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Correct mass and width of f0(500) meson from pion
scalar form factor
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We propose a theoretical approach based on a model independent pion scalar form factor analysis
and GKPY2 Roy-like equations [1] which allows to determine the parameters of the f0(500)
meson, i.e. its mass and decay width to be m f0(500) = (472±10) MeV and Γ f0(500) = (524±22)
MeV.
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1. Introduction

The pion scalar form factor (FF) is defined via a parametrization of the pion matrix element
containing a scalar current

< π
i(p2)|m̂(ūu+ d̄d)|π j(p1)>= δ

i j
Γπ(t), (1.1)

t = (p2− p1)
2, m̂ = (mu +md)/2. (1.2)

From theoretical considerations several properties of this form factor can be established:

• Γπ(t) is an analytic function for all tεR besides the cut on the positive real axis from t = 4m2
π

to infinity.

• It obeys the reality condition
Γπ(t)∗ = Γπ(t∗). (1.3)

• The asymptotic behavior is
Γπ(t)|t|→∞ ∼ 1/t. (1.4)

• In the elastic region 4m2
π ≤ t ≤ 16m2

π the FF fulfills elastic unitarity condition

Im{Γπ(t)}= M0
0 Γ
∗
π(t), (1.5)

where M0
0 denotes I = J = 0 partial wave ππ-scattering amplitude.

We adopt the normalization1 Γπ(0) = 1.

2. Our method

We propose a fully solvable mathematical scheme developed for finding out the pion scalar
FF in an explicit form. The dispersion relation with one subtraction

Γπ(t) = 1+
t
π

∫
∞

4m2
π

Im{Γπ(t ′)}
t ′(t ′− t)

dt ′ (2.1)

is combined with the elastic unitarity condition 1.5 to give the Muskhelishvili-Omnès integral equa-
tion [3, 4]. The latter has a known solution in the form (so-called FF phase representation)

Γπ(t) = Pn(t)exp
[

t
π

∫
∞

4m2
π

δΓ(t ′)
t ′(t ′− t)

dt ′
]
, (2.2)

where Pn(t) is an arbitrary polynomial (normalized at t = 0 GeV2) and δΓ is the FF phase.
Next the δΓ phase is related with the S-wave isoscalar ππ-scattering phase shift in the

4m2
π ≤ t ≤ 16m2

π region. From the parametrized form of the partial wave scattering amplitude
M0

0 = eiδ 0
0 sinδ 0

0 and the elastic unitarity condition one obtains an expression for the imaginary part
of Γπ(t), Im{Γπ} = eiδ 0

0 Γ∗π sinδ 0
0 (t), which needs to be identical to Im{Γπ(t)} ≡ |Γπ(t)|sinδΓ(t)

for every t. A comparison implies
δ

0
0 ≡ δΓ. (2.3)
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GKPY−−−→

(a) (b)

Figure 1: Raw experimental data on δ 0
0 (a) and the same data after the GKPY procedure (b).

The existing data on δ 0
0 are very scattered. However, with help of the rigorous theoretical approach

by Kaminski et al. [1] the data can be reprocessed with errors dramatically reduced, Fig 1. To
find an appropriate description of δ 0

0 , analytic properties of Γπ(t) are exploited. It can be shown
that Γπ(t) has a square-root type branch point at t = 4m2

π , which can be removed by applying the
conformal mapping into the variable q

q =

√
t−4

4
(mπ = 1). (2.4)

Neglecting higher branch points, Γπ(q) has only poles and zeros. Taking in addition into account
the reality condition 1.3 a general parametrization of tanδΓ can be worked out, leading to

δΓ(q)≡ δ
0
0 (q) = arctan

A1q+A3q3 +A5q5 +A7q7 + . . .

1+A2q2 +A4q4 +A6q6 + . . .
, (2.5)

where Ai are real numbers (A1 being the S-wave isoscalar ππ scattering length a0
0). Next a fit

to the (reprocessed) data is performed (Fig 1(b)) where the number of parameters is chosen such
as to minimize the χ2/nd f . The minimum is reached with five coefficient having the following
numerical values

A1 = 0.23456±0.00778,

A3 = 0.11595±0.00296,

A5 =−.01180±0.00031,

A2 =−.10376±0.00373,

A4 =−.00288±0.00046. (2.6)

1The ChPT predicts the norm to be 0.99±0.02m2
π [2].
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Figure 2: Poles (×) and branch points (•) of the integrands of Eqs. 2.8 with contours of integrations in the
upper and the lower half q-planes, respectively.

The identity arctan(z) = i[ln(1− iz)− ln(1+ iz)]/2 allows to insert the phase in the logarithmic
form into the FF expression 2.2, obtaining

Γπ(t) = Pn(t)exp

q2 +1
2πi

∫
∞

−∞

q′ ln (1+A2q′2+A4q′4)+i(A1q′+A3q′3+A5q′5)
(1+A2q′2+A4q′4)−i(A1q′+A3q′3+A5q′5)

(q′2 +1)(q′2−q2)
dq′

 . (2.7)

Now theory of residues is used (Fig. 2). The integral (I) in 2.7 can be split and evaluated separately
for the upper and lower half-plane I = I1 + I2 (b≡−iq)

I1 =
∫

∞

−∞

q′ ln (q′−q2)(q′−q3)(q′−q4)(q′−q5)
q′−q∗1

(q′+ i)(q′− i)(q′+ ib)(q′− ib)
dq′, I2 =

∫
∞

−∞

q′ ln q′−q1
(q′−q∗2)(q

′−q∗3)(q
′−q∗4)(q

′−q∗5)

(q′+ i)(q′− i)(q′+ ib)(q′− ib)
dq′,

(2.8)

where the integration over the (infinite) half-circles is vanishing since the integrands decrease
rapidly enough for |q| → ∞. The computation of residua allows for evaluation of the integrals
I1,2 = 2πi∑

2
n=1 Resn, finally giving

I =
2πi

q2 +1
ln
[

q−q1

(q+q2)(q+q3)(q+q4)(q+q5)

(i+q2)(i+q3)(i+q4)(i+q5)

i−q1

]
. (2.9)

Substituting 2.9 into 2.7 leads to an explicit expression for the pion scalar form factor. We
identify the pole q =−q3 on the second Riemann sheet in the t-variable as the f0(500) resonance,
thus determining its mass and width to be

m f0(500) = (472±10)MeV, (2.10)

Γ f0(500) = (524±22)MeV. (2.11)

These results are in agreement with those obtained by [5, 6]. The predicted behavior of the scalar
pion form factor on the interval −3GeV2 < t < 3GeV2 is shown in Fig. 3.
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Figure 3: Behavior of the pion scalar form factor in the region −3GeV2 < t < 3GeV2.

3. Summary and conclusion

We have demonstrated that analytic properties of Γπ(t) together with the GKPY procedure
allow for a prediction of the Γπ(t) behavior and an unambiguous determination of the f0(500)
resonance parameters with small model dependence. Our numbers confirm some of the previously
published determinations.
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