
P
o
S
(
E
P
S
-
H
E
P
2
0
1
5
)
4
7
9

From dimensional regularization to NLO
computations in four dimensions

Germán F. R. Sborlini∗a,b, Roger Hernández-Pintoa and Germán Rodrigoa

aInstituto de Física Corpuscular, Universitat de València – Consejo Superior de Investigaciones
Científicas, Parc Científic, E-46980 Paterna, Valencia, Spain.
bDepartamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires, (1428) Pabellón 1

Ciudad Universitaria, Capital Federal, Argentina.

E-mail: german.sborlini@ific.uv.es,
rogerjose.hernandez@ific.uv.es, german.rodrigo@csic.es

Loop-tree duality (LTD) allows to express virtual contributions in terms of phase-space integrals,
thus leading to a direct mapping with real radiation terms. We review the basis of the method
and describe its application to regularize Feynman integrals. Performing an integrand-level com-
bination of real and virtual terms, we show how to recover physical results by simply taking the
four-dimensional limit of d-dimensional expressions. Moreover, this method provides a natural
physical interpretation of infrared singularities, their origin and the way that they cancel in the
complete computation.
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From DREG to NLO computations in 4D Germán F. R. Sborlini

1. Introduction and motivation

Obtaining physical results from quantum field theories (QFT) involves dealing with ill-defined
expressions in intermediate steps of the calculation and a regularization method is required to
explicitly show these problems. The customary method is dimensional regularization (DREG)
[1, 2, 3, 4], which consists in performing an analytical extension from d = 4 to d = 4−2ε space-
time dimensions: singularities appear as poles in ε = 0. Those poles originated in the ultraviolet
(UV) region can be cancelled by the application of a proper renormalization scheme [5]. On the
other hand, when computing infrared-safe observables, KLN theorem [6] guarantees the cancella-
tion of infrared (IR) divergences after combining real and virtual corrections. This is related with
the fact that the divergent structure of loop amplitudes is deeply connected with the physical di-
vergences developed by real radiation processes integrated in singular regions of the phase-space
(PS).

This knowledge has been exploited by many computational methods, specially those relying
in subtraction techniques [7, 8, 9, 10, 11, 12, 13, 14, 15]. The standard approach consists in adding
to the real radiation contribution suitable counter-terms that mimic the singular behavior in the IR
limits, cancelling the corresponding soft and collinear divergences. The same quantity, integrated
over the PS of the extra radiation, is subtracted back from the virtual corrections. For instance, at
next-to-leading order (NLO) this reads

σ
NLO =

∫
m

[
dσ

1−loop−
∫

1
dA
]
+
∫

m+1

[
dσ

real +dA
]
, (1.1)

where dA is the local form of the counter-term in the m+ 1-particle PS. This formula is natu-
rally extended to higher-orders by adding all the possible combination of loop and extra-radiation
contributions. Notice that a key point of the procedure is the possibility to perform an analytical
integration of the counter-term dA, since we need to combine it with virtual terms which involve
less particles in the final state. However, increasing the number of legs and loops leads to cumber-
some counter-terms which reduces the efficiency of this technique. Moreover, intermediate steps
must be carried out in d-dimensions to handle IR divergences properly, because ε-poles are explic-
itly present in dσ1−loop (originated in loop integration) whilst their real counter-part appear after
integrating dσ real (free of ε-poles) over the m+1 PS.

The purpose of this presentation is to explain an alternative approach based in the loop-tree
duality (LTD). As stated in Ref. [16], loop integrals or scattering amplitudes in relativist, local and
unitary QFT are related with PS integrals of tree-level objects with modified propagators, which
are called dual propagators. For the sake of simplicity, we restrict the discussion to one-loop level,
although these ideas are naturally extended to higher-loops [16, 17, 18, 19]. So, given an N-leg
scalar one-loop integral its dual representation is obtained as the sum of N dual integrals associated
with each possible one-cut, i.e.

