
P
o
S
(
E
P
S
-
H
E
P
2
0
1
5
)
1
0
6

Composite resonances and their impact on the
electroweak chiral Lagrangian

Juan José Sanz-Cillero ∗ †

Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSIC,
Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
E-mail: juanj.sanz@uam.es

In this talk we study the low-energy effective couplings generated by strongly-coupled elec-

troweak models that contain heavy composite resonances. Invariance underSU(2)L ×SU(2)R

is a key ingredient in the construction of the resonance action. For simplicity, in these proceed-

ings we focus our attention on the impact of a heavy colourless vectorV, which transforms as a

triplet under the custodial group. More precisely, we studythe couplings that are relevant for the

vector form-factors of theL+R current into two electroweak Goldstones and into two Standard

Model fermions, which contribute to the oblique parametersSandT and the anomalousZ → f f̄

couplings, respectively. Our predictions are compatible with bounds from direct and indirect

searches forMV
>∼ 1.5 TeV. Finally, although we consider an antisymmetric tensor formalism to

describe the vector resonance, we derive the equivalent action in the Proca four-vector represen-

tation and show that the predictions for low-energy couplings and form-factors are identical, as

expected.
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1. Impact of heavy resonances on the low-energy electroweak effective theory

So far the Large Hadron Collider (LHC) has not found any traceof beyond the Standard Model
(BSM) states with masses below 1 TeV. Likewise, no significant deviation has been observed in
the low-energy interactions between Standard Model (SM) particles. Effective field theories are
then the natural approach. In this talk [1, 2] we discuss the possibility of strongly-coupled BSM
scenarios with the approximate custodial symmetry invariance of the SM, exact in the SM scalar
sector. We develop an invariant Lagrangian underG = SU(2)L ×SU(2)R, which spontaneously
breaks down to the custodial subgroupH =SU(2)L+R and generates the electroweak (EW) would-
be Goldstone bosonsϕa, described a unitary 2×2 matrixU(ϕ). In these (non-linear) EW chiral
Lagrangian with a light Higgs (ECLh), the low-energy amplitudeM has an expansion in powers
of infrared scalesp (external momenta and SM masses) of the form (e.g., for 2→ 2 processes) [2,
3, 4, 5, 6],

M ∼ p2

v2
︸︷︷︸

LO (tree)

+

(

ar
k

︸︷︷︸

NLO (tree)

− Γk

16π2 ln
p
µ

+ ...

︸ ︷︷ ︸

NLO (1-loop)

)
p4

v4 + O(p6) . (1.1)

The EW effective theory (EWET) Lagrangian operators can be sorted out based on their chiral
dimension:

LEWET = L2 + L4 + ... (1.2)

where the operators inLd̂ are ofO(pd̂) [2, 3, 4, 5]. Covariant derivatives and masses areO(p) [7]
and each fermion field scales likeO(p1/2) in naive dimensional analysis (NDA) [2, 4, 5, 8]. TheG –
invariant operators inLEWET are built with the Goldstone tensorsU(ϕ), functionsFk of the Higgs
singleth, its derivatives∂µ1...∂µnh, the gauge fields and the SM fermionsψ [8, 9, 10, 11, 12, 13].
From the chiral counting point of viewL SM would beO(p2) but its underlying renormalizable
structure makes allΓk = 0 and ensures the absences of higher-dimension divergences[6, 14]. The
most important contributions to a given process are given bythe operators of lowest chiral di-
mension. The leading order (LO) contribution isO(p2) and is given by tree-level diagrams with
only L2 vertices. Likewise, the one-loop contribution with onlyL2 vertices isO(p4); it is sup-
pressed in (1.1) with respect to the LO by a factorp2/Λ2

NL , with Λ2
NL ∼ 16π2v2Γ−1

k
>∼ 3 TeV (with

v= (
√

2GF)
−1/2 ≈ 246 GeV). This suppression factor is related to the non-linearity of the ECLh

andΛNL → ∞ when the Higgs can be embedded in a complex doubletΦ [6]. 1

In these proceedings [1, 2] we focus our attention on the tree-level next-to-leading order (NLO)
contributions. They areO(p4) and are provided by tree-level diagrams with oneL4 vertex with
low-energy couplingak (LEC) and an arbitrary number ofL2 vertices. They get contributions from
tree-level heavy resonance exchanges. At low energies, theseO(p4) terms in (1.1) are typically
suppressed with respect to the LO amplitude,O(p2), by a factorakp2/v2 ∼ p2/M2

R [1, 2, 15, 16].

