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In this talk we study the low-energy effective couplings gexted by strongly-coupled elec-
troweak models that contain heavy composite resonancesridnce undeBU(2), x SU(2)gr

is a key ingredient in the construction of the resonanceactror simplicity, in these proceed-
ings we focus our attention on the impact of a heavy colosnestorV, which transforms as a
triplet under the custodial group. More precisely, we sttidycouplings that are relevant for the
vector form-factors of thé + R current into two electroweak Goldstones and into two Steshda
Model fermions, which contribute to the oblique parame&asdT and the anomalous — ff
couplings, respectively. Our predictions are compatibin Wwounds from direct and indirect
searches foMy z 1.5 TeV. Finally, although we consider an antisymmetric terisomalism to
describe the vector resonance, we derive the equivalenhantthe Proca four-vector represen-
tation and show that the predictions for low-energy cowgsiand form-factors are identical, as
expected.
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1. Impact of heavy resonances on the low-ener gy electroweak effective theory

So far the Large Hadron Collider (LHC) has not found any tr@fdeeyond the Standard Model
(BSM) states with masses below 1 TeV. Likewise, no signiticlviation has been observed in
the low-energy interactions between Standard Model (SMigbes. Effective field theories are
then the natural approach. In this talk [1, 2] we discuss tesibility of strongly-coupled BSM
scenarios with the approximate custodial symmetry invagaof the SM, exact in the SM scalar
sector. We develop an invariant Lagrangian unler SU(2), x SU(2)g, which spontaneously
breaks down to the custodial subgrog = SU(2), . r and generates the electroweak (EW) would-
be Goldstone bosong?, described a unitary 2 2 matrixU (¢). In these (non-linear) EW chiral
Lagrangian with a light Higgs (ECLh), the low-energy amdi¢.# has an expansion in powers
of infrared scalep (external momenta and SM masses) of the form (e.qg., fer2processes) [2,
3,4,5, 6],

M~ 28 +< ak TP )p—4+@’(p6)- (1.1)
7 - 167 M v
LO (tree) NLO (tree) NLO (1-loop)

The EW effective theory (EWET) Lagrangian operators candyéed out based on their chiral
dimension:

Lewer =L+ L+ . (1.2)

where the operators i¥; are ofﬁ(p&) [2, 3, 4, 5]. Covariant derivatives and masseséi(@) [7]
and each fermion field scales likg pl/z) in naive dimensional analysis (NDA) [2, 4, 5, 8]. T¥e
invariant operators it/gwet are built with the Goldstone tensddg ¢ ), functions.% of the Higgs
singleth, its derivativesdy, ...dy,h, the gauge fields and the SM fermiopd8, 9, 10, 11, 12, 13].
From the chiral counting point of view?’SM would be ¢'(p?) but its underlying renormalizable
structure makes ally = 0 and ensures the absences of higher-dimension divergfhced. The
most important contributions to a given process are giverthiyoperators of lowest chiral di-
mension. The leading order (LO) contributiond¥ p?) and is given by tree-level diagrams with
only .%» vertices. Likewise, the one-loop contribution with on# vertices is0'(p*); it is sup-
pressed in (1.1) with respect to the LO by a fagtdfAZ, , with AZ, ~ 16mv2r 1 = 3 TeV (with
V= (\/EGF)*l/2 ~ 246 GeV). This suppression factor is related to the noratite of the ECLh
and/AnL — o when the Higgs can be embedded in a complex doublé]. *

In these proceedings [1, 2] we focus our attention on thelénes next-to-leading order (NLO)
contributions. They ar&(p*) and are provided by tree-level diagrams with affg vertex with
low-energy couplingy (LEC) and an arbitrary number o5 vertices. They get contributions from
tree-level heavy resonance exchanges. At low energiese thgp?) terms in (1.1) are typically
suppressed with respect to the LO amplitudép?), by a factora,p?/v? ~ p?/M3[1, 2, 15, 16].

