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1. Introduction

Polarized lepton colliders (LC) operated at high energies are indispensable tools to increase
the precision of various SM parameters and often complement the measurements that are possible
at hadron colliders like the LHC. For numerous LC studies, the multi-purpose event generator
WHIZARD [1, 2] is a commonly used simulation tool, as it allows to study beamstrahlung as well
as initial-state radiation (ISR) effects. Moreover, high-multiplicity final states can be automatically
and efficiently generated using O’MEGA [3]. So far, these predictions have been based on tree-
level matrix elements combined with conventional parton showers to describe the effects of QCD
radiation. To systematically improve this description, it is mandatory to include the next-to-leading
order (NLO) and avoid double counting with the parton shower.

The rigorous matching of NLO computations with parton showers has been pioneered with
MC@NLO [4]. Its main principle is the subtraction of the expansion of the parton shower from the
cross section. P. Nason proposed a similar method that avoids the inherent problem of MC@NLO
of producing negative weight events, in the sense that negative weights can only occur in regions
where fixed-order perturbation theory fails [5]. Following the first implementation [6], the algo-
rithm has been worked out in detail [7] and dubbed the POWHEG method (Positive Weight Hardest
Emission Generator). As the hardest, i.e. highest relative pr, emission is not generated by the
attached parton shower but by the algorithm itself, it is guaranteed to maintain the NLO accuracy
of the sample, irrespective of the used shower. This requires, though, that the shower respects the
hardest emission, which is easily satisfied with a veto of higher pr on subsequent emissions. In
case the ordering variable of the shower is not pr, soft radiation before the hardest emission has to
be added as well in terms of a truncated shower.

Following the work of Ref. [7], the semi-automated NLO+PS event generator called POWHEG-
Box [8] has been developed. In this framework a multitude of LHC processes has been made pub-
licly available. The drawback of the POWHEG-BOX is that it only automates parts of the algorithm
meaning that adding a new process requires considerable theoretical effort from the construction
of the phase space to the implementation of the matrix elements. With the advent of automated
One-Loop Providers (OLPs) like GOSAM [9] or OPENLOOPS [10], it has become feasible to build
a fully automated event generator using the POWHEG method. First steps in this direction were
made in SHERPA [11] as well as HERWIG [12]. In this work, we sketch the automation of the
POWHEG matching in WHIZARD. There also was earlier work on QED resummation matched to
QED NLO calculations within WHIZARD leading to strictly positive-weight events [13, 14].

WHIZARD has recently been augmented by an automation [15] of the FKS subtraction [16,
17], which will be a key ingredient in our discussion. The impact of POWHEG matching on event
shapes at a lepton collider like eTe~ — hadrons has first been discussed in Ref. [18], where a
significant improvement in the description of the measured data from LEP has been found in almost
all observables, compared to leading order (LO) with a matrix element correction. In Ref. [19], this
work has been extended to consider on-shell top-pair production with semi-leptonic decays at the
ILC. Although WHIZARD spear-headed many beyond the SM phenomenological studies [20-25],
we will focus here on SM QCD effects.
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2. POWHEG matching

For completeness, we briefly sketch here how POWHEG events are generated. The correspond-
ing proofs and more detailed information can be found in Ref. [5, 7]. Contrary to the subtractive
approach of MC@NLO, POWHEG is a unitary method to generate n- and n + 1-parton event sam-
ples. Hereby, we distribute the Born kinematics d®,, according to the inclusive NLO cross section

B:B+V+/dd>rad(R—C), @.1)

where V =V + [ C is the virtual part including the analytically integrated subtraction terms [ C
that are subtracted again in differential form from the real emission part R. The integral over the
radiation phase space d®;,q in Eq. (2.1) is evaluated numerically in a Monte Carlo (MC) sampling
using WHIZARD’s standard phase space integrator VAMP [26] together with the sampling over
d®d,. To obtain at least leading log (LL) correctness in py, we have to attach the corresponding
Sudakov form factors A( pT) , yielding the probability that no emission occurs between a high scale

PTmax and pr
R(®
Alpr) = exp{ [ @ (B“‘“‘)e (k7 (@raa) p%)} : (22)

With these quantities, we can write down the differential cross section as

R(q;rad)> .

do =B d®, (A( PP™) + dPragA (kr(Praa) ) (2.3)
Note that the expression in parentheses in Eq. (2.3) integrates to one by the unitary construction as
can be easily verified. The first term corresponds to no emission down to pr,,;, and the second to
an emission at the scale k7. This ensures that the NLO cross section is conserved, implying that
the POWHEG matching only changes the spectrum. Especially, it damps the emission of soft and
collinear radiation of the pure NLO prediction since limA(py — 0) = 0.

