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1. Interplay of different channels

In general BSM new physics is supposed to couple to Higgs sector, consequently in many SM
extensions exotic heavy resonances have the higgs and weak bosons among its main decays. The
collider search for a heavy spin 0 or 2 resonance decaying to a pair of higgses benefists from the
now well known higgs mass and the characterization of its decays [1, 2].

A SM higgs boson with mass 125 GeV decays preferentially to a b-quark pair (57.8%), what
seems to be confirmed by data. Therefore when searching for a pair of higgs bosons to restrict at
least one of the bosons to decay to a bb̄ pair guarantees a reasonable signal strength in comparison
with other channels. This contribution is based in the Run I CMS searches for resonances decaying
in pairs of higgs bosons in the γγ bb̄, ττ bb̄ and bb̄bb̄ channels [3, 4, 5]. If the higgs boson interacts
with matter as predicted by SM the different searches we present represent respectively 0.26%,
6.7% and 33% of HH branching fraction.

Figure (1) shows the observed and expected limits when the Standard Mode (SM) branching
fractions are assumed to the Higgs boson and the heavy resonance is assumed as scalar. Those
limits are overlaid with theory predictions for a spin-0 particle so-called radion, commonly present
of Warped Extra Dimensional class of models (see for example [6]). No significant excess was
found in 8 TeV data. In the following sections we detail a bit the different analyses. The specific mX

value that defines this inflection point between channels depends on possible branching fractions
variations for the 125 GeV higgs boson (what can happen in specific models, for example with an
enlarged Higgs sector of invisible higgs boson decays).
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Figure 1: Resume of the CMS 8 TeV results in the di-higgs channel in expected and observed limits.
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2. The γγ bb̄ channel

The data is triggered by the presence of two fotons. The analysis is based in the SM h→ γγ

search [7]. In this final state we have two fully reconstructed higgs boson. Up to jet multiplicity
those are uniquely identified. Figure (2) shows the three invariant mass spectra available to exploit,
after pre-selection of two fotons plus two jets. At this stage only at least one loose b-tagged jet is
required.

The events was categorized as High Purity (HP) and Low Purity (LP) according with the
number of medium b-tagged jets. The HP category corresponds to two medium b-tagged jets,
while the LP to one medium b-tagged jet.
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Figure 2: Invariant mass distributions used for signal characterization in the γγ bb̄ channel after selection
of two fotons and requirement of two jets with at least one loose b-tag. In the single higgs spectra we show
both resonant signal and its contamination by the SM-like single higgs boson production. In the four body
mass we also show the main backgrounds.

Two different analyses were done, accordingly with the resonance mass hypothesis:

• low mass strategy (mX < 400 GeV): The strategy is to select in 4 body and di-jet (m j j)
invariant masses and fit a falling function in the mγγ spectrum, taking advantage of the good
signal resolution and controllable background shape. Figure (3) shows data and fitted back-
ground for low mass search after the selection corresponding to mX = 300 GeV. The LP
category is O(10) times more BKG populated, but contains half of the signal, helping to
control the statistical uncertainty. The sensibility is however driven by the low statistic HP
category.

• high mass strategy (mX > 400 GeV): To select in four body mass to mX > 400 GeV re-
duces considerably the data statistics. To be able to have a reliable data-driven background
estimation the analysis strategy is changed to select in and m j j and mγγ mass spectra and fit
a falling function in 4 body mass spectra. Figure (4) shows data and fitted background for
low mass search after the high mass selection strategy.

The 8 TeV analysis is dominated by statistical error. After the analysis selections of the low
mass strategy the rate of SM single higgs production is reduced to less than 0.15 (0.5) in the HP
(LP) category. The signal deficiencies in function of the resonance mass are shown in figure (5).
For signal hypotheses with mX > 1 TeV the signal efficiency start to drop due the fact the two
photons that compose the triggered higgs start to merge in a jet.
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Figure 3: Events in mγγ spectrum in medium-purity (left) and high-purity (right) categories for a low mass
selection hypothesizing mX = 300 GeV. The non-resonant component of the background is shown (black
line) with 1 and 2σ bands on the background estimation.
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Figure 4: Events in mγγ j j spectrum in medium-purity (left) and high-purity (right) categories. The non-
resonant component of the background is shown (black line) with 1 and 2σ bands on the background esti-
mation.
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Figure 5: Signal efficiency associated to the final selection in the γγ bb̄ channel.
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3. The ττ bb̄ channel

This channel is composed by many sub-channels, due the different τ decays (schematized in
figure 6). The analysis targets both the fully hadronic ττ and one hadronic τ plus a leptonic one
final states using three different trigger paths: electron, muon and hadronic taus.

Figure 6: The τ-fermion decays, and branching fractions of a τ-pair.

The hadronic taus are identified by an shower of isolated pions (using e/µ veto). The full four
momenta of the leptonic taus are reconstructed assuming the corresponding neutrinos in collinear
approximation. As for the last section two uniquely defined higgs bosons are fully reconstructed.
The selected events are categorized as containing two or one medium b-tags .

