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1. Introduction

Hydrodynamics has been extensively used to study systems which are close to equilibrium.
It is based on the assumption that the mean free path (time) of particles is much shorter than the
characteristic size (time scale) of the system, and the result can be organized in a gradient expan-
sion, also called hydrodynamic expansion [1]. However, this approach has some limitations, as it
usually fails to describe far from equilibrium systems appearing in many branches in physics: some
situations are the initial stages of the Quark-Gluon plasma thermalization [2], quenches in some
condensed matter systems and fluctuations in the fractional Hall effect [3]. Basic approaches to
these systems include the computation of real time dynamics directly, and it is generally expected
that they evolve towards a hydrodynamic regime at late times. However understanding far-from-
equilibrium physics is a notoriously challenging problem, so that we have to resort to much simpler
systems to have a better understanding of these phenomena. An interesting yet potentially tractable
class of non-equilibrium configurations are the steady state flows: examples are the electric current
in a conductor driven by an external electric field, or the heat current driven by a temperature gradi-
ent [4, 5, 6]. These are time-independent configurations but they do not correspond to equilibrium.

These studies are particularly interesting in strongly coupled systems. The AdS/CFT corre-
spondence constitutes a powerful tool that helped to establish some universal properties of the
hydrodynamics of quantum systems, the most famous one being the celebrated lower bound for
the shear viscosity to entropy density ratio, h̄/4π [7]. A strong motivation to apply the AdS/CFT
correspondence to far-from-equilibrium dynamics is that it might establish as well some universal
properties of these systems, in particular it could give some insight about the organizing principles
out-of-equilibrium and the possible existence and characterization of universality classes. In this
work we will study, within the AdS/CFT correspondence, a particular out-of-equilibrium steady
state configuration consisting of a heat current between two asymptotic equilibrium systems, its
formation and time evolution.

2. A universal regime of thermal transport: steady state formation

It was shown in Ref. [4] that in a class of Conformal Field Theories (CFT) in (1+ 1)-dim
a homogeneous steady state exists, and a universal formula for the heat flow was derived. These
results were generalized later to higher dimensions in Refs. [5, 6]. We will present in this section
some of the properties of these configurations.

Let us consider two thermal reservoirs in d-dim, each of them initially at equilibrium but at
different temperatures, TL and TR. These systems are put in contact at the initial time t = 0. Such a
physical situation is presented in Fig. 1. The initial energy density reads

ε(x, t = 0) = (d−1)ad

[
T d

L Θ(−x)+T d
R Θ(x)

]
, (2.1)

where ad depends on the number of degrees of freedom in the CFT. After bringing the two systems
into thermal contact, a spatially homogeneous steady state develops near the interface, carrying a
heat flow JE which transfers energy from the hottest to the coldest system. As discussed in Ref. [6],
the steady state configuration in the CFT can be described by the Lorentz boosted stress tensor

〈T µν〉s = adT d (ηµν +duµuν) , (2.2)
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Figure 1: Two isolated systems initially at equilibrium are put in contact at t = 0. A spatially homogeneous
non-equilibrium steady state develops at late times, and it carries an energy current JE = 〈T tx〉s.

where ηµν = diag(−1,1, · · · ,1) and the fluid velocity is uµ =(coshθ ,sinhθ ,0, · · · ,0). An intuitive
picture is that the boost leads to a Doppler shift of the thermal radiation between the left and right-
movers, i.e.

TL = Ts eθ , TR = Ts e−θ , Ts =
√

TLTR , (2.3)

where Ts is the temperature of the steady state. By using the conservation of energy and momentum
and traceless of the stress tensor in the CFT,

∂µ〈T µν〉= 0 , 〈T µ

µ 〉= 0 , (2.4)

it has been obtained solutions in a perfect fluid consisting of “shockwaves” emanating from the
interface [8]. Enforcing Eq. (2.4) across the shocks one gets the following result for the energy
current in the steady state [5, 6]

〈T tx〉s =
1
2

dadT d sinh(2θ) = ad

(
T d

L −T d
R

uL +uR

)
. (2.5)

In the rest of the manuscript we will study the time evolution of this system by using a simple
holographic model. Our goal is to describe, not only the steady state, but all the space-time regime.

3. Energy flow and time evolution of steady states in AdS/CFT

In this section we will present the simplest holographic model to study the system described
above, and find a solution by linearizing the problem. Other out-of-equilibrium stationary configu-
rations in strongly coupled systems can be found in e.g. [9, 10] and references therein.