The ratio R/B in Eq. (2.2) is the differential splitting probability and is approximated in parton
showers by universal splitting kernels. Using a process dependent ratio instead makes it signif-
icantly harder to generate pr distributions according to this form factor. There are two ways to
circumvent this problem: Obviously, one can use the universal properties of this ratio, i.e. the
known soft and collinear divergence structure, to construct an overestimator U weighted with a
constant factor N. Emissions are then accepted according to the probability R/B/(NU ). A different
approach is the fully numerical evaluation of the exponent in Eq. (2.2) as it is done in EXSAM-
PLE [27]. In our implementation, we decided to use a hybrid version, where N is a grid that depends
on the radiation variables multiplied with the general U functions, similar to the approach in the
POWHEG-BOX. A dedicated performance and validation comparison with EXSAMPLE featuring
multiple processes would be an interesting future project.

At this point, we want to stress the nice interplay between the FKS subtraction and POWHEG
event generation. While we have written Eq. (2.2) in a general way, there are of course different
possible singular regions ¢, each having a different emission probability Ry /B with R = Y o R
By having FKS at hand, we can directly retrieve these Ry, which are used to divide the real part
into regions with at most one soft and one collinear singularity. Analogously, the overall Sudakov
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form factor will be a product of the A, of the different regions. In the implementation, this results
to a generation of either one or no emission in each region. The region with the largest pr is kept
in the event, also known as highest bid method, cf. Appendix B in Ref. [7].

3. Effects of QCD radiation on top and electroweak physics at a future linear
collider

In the following, jets are possible combinations of all occurring quarks and gluons, clustered
with FASTJET [28] according to an anti-k7 algorithm that uses energies and spherical coordinates
instead of transverse momentum and rapidities as distance measure with R = 1.0. The shown
events have been simulated only up to the first emission, leaving out the subsequent simulation
chain, in order to focus only on the POWHEG implementation. It has been checked, though, that
processing the POWHEG events produced by WHIZARD with PYTHIA8’s pr-ordered shower [29]
in the corresponding veto mode delivers reasonable physical results.

In our setup, the top mass is set to m; = 172GeV. We chose u, = m; as renormalization scale.
The coupling constants are &~! = 132.160 with no running and as(Mz) = 0.118 with a NLL
runnning with 5 active flavors. LO and POWHEG events are unweighted during generation. In the
NLO event samples, we associate Born kinematics with a weight of B+ )V — Y, C. Together with
this Born event, we generate for each singular region o, a real-emission event with weight R.
The histograms are generated with RIVET [30], using 500 K LO and POWHEG as well as 1500 K
NLO events.
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Figure 1: Energy distributions of the emitted gluon and of the hardest jet.

Figure 1 shows onshell #7 production at a lepton collider with /s = 500GeV. Polarization
and beamstrahlung effects as well as lepton ISR are neglected. The soft gluon divergence can be
seen in the NLO event samples either directly in the (unphysical) energy distribution of the gluon or
indirectly in the distribution of the hardest jet, which peaks around the Born value due to mostly soft
gluons. By applying the Sudakov form factor, the POWHEG events have the expected suppression
of this divergence. Due to the unitary construction, this leads to an increase of the differential cross
section in the remaining part of the spectrum, a well known feature of pure POWHEG distributions.
As one might wish to restrict the effect of the Sudakov suppression to the area where pt is small,
the real radiation can be divided in a hard and a soft part by means of damping factors, bringing
POWHEG formally and phenomenologically closer to MC@NLO, while maintaining the benefits
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discussed in Section 2. The associated freedom in the division between hard and soft part has to be
regarded as a theoretical uncertainty and will be discussed in a future work.
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Figure 2: The energy distribution of the hardest jet and the angular distribution of the Higgs boson.

Let us now address ete™ — (fH with the same setup as above but at /s = 1000 GeV. Figure 2
shows distributions of two observables: In the energy distribution of the hardest jet, we can see
again the effect of Sudakov suppression at the high energy peak. For comparison, we also show
the effect of scale variation, which, as expected, does not cover the difference between NLO and
POWHEG. On the other hand, we observe that in inclusive quantities like the angular distribution
of the Higgs boson, the POWHEG matching has no significant effect. This is of course only a cross
check that inclusive quantities remain correct to NLO. We find that although the total K-factor at
this value of /s is close to 1, distributions of observables that are sensitive to QCD radiation can
change drastically.

4. Summary & Outlook

We have presented an independent implementation of the POWHEG matching scheme that
builds on the recent automation of QCD NLO corrections in WHIZARD. The key feature of the
POWHEG matching, namely the suppression of the differential cross section for small relative pr,
has been reproduced and we have shown for the first time the impact of the POWHEG matching
on distributions for e*e~ — t7H. A more detailed analysis that focuses on the impact of damping
factors and the general assessment of the associated uncertainties in various processes will fol-
low. Our implementation is process-independent but still subject to extensive validation. It can be
tested for any lepton-collider process in the current publicly available release of WHIZARD 2.2.7
but should be regarded as experimental feature and results analyzed with care. Hadron-collider
processes are currently not supported but planned for the near future.