L(1)(p1, . . . , pN) = − ∑
i∈α1

∫
`

δ̃ (qi) ∏
j∈α1, j 6=i

GD(qi;q j) ,

(1.2)

where GD(qi;q j) = (q2
j −m2

j − i0η · k ji)
−1 are dual propagators, with i, j ∈ α1 = {1,2, . . .N}. The

momenta of the internal lines are denoted qi,µ =(qi,0,qi), where qi,0 is the energy and qi are the spa-
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cial components. They are defined as qi = `+ ki with ` the loop momentum and ki = p1 + . . .+ pi.
The four-momenta of the external legs are pi, which are taken as outgoing, with kN = 0 by mo-
mentum conservation. Since Cauchy’s residue theorem lays behind the derivation of this formula,
counter-clockwise orientation must be used to describe internal line momenta flow. Besides that,
η is an arbitrary space-like or light-like vector with positive energy component; it is crucial for the
definition of the dual prescription which takes care of the multiple-cut contributions involved in the
Feynman’s tree theorem (FTT) [20, 21] and allows to exactly recover the discontinuity structure of
virtual amplitudes.

From Eq. (1.2), notice that the integration measure becomes

∫
`

δ̃ (qi)•=−ıµ4−d
∫ dd`

(2π)d δ̃ (qi)• , δ̃ (qi)≡ 2π ıθ(qi,0)δ (q2
i −m2

i ) , (1.3)

where the delta distribution sets internal lines on-shell and forces them to have positive energy
(qi,0 > 0). So, LTD converts the usual d-dimensional loop measure into a (d− 1)-dimensional
integration over the forward on-shell hyperboloid associated with the equation GF(qi)

−1 = (q2
i −

m2
i + ı0) = 0, which resembles a typical real-radiation PS measure without imposing momentum

conservation. It is worth appreciating that on-shell hyperboloids degenerate to light-cones (LC) for
massless propagators, and it is strongly related with the presence of IR singularities.

In the following we explore the consequences of the application of LTD to some simple pro-
cesses. A more detailed version of this presentation can be found in Ref. [5]. In Sec. 2, we
analyse the origin of IR divergences in a scalar triangle Feynman integral, and we prove that they
are contained in a compact region of the integration domain. Then, in Sec. 3, the procedure to com-
bine real and dual contributions is explained, focusing in the relations among different kinematical
variables. Finally, the conclusions and outlook are presented in Sec. 4.

2. IR singularities through LTD

Let’s start by considering a scalar triangle Feynman integral in the time-like (TL) region.
The process is represented by the kinematical configuration p3→ p1 + p2, with p2

1 = 0 = p2
2 and

p2
3 = s12 > 0. If ` denotes the loop momentum, then q1 = `+ p1, q2 = `+ p12 and q3 = ` describe

the momenta at the internal lines. The application of LTD leads to

L(1)(p1, p2,−p3) =
3

∑
i=1

Ii =
cΓ

s12 ε2

(
−s12− ı0

µ2

)−ε

, (2.1)

with

I1 =
1

s12

∫
∞

0
d[ξ1,0]

∫ 1

0
d[v1]ξ

−1
1,0 (v1(1− v1))

−1 , (2.2)

I2 =
1

s12

∫
∞

0
d[ξ2,0]

∫ 1

0
d[v2]

(1− v2)
−1

1−ξ2,0 + ı0
, (2.3)

I3 = − 1
s12

∫
∞

0
d[ξ3,0]

∫ 1

0
[v3]

v−1
3

1+ξ3,0
, (2.4)
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where we defined the d-dimensional integration measures as

d[ξi,0] =
µ2ε (4π)ε−2

Γ(1− ε)
s−ε

12 ξ
−2ε

i,0 dξi,0 , d[vi] = (vi(1− vi))
−ε dvi . (2.5)

Notice that Eqs. (2.2)-(2.4) are valid in the center-of-mass frame, with p1 (p2) along the positive
(negative) z-axis, such that 2qi · p1/s12 = ξi,0 vi and 2qi · p2/s12 = ξi,0 (1−vi). The dual prescription
plays a crucial role in I2, since the denominator vanishes inside the integration domain. This is
related with the presence of a threshold singularity; when ξ2,0 = 1, then two internal lines become
simultaneously on-shell and the diagram can be split into two physical tree-level contributions [24].