3.1 Holographic model

Let us consider the Einstein-Hilbert action in (d +1)-dim given by

S =
1

16πG

∫
dd+1x

√
−g{R−2Λ} , (3.1)

where Λ =−d(d−1)/2 is a negative cosmological constant. The equations of motion write

Rµν −
1
2

gµνR+gµνΛ = 0 , µ,ν = 1, · · · ,d +1 . (3.2)

For the moment we will restrict to d = 3 and choose xµ = (t,x,y,z), where z is the holographic
coordinate. The kind of solution we are looking for is a boosted black hole with metric

ĝµν =
1
z2


(
sinh[θ ]2− cosh[θ ]2 f

) 1
2 sinh[2θ ]( f −1) 0 0

1
2 sinh[2θ ]( f −1)

(
cosh[θ ]2− sinh[θ ]2 f

)
0 0

0 0 1 0
0 0 0 1

f

 , (3.3)
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where f = 1−
(

z
zh

)d
. This metric is a solution of the equations of motion (3.2) as long as zh and

θ are constants in space-time. In this case zh = d/(4πT ) where T is the unboosted temperature of
the black hole. However, our goal is to promote these parameters to be space-time dependent, i.e.
zh = zh(t,x) and θ = θ(t,x), and for that one needs to include some extra degrees of freedom.

3.2 Linearization

A convenient way to proceed is by linearizing the problem. The idea is the following: let us
consider that the space-time dependence in zh and θ enters in the form

zh(t,x) = zh(0)+ εzh(1)(t,x)+ · · · , θ(t,x) = θ(0)+ εθ(1)(t,x)+ · · · . (3.4)

This means that we are searching for solutions as an expansion in powers of a formal parame-
ter ε , so that all the space-time dependence is treated as a perturbation around the background zh(0)

and θ(0), which we keep constant and uniform. One can always replace ε → 1 at the end. As men-
tioned above, it is necessary to add extra contributions to the metric to compensate the effects of
zh(1)(t,x) and θ(1)(t,x) in the equations of motion. In particular, we consider a metric of the form

gµν(t,x,y,z) = ĝµν(t,x,y,z)+ ε


δgtt(t,x,z) δgtx(t,x,z) 0 0
δgtx(t,x,z) δgxx(t,x,z) 0 0

0 0 0 0
0 0 0 δgzz(t,x,z)

 , (3.5)

where ĝµν(t,x,y,z) is given by Eq. (3.3) with the space-time dependent parameters of Eq. (3.4).
A solution would be to set δgµν as the value which exactly cancels the order O(ε) in an expansion
of ĝµν . However, this leads to the trivial solution corresponding to a uniform system, valid only to
describe the steady state regime. The non-trivial solution we find can be written as a near boundary
expansion, and the result up to the first non-vanishing order reads

δgtt(t,x,z) =
1

2z4
h(0)

(∂ 2
t zh(1))z

3 +O(z5) = δgzz(t,x,z) , (3.6)

δgtx(t,x,z) =
3

10z4
h(0)

(∂t∂xzh(1))z
3 +O(z5) , (3.7)

δgxx(t,x,z) =
2

5z4
h(0)

(∂ 2
t zh(1))z

3 +O(z5) . (3.8)

Using this metric, the relation between temperature T and horizon zh is 1

T (t,x) =
d

4πzh(0)

(
1− ε

zh(1)(t,x)
zh(0)

+O(ε2)

)
. (3.9)

Finally, the Einstein equations of motion reduce to the following two equations

0 = ∂
2
t zh(1)(t,x)− c2

s ∂
2
x zh(1)(t,x) , (3.10)

0 = ∂tzh(1)(t,x)− c2
s zh(0)∂xθ(1)(t,x) , (3.11)

1This follows from a non-trivial computation by using the killing vector of the metric (3.5). Note that, at least up to
order O(ε), this expression is equivalent to the most familiar form T (t,x) = d

4πzh(t,x)
, where zh(t,x) is given by Eq. (3.4).
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where c2
s = 1/2. To arrive at this simple result we have set θ(0) = 0. 2 We have made this analysis

for other space-time dimensions, and in every case we get Eqs. (3.10)-(3.11) with c2
s = 1/(d−1).

