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1. Introduction

Rare heavy hadron decays are nowadays a very active area of investigation with discovery
potential. New high-luminosity machines today in operation allow for measurement of rare flavor-
changing processes. Feynman diagrams of some of these processes may, in the loops, contain
new hypothetical heavy particles. One reaction which might be sensitive to new physics is the
B→ K(∗)µ+µ− decay. The process has been measured by [1, 2, 3, 4], where some results also
include information about differential and angular distributions. As of now, the standard model
(SM) is confirmed with some tensions (∼ 3σ ).

However any SM evaluation of the decay contains uncertainty related to the hadronic effects.
The covariant quark model (CQM) is a Lagrangian-based effective field approach to hadronic in-
teractions with limited number of free parameters. It is well suited to described the B→K(∗)µ+µ−

decay and check the agreement between the data and the SM.

2. Covariant quark model (mesons)

The CQM Lagrangian introduces meson-quark interaction as follows

Lint = gM ·M(x) · JM(x), JM(x) =
∫

dx1

∫
dx2 FM(x,x1,x2) · q̄a

f1
(x1)ΓM qa

f2
(x2),

FM(x,x1, . . . ,xn) = δ

(
x−

n

∑
i=1

wixi

)
ΦH

(
∑
i< j

((xi− x j)
2
)
,

wi = mi/
n

∑
j=1

m j, Φ̄H(−k2) = exp
(
k2/Λ

2
M
)
, (2.1)

where the meson field M interacts with a non-local quark current JM. The symbol ΓM corresponds
to an appropriate string of Dirac matrices (depending on the particle spin) and the vertex function
FM is constructed in the way to be Lorentz invariant. It contains one free parameter Λ related to the
size of the meson, the Gaussian shape is assumed for calculational convenience. The weights wi

are taken such as to match the quark-system barycenter with the meson position.
In addition to Λs, the CQM contains as free parameters four constituent quark masses and one

infrared cutoff, so in total N +5 parameters are needed to describe N hadrons. Their values (Table
1) are fixed by fits of the model to available experimental data. So-called compositeness condition
[5, 6] is used to get a correct descriptions of hadrons as bound states of quarks and fix the values of
the couplings gM. It requires Z

1/2
M = 0, where the renormalization constant ZM is interpreted as the

matrix element between the physical state and the corresponding bare state. Making it zero implies
that the physical state does not contain bare state and is therefore properly described as a bound
state.

Parameter mu,d ms mc mb λcuto f f ΛB ΛK Λ∗K
Numerical value [in GeV] 0.241 0.428 1.67 5.05 0.181 1.96 1.02 0.75

Table 1: Parameters of the CQM model.
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3. Computational techniques and infrared confinement.

A general Feynman graph with j external momenta, l loop integrations, m vertices and n quark
propagators can be written as

Π(p1, ..., p j) =
∫
[d4k]`

m

∏
i1=1

Φi1+n
(
−K2

i1+n
) n

∏
i3=1

Si3(k̃i3 + p̃i3), K2
i1+n = ∑

i2

(k̃(i2)i1+n + p̃(i2)i1+n)
2, (3.1)

where k̃i refers to the linear combination of loop momenta ki and p̃i to the linear combination of
the external momenta pi. We use the Schwinger representation of quark propagators

S̃q(k) =
(
m+ k̂

)∫ ∞

0
dα e[−α(m2−k2)] (3.2)

and make use of couple of smart operator identities to simplify the computations. The first one∫
d4k P(k)e2kr =

∫
d4k P

(
1
2

∂

∂ r

)
e2kr = P

(
1
2

∂

∂ r

)∫
d4k e2kr, r = r (αi) , (3.3)

allows for an elegant loop momenta integration, the second one

∞∫
0

dn
α P

(
1
2

∂

∂ r

)
e−

r2
a =

∞∫
0

dn
α e−

r2
a P
(

1
2

∂

∂ r
− r

a

)
, a = a(ΛH ,αi) , (3.4)

simplifies the calculations following the trace evaluation: the derivative operator acts on unity
instead of a more complex exponential function.

The final ingredient, the infrared cutoff, is introduced in relation with the integration over
the Schwinger parameters. By inserting a unity in the form of a delta function, the multidimen-
sional improper integral can by transformed to an integral over a simplex convoluted with only one
improper integral. The cutoff is then applied on the upper integration limit

Π =

∞∫
0

dn
α F (α1, · · · ,αn) =

∞→ 1
λ2∫

0

dt tn−1
1∫

0

dn
α δ

(
1−

n

∑
i=1

αi

)
F(tα1, . . . , tαn), (3.5)

where F stands for the whole structure of a given diagram. Consequently, Π becomes a smooth
function with thresholds in quark loop diagrams and corresponding branch points removed. Uni-
versal value for all processes λ = 0.181 GeV is established and the integration is done numerically.