1Ref. [14] provides a geometrical interpretation in termghef curvature of metric of the internal weak space of the
Higgs. In the flat-space limit one hag,. — . Linear-Higgs scenarios with a complex Higgs doulddetorrespond to
this case. True “non-linear models” are defined by a non-zereature, not by their (non-linear) representation.
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At high energies, one must include both the light dof (SMipke$) and the possible composite
resonances as active degrees of freedom (dof) in the Lagrafig 2, 17]:

L = gnon—res"‘ gRa (1-3)

where %hon_res cOntains only SM fields and/r is the part of the Lagrangian that also contains
resonances [1]. The part of the interaction Lagrangigarelevant for our analysis of th&
LECs is given by the terms linear in the resonance fieddgr = RO [x, ] [1, 2, 15, 16, 17],
with x () referring to the light bosonic (fermionic) fields. The ten® [x, Y] that couples the
heavy resonanck to the light dof is going to provide the first correction to tbe-energy ECLh
by means of diagrams where one has a heavy resonance papaghtM3 exchanged between
two vertices withO 2 [x, ¢]. This gives an EWET operator of(p*). At low energies, resonance
operators with tenso®|x, ] of a higher order irp or containing two or mor® fields contribute
only to %; with d > 4.

The tree-level contribution td&Zewet[X, Y] is given by the underlying high-energy action
Sx, Y, R with the resonance fieldR evaluated at the classical soluti® (X, ) of their equa-
tions of motion (EoM). Solving the resonance EoM and expagdheir solutions in powers of
momenta forp < Mg, one can write the heavy fields as local operators of the EWET1b)].
This prediction for the contribution to the low-energy ECtain be complemented through the
consideration of ultraviolet-completion hypotheses (sules [18, 19], unitarity [16], asymptotic
form-factor counting rules [20]...). This imposes constion the resonance couplings that then
turn into predictions for the low-energy theory.

2. Phenomenological example: vector form-factors

Let us illustrate this with a basic example. We consider autéss triplet vector resonande
in a composite theory with the same symmetries of the scal@osof the SM —invariance under
parity and charge conjugation—, with its high energy intéom provided by the Lagrangian [1, 2],

; v
ALP = (v, Oy, of = Z%ff” + %[uﬂ,uV] + % (OH3y —0V3) V2, (2.1)
with (...) for the matrix tracey,, = iu(D,U)"u, the combinationg " = u"WHu+ uBHVu' of the
left and right field-strength tensov§“¥ and BV, respectively, antl = u? = exp{i¢20?/v} [21,
22]. The precise definition of the covariant derivatiigs and(J,, can be found in [21, 22]. The
tensorJ@’ = —Trp{&&y"} introduces the fermionic vector current in a covariant waigh & =
uyr-+u' g given by theSU(2)g . doubletsyir = 3(1+y5), with ¢y = (t,b) T (other SM doublets
can be also added [6]) and the Dirac trace.Timhe superscriptA) refers to the antisymmetric
tensor formulation employed for the spin—1 resonance [IHje full Lagrangian may contain
additional operators not relevant for the form-factorslhyared in this talk [2]. Integrating oW
one gets a contribution to the EWET, which at lowest ordeiisrgby

(2.2)
042 (0L Ovpy) R/Gv Rcy
agigny = (O )7 (O Ovp) P ug,w)) — —==5 (£ 0, v /VP) + ...
EWET = oMz M2 M2 (P2 [, wl) ﬁM\Z,< + Budvv/V)
N—— N——
=i73/2 — FX¢?
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with the dots standing for other effective operators nogvaht in these proceedings. For the
Higgsless part, one ha&s; = a, — ag in Longhitano’s notation of [9, 10]. In what follows, we will
focus on the Higgsless sector aﬁ@,ﬁ‘xwz, R, Gy andc\l’ simply represent coupling constants.

The resonance Lagrangian (2.1) provides the vector footoffa of thel + R current into
two-Goldstones and into two-fermions [2, 23, 21, 22]:

RG VR

o () =1+ F M- FyH{of) =1 2 ME-g (2.3)

with momentum transfeg#. The square form-factotY (s)|? contribute to theS-parameter at one-
loop through the Peskin-Takeuchi sum-rule on the leftirighrrelatorl,sg [19]. If one requires
that these form-factors give a ultraviolet-convergenttgbution to the sum-rule, they must vanish
at g> —  and one obtains short-distance (SD) constraints [16, 2322]land predictions for
the LECs[1, 2, 16]:

R Gy SD constr V2

=V — Ja=(mp-a) = — = ——. 2.4
Gy 3= (a2 —as) M2 M2 (2.4)

ForMy > 1.5 TeV one finds the bound
~13.102%2 < F3=(ap—ag) < 0. (2.5)

One can obtain analogous bounds for the LEREY® =\2/(2M2) by demanding a similar SD

2 (oo} . . .
behaviourFY {o?) T2 0 to the fermion form-factor, which would givg2R,cY = —\2.