-k1

-k2

-k3

co
llin

ea
r p 1

collinear p
2soft

lz

l 0

Figure 1: Location of threshold and IR singularities in the (`0, `z) space (left); forward-forward singularities
cancel among dual contributions whilst forward-backward intersections lead to IR and threshold singulari-
ties. Three-dimensional representation of the light-cones and their intersections (right).

On the other hand, the dual representation allows to identify the origin of the singularities
present in the loop integrand. In Fig. 1, we show the light-cones associated with the solutions
of GF(qi)

−1 = 0 in the loop-momentum space; the integration domain of the dual integrals is re-
stricted to the forward LC (solid lines). As explained in Ref. [19], intersection among LCs give
rise to singularities in the dual integrands that can be related with those present in the original loop
integrands. In this example, the punctual intersection among the three LC produces the soft singu-
larity, that originates a double ε-pole in the IR region of Ii. Collinear singularities are described by
forward-backward intersections. If we interpret the cut-line as a physical particle with momentum
qi, then the intersection of the forward LC for I1 and the backward LC for I3 corresponds to the
configuration q1 ‖ p1. This is associated with the presence of a factor v−1

i in I1 and I3. An analo-
gous interpretation can be used to describe the collinear singularity when q1 ‖ p2, which involves
contributions coming from I1 and I2. The integrable threshold-singularity is associated with the
intersection of the forward LC for I2 and the backward LC for I3. In that case, q2

2 = 0 = q2
3 and

all the on-shell lines have positive energy. Finally, forward-forward intersections also produces
divergences, but they cancel when combining dual integrands.

This graphical analysis motivates the definition of new integrals which allows to isolate IR
singularities in a compact region of the loop momentum space. Introducing a technical cut w > 0
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to properly treat the threshold region [24], we define

IIR = I1(ξ1,0 ≤ w)+ I1(w≤ ξ1,0 ≤ 1;v1 ≤ 1/2)+ I2(ξ2,0 ≤ 1+w;1/2≤ v2) , (2.6)

and combine the remaining contributions inside the so-called forward and backward integrals, i.e.

I(b) = I1(w≤ ξ1,0;1/2≤ v1)+ I2(1+w≤ ξ2,0;1/2≤ v2)+ I3(1/2≤ v3) , (2.7)

I(f) = I1(1≤ ξ1,0;v1 ≤ 1/2)+ I2(v2 ≤ 1/2)+ I3(v2 ≤ 1/2) , (2.8)

such that L(1)(p1, p2,−p3) = IIR + I(b) + I(f). The IR-divergent structure of IIR agrees with that
of the scalar triangle, given in Eq. (2.1). On the other hand, I(f) and I(b) are finite in the limit
ε → 0, and can be computed in four-dimensions. For this purpose, it is requested to unify the
coordinate system (expressing (ξ1,0,v1) in terms of (ξ3,0,v3)) in order to achieve an exact matching
of singularities at integrand level. After this change of variables, we can take the limit ε → 0 at
integrand level and recover the expected result.

3. Real+virtual mapping

At this point, we know that IR singularities associated with the scalar triangle are isolated
in a compact region of the integration domain. So, let’s consider a massless scalar QFT and the
corresponding three-point one-loop amplitude. We assume that it is proportional to the triangle,
i.e. |M (1)(p1, p2; p3)〉 = −ıg3 L(1)(p1, p2,−p3), where g is an arbitrary coupling. According to
the KLN theorem, the NLO correction to the total-inclusive cross section is IR-safe. This implies
that we can cancel all IR-singularities present in the scalar triangle by adding the real contribution.