Acknowledgments

We are grateful to N. Greiner for many helpful discussions on NLO event generation in general
as well as technical support with GOSAM. Also, we thank J. Lindert for providing a variety of be-



Matching NLO QCD Corrections in WHIZARD with the POWHEG scheme Bijan Chokoufe Nejad

fore non-available features in OPENLOOPS, especially the required loop libraries for the processes

studied in this paper. We also appreciate the help of both of them for interfacing their respective

programs to WHIZARD. Furthermore, we want to thank E. Bagnaschi for enlightening discussions
on POWHEG and scales.

References

[1]

(2]

(3]

[4]

[5]
[6]

[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

W. Kilian, T. Ohl, and J. Reuter. The European Physical Journal C, 71:9 (2011), p. 1742.
[0708.4233].

J Reuter, F Bach, B Chokoufé, et al. Journal of Physics: Conference Series, 608: (2015),
p. 012063. [1410.4505].

M. Moretti, T. Ohl, and J. Reuter. IKDA-2001-06, LC-TOOL-2001-040, (2001), p. 29. [hep-
ph/0102195].

S. Frixione and B. R. Webber. Journal of High Energy Physics, 2002:06 (2002), pp. 029—
029. [hep-ph/0204244].

P. Nason. Journal of High Energy Physics, 2004:11 (2004), p. 40. [hep-ph/0409146].

P. Nason and G. Ridolfi. Journal of High Energy Physics, 2006:08 (2006), pp. 077-077.
[hep-ph/0606275].

S. Frixione, P. Nason, and C. Oleari. Journal of High Energy Physics, 2007:11 (2007), p. 70.
[0709.2092].

S. Alioli, P. Nason, C. Oleari, and E. Re. Journal of High Energy Physics, 2010:6 (2010),
p- 43. [1002.2581].

G. Cullen, H. van Deurzen, N. Greiner, et al. The European Physical Journal C,74:8 (2014),
p. 3001. [1404.7096].

F Cascioli, P. Maierhofer, and S Pozzorini. Physical Review Letters, 108:11 (2012), pp. 1-5.
[1111.5206].

S. Hoche, F. Krauss, M. Schonherr, and F. Siegert. Journal of High Energy Physics, 2011:4
(2011), p. 24. [1008.5399].

S. Plétzer and S. Gieseke. The European Physical Journal C, 72:11 (2012). [1109.6256].

W. Kilian, J. Reuter, and T. Robens. The European Physical Journal C, 48:2 (2006), pp. 389—
400. [hep-ph/0607127].

J. Kalinowski, W. Kilian, J. Reuter, T. Robens, and K. Rolbiecki. Acta Phys.Polon., B39:
(2008), pp. 1705-1714. [0803.4161].

C. Weiss, B. Chokoufe Nejad, J. Reuter, and W. Kilian. PoS(EPS-HEP2015)466, (2015).

S. Frixione, Z. Kunszt, and A. Signer. Nuclear Physics B, 467:3 (1996), pp. 399-442. [hep-
ph/9512328].

R. Frederix, S. Frixione, F. Maltoni, and T. Stelzer. Journal of High Energy Physics, 2009:10
(2009), p. 003. [0908.4272].



Matching NLO QCD Corrections in WHIZARD with the POWHEG scheme Bijan Chokoufe Nejad

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]
(28]

[29]

[30]

O. Latunde-Dada, B. Webber, and S. Gieseke. Journal of High Energy Physics, 2007:02
(2007), p. 51. [hep-ph/0612281].

O. Latunde-Dada. The European Physical Journal C, 58:4 (2008), pp. 543-554. [0812.3297].

W. Kilian, D. Rainwater, and J. Reuter. Physical Review D, 71:1 (2005), p. 015008. [hep-
ph/0411213].

K. Hagiwara, W. Kilian, F. Krauss, et al. Physical Review D, 73:5 (2006), p. 055005. [hep-
ph/0512260].

M. Beyer, W. Kilian, P. Krstonosi¢, et al. The European Physical Journal C, 48:2 (2006),
pp- 353-388. [hep-ph/0604048].

A. Alboteanu, W. Kilian, and J. Reuter. Journal of High Energy Physics, 2008:11 (2008),
p- 010. [0806.4145].

J. Kalinowski, W. Kilian, J. Reuter, T. Robens, and K. Rolbiecki. Journal of High Energy
Physics, 2008:10 (2008), p. 090. [0809.3997].

W. Kilian, M. Sekulla, T. Ohl, and J. Reuter. Physical Review D, 91:9 (2015), p. 096007.
[1408.6207].

T. Ohl. Computer Physics Communications, 120:1 (1999), pp. 13-19. [hep-ph/9806432].
S. Pldtzer. The European Physical Journal C, 72:3 (2012), p. 1929. [1108.6182].

M. Cacciari, G. P. Salam, and G. Soyez. The European Physical Journal C, 72:3 (2012),
p. 1896. [1111.6097].

T. Sjostrand, S. Ask, J. R. Christiansen, et al. Computer Physics Communications, 191:
(2015), pp. 159-177. [1410.3012].

A. Buckley, J. Butterworth, D. Grellscheid, et al. Computer Physics Communications,
184:12 (2013), pp. 2803-2819. [1003.0694].