2.1 Fy, form-factor: S-parameter

The impact of the bosonic form-factory f on the oblique parameteSand T was studied
in a dispersive one-loop resonance analysis [23, 21, 22%revthe lightest triplet vectoM( and
axial-vector Q) resonances were taken into account. Therein, the cotitnbfrom the Gold-
stone and Higgs absorptive channels was incorporated. rticydar the P;q,(qz) determined the
contribution from theg ¢ andB¢ cuts to theSand T parameter, respectively [22]. We studied
asymptotically-free strongly coupled theories, whBigsg satisfies the two Weinberg Sum Rules
(WSRs), and scenarios with weaker ultraviolet (UV) cormudisi (only the 1st WSR applies) such
as Conformal [24] or Walking [25] Technicolour, obtainirnget68% confidence level determina-
tions [22]:

0.97 < kw=MZ/M2 <1, My >5TeV (1st&2nd WSR, (2.6)
0.84 < kw < 1.30, My > 1.5TeV (only 1st WSR, for 6 < My /Ma < 1),

whereky denotes thédWW (andhg ¢) coupling in SM units ;M = 1).

2.2 IE“f’f—form—factor: Z — ff anomalous couplings

Thev; anda; constants that parametrize the- ff decay have the form [26],

Vi = T3f — 2Qs sirf By + (6gﬁf +5gff), ar = T3f + (c‘igéf - 6gff), (2.7)
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with T = +1/2, T3b = —1/2, the electric charg®+, the weak anglédy and the new physics
parametrized through thﬁgﬁl, given in our low-energy description by

805, | = |77Y"| cos(26w) mé V2, (2.8)

in agreement with current bounds 6{10-3) [27] for the fermion couplingZ*%* ~ \2/(2M2) <
1.3- 102 that one gets from the previous resonance coupling estimakgcy = —v2, the bound
My > 1.5 TeV [22] and the experimental value ¢@8y) m2 /v? = 0.07.

3. Equivalent Proca four-vector representation

Through an appropriate duality transformation in the getireg functional it is possible to
rewrite the underlying resonance Lagrangi&tt® in (2.1) as a Proca Lagrangia#P) in terms
of four-vector fieldV, and its field strength tensd,, = 0,V, — 0yV,. A similar procedure [2,
16, 28] can be applied to models where the resonances aoeluctd as gauge fields [29]. In
the process, additional non-resonant operators with agihy tof are generated, which guarantee
a proper UV behaviour. [16, 23, 28]. On-shell, this dualignde read a¥?# =V /My and
OpVPH = —MyVH. In our particular case, the duality transformation [2, @8anges the antisym-
metric tensor Lagrangian (2.1) into

20— 20 = (G (S B ) 4, (G2
f\7 IgV uv ?
o™ g ) o

with fy = R/ /My, gy = Gy/My and{y = c1 My. In the low-energy limitp < My, Eq. (3.1) leads
to the same EWET,

9% cpv W& | emv
Lewer = —1 =2 (V0 w]) — Ve (P20 v VP) + (3.2)
The same agreement is found for the two form-factors preloobtained in (2.3):
¥ V2.0
= _1+v9v2_|_vgv q 7 B o(R) — 1 Ve (33
q)q)(q) V2 q V2 Mv—q ff(q) V2 M\g/_qz ( )

4. Conclusions

The EWET couplings can be predicted in terms of resonana@npaers; different resonance
guantum numbers lead to different patterns for the LECs$1,1¥]. Further assumptions about
the UV structure of the underlying theory can be used to refieepredictions [1, 22]. In this
talk we have provided a couple of examples (oblique param&aeandTand the anomaloug f f
couplings) to show that composite resonances with masse$eof TeV Mg ~ 41nv ~ 3 TeV) are
compatible with present direct and indirect searches. JUE), x SU(2)r chiral invariance of
the ECLh leads to an appropriate low-energy suppressioeflevel NLO corrections by factors
axp?/v? ~ p?/M2 with respect to the LO prediction(p?) [1, 15, 16]. Finally, we have shown the
equivalence between the antisymmetric tenstt$ and Proca four-vectodé? representations for
spin—1 fields [16, 28].
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