3.3 Solution of the equations of motion

The general solution of the equations of motion, Eqs. (3.10)-(3.11), can be written as

zh(1)(t,x) = F1 (x+ cst)+F2 (x− cst) , (3.12)

θ(1)(t,x) =
1

cszh(0)
[F1 (x+ cst)−F2 (x− cst)] , (3.13)

where F1(v) and F2(v) are arbitrary functions of their arguments. One can obtain explicit values for
these functions after imposing the appropriate boundary conditions. In particular, if one assumes
some initial profile for the temperature, i.e. Tini(x) ≡ T (t = 0,x), then from Eqs. (3.9) and (3.12)
one gets

Tini(v) =
d

4πzh(0)

[
1− ε

zh(0)
(F1(v)+F2(v))

]
. (3.14)

Following the rules of the AdS/CFT correspondence [11], we can compute all the components of
the energy-momentum tensor 〈T µν〉 in the CFT from the dual gravity metric of Sec. 3.2. The other
boundary condition then follows from the requirement that there is no energy flow at t = 0, i.e.
〈T tx(t = 0,x)〉= 0 for x ∈ (−∞,+∞), and this leads to F1(v) = F2(v). Finally one gets

〈T tt(t,x)〉 = (d−1)
8G

1
zd−1

h(0)

[
−(d−1)

2πzh(0)
+Tini(x+ cst)+Tini(x− cst)

]
, (3.15)

〈T tx(t,x)〉 = − 1
cs

1
8G

1
zd−1

h(0)

[Tini(x+ cst)−Tini(x− cst)] , (3.16)

for the energy density and energy flow, respectively. This solution leads to the existence of “shock-
waves” propagating at speed cs, and it fulfills Eq. (2.4). 3 For numerical computations we choose
the following initial profile

Tini(x) =
TR +TL

2
+

TR−TL

2
tanh(αx) , (3.17)

which tends to the stepwise function Tini(x)→ TLΘ(−x)+TRΘ(x) in the limit α→∞. If one makes
the identification zh(0) =

d
2π(TL+TR)

, it is possible to see that corrections of order O(ε) are always

proportional to factors ∝
TR−TL
TR+TL

. This illustrates the fact that the ε-expansion of Sec. 3.2 is equiv-

alent to a small gradient expansion, i.e.
∣∣∣TR−TL

TR+TL

∣∣∣� 1, and ultimately to linearized hydrodynamics.

We find that the steady state temperature is Ts ≡ T (t → +∞,x) = TR+TL
2 +O(ε2), which is none

other than the expansion of Eq. (2.3) in powers of ε with TL = TR · (1+ ε). We display in Figs. 2
and 3 the numerical result with these formulas. The formation of the steady state and the propaga-
tion of the shockwaves is properly described in the regime of small difference of temperatures.

2Note that in a uniform system one expects a vanishing value of the energy flow, and this can only be achieved by
setting θ(0) = 0.

3See Refs. [8, 5] for an alternative derivation of this solution by using hydrodynamic considerations.
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-4 -2 0 2 4

1

1.1

1.2

x

T
in
iH
x
L

TL

TR Figure 2: Initial profile given by Eq. (3.17)
with TL = 1.2, TR = 1 and α = 3.

Figure 3: Energy density and energy current computed with the linearized solution given by Eqs. (3.15) and
(3.16) respectively. It is used the initial profile of Fig. 2. We have considered d = 3 and set G = 1.

4. Conclusions and discussion

We have studied a holographic model for out-of-equilibrium energy flow that allows us to
describe the energy transport in a system consisting of two thermal reservoirs initially isolated.
The computation is performed by finding a boosted black hole solution of the equations of motion,
with space-time dependent contributions. This leads to a description of the formation of a steady
state and the propagation of shockwaves, already anticipated in [8, 5, 6]. Our main assumption has
been a linearization of the theory which turns out to be equivalent to a small gradient expansion.

There remain some open questions. It would be interesting to perform an analysis beyond the
linear response regime, i.e. for 0 < TR/TL < 1. This demands a full numerical solution of the equa-
tions of motion, see e.g. [12]. A recent work which studies the time evolution of asymptotically
AdS black branes in this line is [13]. Another target is the existence of other possible solutions: it
is argued in [5] that other branch of solutions appears in addition to the thermodynamic branch dis-
cussed in this work, although it is still not clear its physical role. Finally, it deserves to be pursued a
study of information flow, i.e. how the information gets exchanged between two systems which are
initially isolated. A convenient quantity for this is the entanglement entropy, defined holograph-
ically as the area of a minimal surface extending from some predefined surface on the boundary
into the bulk, and which is a generalization of the Bekenstein-Hawking entropy formula [14, 15].
Some works of entanglement entropy in time-dependent systems related to the one studied here
are [16, 17]. These and other issues will be addressed in a forthcoming publication [18].
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