1Ref. [14] provides a geometrical interpretation in terms ofthe curvature of metric of the internal weak space of the
Higgs. In the flat-space limit one hasΛNL → ∞. Linear-Higgs scenarios with a complex Higgs doubletΦ correspond to
this case. True “non-linear models” are defined by a non-zerocurvature, not by their (non-linear) representation.
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At high energies, one must include both the light dof (SM particles) and the possible composite
resonances as active degrees of freedom (dof) in the Lagrangian [1, 2, 17]:

L = Lnon−res+ LR, (1.3)

whereLnon−res contains only SM fields andLR is the part of the Lagrangian that also contains
resonances [1]. The part of the interaction LagrangianLR relevant for our analysis of theL4

LECs is given by the terms linear in the resonance fields,∆LR = ROp2[χ ,ψ ] [1, 2, 15, 16, 17],
with χ (ψ) referring to the light bosonic (fermionic) fields. The tensor Op2[χ ,ψ ] that couples the
heavy resonanceR to the light dof is going to provide the first correction to thelow-energy ECLh
by means of diagrams where one has a heavy resonance propagator ∼ 1/M2

R exchanged between
two vertices withOp2[χ ,ψ ]. This gives an EWET operator ofO(p4). At low energies, resonance
operators with tensorsO[χ ,ψ ] of a higher order inp or containing two or moreR fields contribute
only toLd̂ with d̂ > 4.

The tree-level contribution toLEWET[χ ,ψ ] is given by the underlying high-energy action
S[χ ,ψ ,R] with the resonance fieldsR evaluated at the classical solutionRcl(χ ,ψ) of their equa-
tions of motion (EoM). Solving the resonance EoM and expanding their solutions in powers of
momenta forp ≪ MR, one can write the heavy fields as local operators of the EWET dof [15].
This prediction for the contribution to the low-energy ECLhcan be complemented through the
consideration of ultraviolet-completion hypotheses (sum-rules [18, 19], unitarity [16], asymptotic
form-factor counting rules [20]...). This imposes constraints on the resonance couplings that then
turn into predictions for the low-energy theory.

2. Phenomenological example: vector form-factors

Let us illustrate this with a basic example. We consider a colourless triplet vector resonanceV
in a composite theory with the same symmetries of the scalar sector of the SM –invariance under
parity and charge conjugation–, with its high energy interaction provided by the Lagrangian [1, 2],

∆L
(A)

V = 〈Vµν O
µν
V 〉 , O

µν
V =

FV

2
√

2
f µν
+ +

iGV

2
√

2
[uµ ,uν ] +

cV
1

2

(
∇µJν

V −∇νJµ
V

)
/v2 , (2.1)

with 〈 ...〉 for the matrix trace,uµ = iu(DµU)†u, the combinationsf µν
± = u†Ŵµνu±uB̂µνu† of the

left and right field-strength tensorŝWµν andB̂µν , respectively, andU = u2 = exp{iϕaσa/v} [21,
22]. The precise definition of the covariant derivativesDµ and∇µ can be found in [21, 22]. The
tensorJµ

V = −TrD{ξ ξ̄ γµ} introduces the fermionic vector current in a covariant way,with ξ =

uψR+u†ψL given by theSU(2)R,L doubletsψR,L =
1
2(1±γ5)ψ , with ψ =(t,b)T (other SM doublets

can be also added [6]) and the Dirac trace TrD. The superscript(A) refers to the antisymmetric
tensor formulation employed for the spin–1 resonance [15].The full Lagrangian may contain
additional operators not relevant for the form-factors analyzed in this talk [2]. Integrating outV
one gets a contribution to the EWET, which at lowest order is given by

(2.2)

∆L
fromV
EWET =

〈Oµν
V 〉2

2M2
V

− 〈Oµν
V OV µν 〉

M2
V

=− i
FVGV

4M2
V

︸ ︷︷ ︸

= i F3/2

〈 f µν
+ [uµ ,uν ]〉 − FVcV

1√
2M2

V
︸ ︷︷ ︸

=FXψ2

〈 f µν
+ ∇µJV ν/v2 〉 + ...
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with the dots standing for other effective operators not relevant in these proceedings. For the
Higgsless part, one hasF3 = a2−a3 in Longhitano’s notation of [9, 10]. In what follows, we will
focus on the Higgsless sector andF3,F

Xψ2
,FV ,GV andcV

1 simply represent coupling constants.
The resonance Lagrangian (2.1) provides the vector form-factors of theL+R current into

two-Goldstones and into two-fermions [2, 23, 21, 22]:

F
v
ϕϕ(q

2) = 1+
FVGV

v2

q2

M2
V −q2 , F

v
f f̄ (q

2) = 1−
√

2FVcV
1

v2

q2

M2
V −q2 , (2.3)

with momentum transferqµ . The square form-factors|Fv
ii (s)|2 contribute to theS-parameter at one-

loop through the Peskin-Takeuchi sum-rule on the left-right correlatorΠW3B [19]. If one requires
that these form-factors give a ultraviolet-convergent contribution to the sum-rule, they must vanish
at q2 → ∞ and one obtains short-distance (SD) constraints [16, 23, 21, 22] and predictions for
the LECs [1, 2, 16]:

FVGV = v2 −→ F3 = (a2−a3) = − FVGV

2M2
V

SD constr.
= − v2

2M2
V

. (2.4)

For MV > 1.5 TeV one finds the bound

−1.3·10−2 < F3 = (a2−a3) < 0 . (2.5)

One can obtain analogous bounds for the LECFXψ2
= v2/(2M2

V) by demanding a similar SD

behaviourFv
f f̄
(q2)

q2→∞−→ 0 to the fermion form-factor, which would give
√

2FVcV
1 = −v2.