Depending in the τ decay mode and b-tag categorization the dominant background is QCD or
tt̄, with a non-negligible component of electroweak processes. Figure (7) schematizes the back-
ground composition in each category in the di-jet invariant mass after objects pre-selection. The
invariant mass of both Higgses candidates are forced to be 125 GeV using a kinematic fit. Events
with di-jet mass between 70 GeV and 150 GeV are used for signal extraction. The signal is ex-
tracted with a binned maximum likelihood fit in the 4-body mass.

The target of this analysis was to search for SUSY-like signals, the search extends up to 350
GeV (where the H → hh signal is preferred over other signatures in a MSSM low tanβ scenario
[8])1. Figure (8) shows how the final limits for a di-higgs resonance in the ττ bb̄ channel splits in
the three considered τ-pair decays. Near the signal threshold up to mhh ∼ 320 GeV the cleaner τµτh

channel dominate sensibility. For higher mhh, where the background statistics drop, the sensibility
start to be dominated by the fully hadronic channel.

1The reference [4] also contains results for the search for a pseudo-scalar boson decaying to a Zh boson pairs, where
the Z-boson decay leptonically, what is out of the scope of this contribution.
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Figure 7: Di-jet invariant mass in the different categories used for the ττ bb̄ channel. The first column stands
for fully hadronic decays of the τ-pair, while the middle and left columns corresponds to the semi-leptonic
decays, respectively in the e and µ channels. The first row stands for one b-tagged jet category, while the
second for two b-tagged jet category.
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4. The bb̄bb̄ channel

The events are triggered by the presence of multi-jets, combined with several layers of jet pT

pseudo-rapidity. The biggest challenge of the bb̄bb̄ channel is the high BKG rate, mainly composed
by QCD multijet and ∼20% . At least four aKt04 jets and two medium CSV b-tag are required
already at trigger level to further reduce QCD rate. The object selection requires 4 central jets (η <

2.4) with CMVA b-tagged jets with , with pT > 40 GeV. The jets are them paired to create two
higgses candidates such that |mH −125GeV |< 35 GeV. Selected di-higgs candidates are required
to have at least two jets with pT > 90 GeV.

Further selections divide the search in Low Mass (LM, when mX < 450 GeV) and High Mass
(HM) region (for mX > 450 GeV). In the HM region the higgs bosons are supposed to have a
considerable boost, therefore an additional selection in the distance of the two jets that compose
each higgs candidate (R < 1.5) helps to indicate signal. To mhh > 740 GeV there one more addi-
tional selection of pT >300 GeV is added. The signal region is defined selecting the paired di-jet
mass around 125 GeV, and extracted using a unbined fit in the 4 body mass. The BKG estimation
procedure is verified with validation signal and side-bands regions, as schematized in figure (9).
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Figure 9: Scatter plot of data in the di-higgs plane, after pre-selection in the bb̄bb̄ channel.

The first two captions of figure (10) shows the distribution of data in both HM and LM selec-
tions in 4 body mass, as well the signal cut flow efficiency in term of the resonance mass. Back-
ground is modeled by a convolution a Gaussian function continued smoothly to exponential tail
models the BKG. The normalization is fixed using the data side-bands. The additional selections
in HM region reduces significantly the BKG statistics.

The left side of figure (10) shows the distribution of data in both HM and LM selections in 4
body mass, as well the signal cut flow efficiency in term of the resonance. Around mX ∼ 800 GeV
only the object selection start to loose efficiency. This is expected since the search asks for four
jets, and around that mass the higgses decays start to merge in one fat jet [9].

Although the search is designed using a narrow scalar signal (the same as described in section
1) the results of this search are also derived for the case of a spin-2 particle, inspired by KK-
Graviton particles from Warped Extra Dimensional models when the SM fields are allowed to
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propagate in the extra dimensional bulk (see for example [10]). The main differences among the
scalar and bulk-like spin-2 case arrives because the angular distribution between the product of
the resonance decays (the higgs bosons) are different in the two cases, what influenced the jet
combinatorics necessary to identify the higgses. Such a difference is not observed in the γγ bb̄
channel, since there the higgs bosons are uniquely determined and no angular cut is imposed to
them.
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Figure 10: Data distribution in the signal region after LM (left) and HM (middle) selections. The relative
contribution of the QCD multijet BKG. The right plot shows the cut flow of signal selection in terms of the
resonance mass.

5. Conclusion

In this proceeding we had highlighted three CMS searches targeting the di-higgs boson final
state. All the Run 1 results up to the moment are performed looking for resonant enhancements. We
had focused in the explain that in different mass regimes the different channels (and sub-channels)
have different relative contributions, also different mass regimes for the resonance requires adapted
analyses strategies. The di-higgs channel is the first channel that can allow measurement of the
higgs self-couplings, therefore it is a key channel in the comprehension of the nature of the physics
behind the SM formulation. the resonant Run 1 results motivates the future non-resonant searches
for BSM phenomena in the higgs boson (self-)couplings to be constructed upon representative
signal benchmarks [11] to actually allow detection of higgs boson couplings deviations.
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