The key feature of the LTD approach is that real and virtual contributions can be combined
at integrand level, in spite of being described by different kinematics (1→ 2 for LO and one-
loop terms, whilst real radiation is associated to 1→ 3 processes). So, we introduce a momenta
mapping to relate p3→ p1+ p2 and loop-momentum ` (virtual kinematics) with p3→ p′1+ p′2+ p′r
(real kinematics). To achieve a fully local cancellation of IR singularities, we split the real-radiation
phase-space in two disjoint regions, according to

PS1→3 = {s′1r < s′2r}
⋃
{s′2r < s′1r}= R1

⋃
R2, (3.1)

which are characterized by containing only one collinear configuration (1 ‖ r in R1 and 2 ‖ r in
R2). Using the dimension-less variables y′ir = s′ir/s12 for the real process and (ξi,0,vi) for the dual
part, we can use the mapping

y′1r =
v1 ξ1,0

1− (1− v1)ξ1,0
, y′2r =

(1− v1)(1−ξ1,0)ξ1,0

1− (1− v1)ξ1,0
, y′12 = 1−ξ1,0 , (3.2)

in R1; a completely analogous map is defined in R2
1. Then, we introduce the real cross-sections

σ̃
(1)
R,i = 2Re

∫
dΦ1→3 〈M (0)

2r |M
(0)
1r 〉θ(y

′
jr− y′ir) , (3.3)

1A detailed discussion about these formulae can be found in Refs. [5, 22, 23]. The formal derivation and its
extension to multi-leg processes will be presented in Ref. [24].
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that fulfil σ̃1,R + σ̃2,R = σ real and can be expressed in terms of (ξ1,0,v1) and (ξ2,0,v2), respectively.
On the other hand, direct application of LTD to the virtual amplitude leads to dual cross-sections,
given by

σ̃
(1)
V,i = 2Re

∫
dΦ1→2 〈M (0)|M (1)

i 〉θ(y
′
jr− y′ir) , (3.4)

whilst the remainders are used to define σ̃ ( f ) and σ̃ (b), which can be implemented in four-dimensions
as described in Sec. 2. Finally, we combine real and dual cross-sections to obtain

σ̃
(1)
1 = σ̃

(1)
V,1 + σ̃

(1)
R,1 = 2g2

σ
(0)
∫

d[ξ1,0]d[v1]θ(1−2v1)θ

(
1−2v1

1− v1
−ξ1,0

)
× ξ

−1
1,0 (v1(1− v1))

−1

[(
1−ξ1,0

1− (1− v1)ξ1,0

)−2ε

−1

]
≡ 0+O(ε) , (3.5)

σ̃
(1)
2 = σ̃

(1)
V,2 + σ̃

(1)
R,2 = 2g2

σ
(0)
∫

dξ2,0 dv2 θ

(
1−
√

1− v2

v2
−ξ2,0

)
× (1− v2)

−1
[

1
1− v2ξ2,0

− 1
1−ξ2,0 + ı0

− ıπδ (1−ξ2,0)

]
+O(ε) , (3.6)

where we add the Cutkowsky component to get rid of the imaginary part. It is crucial to appreciate
that σ1 are represented by integrable functions in four-dimensions; i.e. we can take the limit ε→ 0
at integrand level and obtain the finite correction to the total cross section.

4. Conclusions and outlook

In this presentation we explored the consequences of the LTD, focusing in the treatment of
physical singularities. In particular, the introduction of dual integrals leads to a natural interpre-
tation of the IR structure of the scalar triangle, which allowed us to prove that they are originated
inside a compact region RIR of the integration domain. The importance of this fact can be fully
appreciated when we combine real and virtual contributions.

By the introduction of a proper real-radiation PS separation and defining suitable momentum
mappings in each region, we expressed real and virtual contributions using the same integration
variables. We rewrited σ real using σ̃

(1)
R,i , which naturally involve integrands with compact support.

Then, we properly decomposed RIR to define dual cross-sections ∑ σ̃
(1)
V,i that contain all the IR-

poles associated with the virtual contribution. Since the result must be finite according to the KLN
theorem and the mapping guarantees the same behaviour of real and dual integrands in the IR-
limits, the combined cross-sections can be computed by taking the limit ε → 0 at integrand level.
This is a crucial advantage of this method compared with the traditional subtraction approach,
because we avoid the introduction of IR counter-terms.

The possibility of performing purely four-dimensional implementations could lead to major
improvements in the computation of higher-order corrections in QFT, besides allowing a better
understanding of the mathematical structures behind scattering amplitudes.
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