixings between the active and sterile states, will have a non-negligible impact for several
observables, thus rendering the ISS framework phenomenologically appealing.
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The effective “3+1 model” A simpler approach to address the impact of sterile fermionson rare
cLFV Z decays consists in considering a minimal model where only one sterile Majorana state
is added to the three light active neutrinos of the SM. This allows for a generic evaluation of the
impact of the sterile fermions for these processes. In this simple toy model, no assumption is made
on the underlying mechanism of neutrino mass generation. The addition of an extra neutral fermion
to the particle content translates into extra degrees of freedom: the mass of the new sterile statem4,
three active-sterile mixing anglesθi4, three new CP phases (two Dirac and one Majorana).

In our analysis, and for both hierarchies of the light neutrino spectrum, we scan over the following
range for the sterile neutrino mass: 10−9 GeV <∼ m4 <∼ 106 GeV, while the active-sterile mixing
angles are randomly varied in the interval[0,2π] 1. All CP phases are also taken into account, and
likewise randomly varied between 0 and 2π.

3. Constraints on sterile neutrino extensions of the SM

The introduction of sterile fermion states, which have a non-vanishing mixing to the active neutri-
nos, leads to a modification of the leptonic charged current Lagrangian:

−Lcc =
g√
2

U ji ℓ̄ jγµPLνiW
−
µ + c.c., (3.1)

whereU is the leptonic mixing matrix,i = 1, . . . ,nν denotes the physical neutrino states andj =
1, . . . ,3 the flavour of the charged leptons. In the standard case of three neutrino generations,U
corresponds to the unitary matrixUPMNS. Fornν > 3, the mixing between the left-handed leptons,
which we denote bỹUPMNS, corresponds to a 3×3 sub-block ofU, which can show some deviations
from unitarity. One can parametrise [10] theŨPMNS mixing matrix asUPMNS → ŨPMNS = (1−
η)UPMNS, where the matrixη encodes the deviation of thẽUPMNS from unitarity [11,12], due to the
presence of extra neutral fermion states. One can also introduce the invariant quantitỹη, defined as
η̃ = 1−|Det(ŨPMNS)|, particularly useful to illustrate the effect of the new active-sterile mixings
(corresponding to a deviation from unitarity of theŨPMNS) on several observables.
The deviation from unitarity ofU will induce a departure from the SM expected values of several
observables. In turn, this is translated into a vast array ofconstraints which we will apply to our
analysis (see details and references in [4]). Firstly, one has to ensure that the SM extension complies
with ν-oscillation data: we require compatibility with the corresponding best-fit intervals [13] (no
constraints being imposed on the yet undetermined value of the CP violating Dirac phaseδ ). We
also applyunitarity boundson the (non-unitary) matrixη ; these arise from non-standard neutrino
interactions with matter, and have been derived in [14,15] by means of an effective theory approach
(valid for sterile masses above the GeV, but below the electroweak scale,ΛEW). We further take into
accountelectroweak precision observablesrequiring, for instance, compatibility with LEP results
on Γ(Z → νν). LHC data oninvisible Higgsdecays already allows to constrain regimes where
the sterile states are below the Higgs mass. Negativelaboratory searchesfor monochromatic lines
in the spectrum of muons fromπ± → µ±ν decays also impose robust bounds on sterile neutrino
masses in the MeV-GeV range. The introduction of singlet neutrinos with Majorana masses allows

1We always ensure that the the perturbative unitary bound on the sterile masses and their couplings to the active
states is respected.
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for new processes like lepton number violating interactions, among whichneutrinoless double beta
decayremains the most important one. In our analysis, we evaluatethe contributions of the sterile
states to the effective massmee; we use the most recent constraint from EXO-200 (concerningfuture
sensitivities we take|mee| . 0.01 eV). Further constraints arise fromleptonic and semileptonic
decays of pseudoscalar mesons K, D, Ds, B. Recent studies suggest that in the framework of
the SM extended by sterile neutrinos the most severe bounds arise from the violation of lepton
universality in leptonic kaon decays. Other than the rare decays occurring in the presence of nuclei,
the new states can contribute to severalcharged lepton flavour violating processessuch asℓ→ ℓ′γ ,
ℓ→ ℓ1ℓ1ℓ2. In our analysis we compute the contribution of the sterile states to all these observables
imposing compatibility with the current experimental bounds. Finally, a number ofcosmological
observations[2] put severe constraints on sterile neutrinos with a mass below the TeV.