2.1 F
v
ϕϕ form-factor: S-parameter

The impact of the bosonic form-factor Fv
ϕϕ on the oblique parametersS andT was studied

in a dispersive one-loop resonance analysis [23, 21, 22], where the lightest triplet vector (V) and
axial-vector (A) resonances were taken into account. Therein, the contribution from the Gold-
stone and Higgs absorptive channels was incorporated. In particular the Fvϕϕ(q

2) determined the
contribution from theϕϕ andBϕ cuts to theS andT parameter, respectively [22]. We studied
asymptotically-free strongly coupled theories, whereΠW3B satisfies the two Weinberg Sum Rules
(WSRs), and scenarios with weaker ultraviolet (UV) conditions (only the 1st WSR applies) such
as Conformal [24] or Walking [25] Technicolour, obtaining the 68% confidence level determina-
tions [22]:

0.97 < κW = M2
V/M2

A < 1, MV > 5TeV (1st & 2nd WSR) , (2.6)

0.84 < κW < 1.30, MV > 1.5TeV (only 1st WSR, for 0.5< MV/MA < 1) ,

whereκW denotes thehWW(andhϕϕ) coupling in SM units (κSM
W = 1).

2.2 F
v
f f̄

form-factor: Z → f f̄ anomalous couplings

Thevf andaf constants that parametrize theZ → f f̄ decay have the form [26],

vf = T f
3 − 2Qf sin2 θW + (δgZ f

R +δgZ f
L ) , af = T f

3 + (δgZ f
R −δgZ f

L ) , (2.7)

4
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with Tt
3 = +1/2, Tb

3 = −1/2, the electric chargeQf , the weak angleθW and the new physics
parametrized through theδgZ f

R,L, given in our low-energy description by

|δgZ f
R,L| = |FXψ2| cos(2θW)m2

Z/v2 , (2.8)

in agreement with current bounds ofO(10−3) [27] for the fermion couplingFXψ2 ∼ v2/(2M2
V)<

1.3·10−2 that one gets from the previous resonance coupling estimate
√

2FVcV
1 = −v2, the bound

MV > 1.5 TeV [22] and the experimental value cos(2θW)m2
Z/v2 = 0.07.

3. Equivalent Proca four-vector representation

Through an appropriate duality transformation in the generating functional it is possible to
rewrite the underlying resonance LagrangianL (A) in (2.1) as a Proca LagrangianL (P) in terms
of four-vector fieldV̂µ and its field strength tensor̂Vµν = ∇µV̂ν −∇νV̂µ . A similar procedure [2,
16, 28] can be applied to models where the resonances are introduced as gauge fields [29]. In
the process, additional non-resonant operators with only light dof are generated, which guarantee
a proper UV behaviour. [16, 23, 28]. On-shell, this duality can be read asVαβ = V̂αβ/MV and
∇ρVρµ =−MVV̂µ . In our particular case, the duality transformation [2, 28]changes the antisym-
metric tensor Lagrangian (2.1) into

L
(A) −→ L

(P) = 〈V̂µν

(
fV̂

2
√

2
f µν
+ +

igV̂

2
√

2
[uµ ,uν ]

)

+V̂µ
(
ζV̂ Jµ

V /v2)〉

−〈
(

fV̂
2
√

2
f µν
+ +

igV̂

2
√

2
[uµ ,uν ]

)2

〉 , (3.1)

with fV̂ = FV/MV , gV̂ = GV/MV andζV̂ = cV
1 MV . In the low-energy limitp≪ MV , Eq. (3.1) leads

to the same EWET,

LEWET = − i
fV̂gV̂

4
〈 f µν

+ [uµ ,uν ]〉 − fV̂ζV̂√
2M2

V

〈 f µν
+ ∇µJV ν/v2 〉 + ... (3.2)

The same agreement is found for the two form-factors previously obtained in (2.3):

Fv
ϕϕ(q

2) = 1+
fV̂gV̂

v2 q2 +
fV̂gV̂

v2

q4

M2
V −q2 , Fv

f f̄ (q
2) = 1−

√
2 fV̂ζV̂

v2

q2

M2
V −q2 . (3.3)

4. Conclusions

The EWET couplings can be predicted in terms of resonance parameters; different resonance
quantum numbers lead to different patterns for the LECs [1, 15, 17]. Further assumptions about
the UV structure of the underlying theory can be used to refinethe predictions [1, 22]. In this
talk we have provided a couple of examples (oblique parameters SandTand the anomalousZ f f̄
couplings) to show that composite resonances with masses ofa few TeV (MR ∼ 4πv≈ 3 TeV) are
compatible with present direct and indirect searches. TheSU(2)L ×SU(2)R chiral invariance of
the ECLh leads to an appropriate low-energy suppression of tree-level NLO corrections by factors
akp2/v2 ∼ p2/M2

R with respect to the LO prediction,O(p2) [1, 15, 16]. Finally, we have shown the
equivalence between the antisymmetric tensorsVµν and Proca four-vectorŝVα representations for
spin–1 fields [16, 28].
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