4. B→ K(∗)µ+µ− decay

The hadronic effects for the process are parametrized by a set of form factors, depending on
the spin of the final state particle.

• Three form factors in the case of a scalar particle (K):〈
P′[q̄3,q2]

(p2) |q̄2Oµq1|P′[q̄3,q1]
(p1)

〉
= F+

(
q2)Pµ +F−

(
q2)qµ , (4.1)〈

P′[q̄3,q2]
(p2) |q̄2 (σ

µνqν)q1|P′[q̄3,q1]
(p1)

〉
=

i
m1 +m2

(
q2Pµ −q ·Pqµ

)
FT
(
q2) . (4.2)
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(a) (b)

(c) (d)

Figure 1: B→ K(∗)µ+µ−: Feynman diagram (a), B→ K form factors (b) and B→ K∗ form factors (c-d).

• Seven form factors in the case of a vector particle (K∗):

〈
V[q̄3,q2] (p2,ε2) |q̄2Oµq1|P[q̄3,q1] (p1)

〉
=

ε
†
ν

m1 +m2

[
−gµνP ·qA0

(
q2)+PµPνA+

(
q2)

+qµPνA−
(
q2)+ iεµναβ PαqβV

(
q2)], (4.3)

〈
V[q̄3,q2] (p2,ε2) |q̄2

[
σ

µνqν

(
1+ γ

5)]q1|P[q̄3,q1] (p1)
〉
= ε

†
ν

[
−
(

gµν −
qµqν

q2

)
P ·q a0

(
q2)

+

(
PµPν −qµPν p ·q

q2

)
a+
(
q2)+ iεµναβ Pαqβ g

(
q2)]. (4.4)

The quark flavor transition and muon production is described by a four-fermion vertex using effec-
tive theory with local operators and Wilson coefficients. Their values are taken from the literature.
The diagram of the process and the CQM form factors are shown on Fig 1.

5. Observables and results

We consider the cascade decay B→ K(∗)(→ Kπ)µ+µ− in order to fully explore the available
experimental information (for kinematics see Fig 2(a)). We use the helicity approach to derive
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(a) (b)

Figure 2: Kinematics of the B→ K(∗)(→ Kπ)µ+µ− decay (a) and the CQM prediction for AFB (b).

the angular distributions and formulas for observables. They are expressed in terms of so-called
helicity amplitudes (details in Ref. [7]).

The observables are chosen such as to be sensitive to possible new physic, but not sensitive to
hadronic effects. In addition, they need to be well experimentally accessible. In this text we present
our results on the branching fractions (Tab. 2), the lepton forward-backward asymmetry AFB and
the K∗ longitudinal polarization FL. The AFB and FL are coefficient q2-dependent functions if front
of the definite angular terms

1
Γ

d2Γ

d cosθl dq2 =
3
4

FL(1− cos2
θl)+

3
8
(1−FL)(1+ cos2

θl)+AFBcosθl. (5.1)

The predicted behavior of AFB in the whole allowed kinematic range is shown in Fig. 2(b). In
experiments, integrated forms of these observables are used (numerator and denominator integrated
separately) and are measured in various q2 ranges. We chose the biggest one 1GeV2 < q2 < 6GeV2

and present the comparison in Table 3 (K∗ particle only).

6. Discussion and outlook

The CQM describes the measured data fairly well, maybe with the exception of the branching
fraction for the B→ Kµ+µ− reaction. In all cases the predictions have the correct order of magni-

Process Branching fraction Ref.
CQM Data

B→ K∗µ+µ− 1.27×10−6 (1.05±0.10)×10−6 [8]
B→ Kµ+µ− 7.18×10−7 (3.4±0.5)×10−7 [8]
B→ K∗νν̄ 1.36×10−5 < 5.5×10−5 [8]
B→ Kνν̄ 0.60×10−5 < 4.9×10−5 [8]
B→ K∗γ 3.74×10−5 (4.21±0.18)×10−5 [9]

Table 2: Branching fractions for B→ K(∗)µ+µ− and similar processes.
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CQM [1] [2] [3]
< AFB > 0.022 0.26+0.27

−0.30±0.07 −0.06+0.13
−0.14±0.04 0.29+0.20

−0.23±0.07
< FL > 0.75 0.67±0.23±0.05 0.55±0.10±0.03 0.69+0.19

−0.21±0.08

Table 3: Integrated observables < AFB > and < FL > for the B→ K∗µ+µ− decay.

tude and for what concerns angular observables in the K∗ case, the experimental uncertainties are
still important and situation is not conclusive.

A more detailed analysis concerning B→ K(∗)µ+µ− in the framework of the CQM is about
to be published. It includes a larger set of observables (also so-called "clean" observables Pi) and
provides results in various bins.

Since the CQM proves to be a suitable tool for describing heavy hadron decays, we intend to
apply it to other recently measured processes, e.g. Bs→Φµ+µ− or Bs→ KSK∗(892)0.
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