4. Results

cLFV Z decays in the ISS
We show the results for this well motivated framework of neutrino mass generation in Fig. 1. On
the left, we show the BR(Z→ µτ) as a function of the average of the absolute masses of the mostly
sterile states,〈m4−9〉 = ∑i=4...9

1
6 |mi|. In the plot on the left, we identify as grey points the solu-

tions which fail to comply with (at least) one of the constraints listed in Section 3. We depict in
red the points that survive all other bounds but are typically disfavoured from standard cosmology
arguments. Finally, blue points are in agreement withall imposed constraints. These results in-
dicate that this ISS realisation can account for sizeable values of cLFVZ-decay branching ratios,
at least for the second and third generations of leptons, butmostly for cosmological disfavoured
solutions. This in general requires sterile states with a mass& ΛEW, and can occur even for very
mild deviations from unitarity of thẽUPMNS. Other cLFV decays,Z → eµ andZ → eτ have BRs
. O(10−11), but still within experimental sensitivity. The prospectsfor the observation of cLFV
Z decays in this framework are summarised in the right plot of Fig. 1 by considering the values of
BR(Z → ℓ∓1 ℓ

±
2 ) in the (η̃ ,〈m4−9〉) parameter space of this specific realisation and for a NH light

neutrino spectrum.

cLFV Z decays in the “3+1 model”
This minimal extension of the SM by one sterile neutrino can account for values of BR(Z → ℓ∓1 ℓ

±
2 )

within the sensitivity of a high luminosityZ-factory, such as the FCC-ee. Nevertheless, the largest
cLFV Z decay branching fractions (as large asO(10−6)) cannot be reconciled with current bounds
on low-energy cLFV processes. Indeed, sterile neutrinos also contribute viaZ penguin diagrams to
cLFV 3-body decays andµ −econversion in nuclei, which severely constrain the flavour violating
Zℓ∓1 ℓ

±
2 vertex (see also [7]). Moreover, the recent MEG result onµ → eγ also excludes important

regions of the parameter space. These constraints are especially manifest in the case ofZ → eµ
decays, since the severe limits from BR(µ → 3e) and CR(µ −e, Au) typically preclude BR(Z →
eµ) & 10−13. In Fig. 2 we illustrate the complementary rôle of a high-luminosity Z-factory with
respect to low-energy (high-intensity) cLFV dedicated experiments (same color code as in Fig. 1).
We display the sterile neutrino contributions to BR(Z → ℓ∓1 ℓ

±
2 ) versus two different low-energy

cLFV observables: CR(µ −e, Al) and BR(τ → µγ). We further highlight in dark yellow solutions
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Figure 1: ISS realisation: BR(Z → µτ) as a function of the average value of the mostly sterile state masses
(right), 〈m4−9〉 (see text for the description of the color code), for a NH light neutrino spectrum (left);
maximal values (in log scale) of BR(Z → ℓ∓1 ℓ

±
2 ) on the(η̃ ,〈m4−9〉) parameter space (right) for a NH light

neutrino spectrum, from larger (dark blue) to smaller (orange) values. Cyan denotes values of the branching
fractions below 10−18.

which allow for a third complementary observable within future sensitivity, which is the effective
neutrino mass in 0ν2β decays.
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Figure 2: The “3+1 model": on the left, BR(Z→ eµ) versus CR(µ−e, Al), and BR(Z→ µτ) vs BR(τ → µγ)
on the right, for a NH light neutrino spectrum (IH leads to similar results). See text for the description of the
color code. When present, the additional green vertical lines denote the current bounds (solid) and future
sensitivity (dashed), and dark-yellow points denote an associated|mee| within experimental reach.

As can be inferred from Fig. 2, low-energy cLFV dedicated facilities offer much better prospects
to probe LFV in theµ−esector of the “3+1 model” than a high-luminosityZ-factory. In particular,
Mu3e (PSI) [16] and COMET (J-PARC) [17] will be sensitive to regions in parameter space asso-
ciated with BR(Z → eµ) ∼ 10−17÷−13, beyond the reach of FCC-ee. Interestingly, the situation is
reversed for the case of theµ − τ sector. Moreover, a non negligible subset of the parameter space
is testable at a third type of facilities, through 0ν2β decay searches (especially in the case of an IH
light neutrino spectrum, although we have not displayed it here).

5. Conclusions

We have considered two extensions of the SM which add to its particle content one or more sterile
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neutrinos. We have explored indirect searches for these sterile states at a future circular collider
like FCC-ee, running close to theZ mass threshold. We have considered the contribution of the
sterile states to rare cLFVZ decays in these two classes of models and discussed them taking
into account a number of experimental and theoretical constraints. Among these, low-energy LFV
observables like cLFV 3-body decays andµ − e conversion in nuclei impose strong constraints
on the sterile neutrino induced BR(Z → ℓ∓1 ℓ

±
2 ). Our analysis emphasises the underlying synergy

between a high-luminosityZ factory and dedicated low-energy facilities: regions of the parameter
space of both models can be probed via LFVZ decays at FCC-ee, at low-energy cLFV dedicated
facilities and also via searches for 0ν2β . Notably, FCC-ee could better probe LFV in theµ − τ
sector, in complementarity to the reach of low-energy experiments like COMET.
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