Correct mass and width of $f_{0}(500)$ meson from pion scalar form factor

S. Dubnička*a, A. Z. Dubničkováb ${ }^{b}$, R. Kaminski ${ }^{c}$ and A. Liptaj ${ }^{a}$
${ }^{a}$ Institute of Physics, Slovak Academy of Sciences
Bratislava, Slovakia
${ }^{b}$ Faculty of Mathematics, Physics and Informatics, Comenius University
Bratislava, Slovakia
${ }^{c}$ Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences
Krakow, Poland
E-mail: Stanislav.Dubnicka@savba.sk

We propose a theoretical approach based on a model independent pion scalar form factor analysis and GKPY2 Roy-like equations [1] which allows to determine the parameters of the $f_{0}(500)$ meson, i.e. its mass and decay width to be $m_{f_{0}(500)}=(472 \pm 10) \mathrm{MeV}$ and $\Gamma_{f_{0}(500)}=(524 \pm 22)$ MeV.

[^0]
1. Introduction

The pion scalar form factor $(F F)$ is defined via a parametrization of the pion matrix element containing a scalar current

$$
\begin{gather*}
<\pi^{i}\left(p_{2}\right)|\hat{m}(\bar{u} u+\bar{d} d)| \pi^{j}\left(p_{1}\right)>=\delta^{i j} \Gamma_{\pi}(t) \tag{1.1}\\
t=\left(p_{2}-p_{1}\right)^{2}, \quad \hat{m}=\left(m_{u}+m_{d}\right) / 2 \tag{1.2}
\end{gather*}
$$

From theoretical considerations several properties of this form factor can be established:

- $\Gamma_{\pi}(t)$ is an analytic function for all $t \varepsilon \mathbb{R}$ besides the cut on the positive real axis from $t=4 m_{\pi}^{2}$ to infinity.
- It obeys the reality condition

$$
\begin{equation*}
\Gamma_{\pi}(t)^{*}=\Gamma_{\pi}\left(t^{*}\right) \tag{1.3}
\end{equation*}
$$

- The asymptotic behavior is

$$
\begin{equation*}
\Gamma_{\pi}(t)_{|t| \rightarrow \infty} \sim 1 / t \tag{1.4}
\end{equation*}
$$

- In the elastic region $4 m_{\pi}^{2} \leq t \leq 16 m_{\pi}^{2}$ the $F F$ fulfills elastic unitarity condition

$$
\begin{equation*}
\operatorname{Im}\left\{\Gamma_{\pi}(t)\right\}=M_{0}^{0} \Gamma_{\pi}^{*}(t) \tag{1.5}
\end{equation*}
$$

where M_{0}^{0} denotes $I=J=0$ partial wave $\pi \pi$-scattering amplitude.
We adopt the normalization ${ }^{1} \Gamma_{\pi}(0)=1$.

2. Our method

We propose a fully solvable mathematical scheme developed for finding out the pion scalar $F F$ in an explicit form. The dispersion relation with one subtraction

$$
\begin{equation*}
\Gamma_{\pi}(t)=1+\frac{t}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{\operatorname{Im}\left\{\Gamma_{\pi}\left(t^{\prime}\right)\right\}}{t^{\prime}\left(t^{\prime}-t\right)} d t^{\prime} \tag{2.1}
\end{equation*}
$$

is combined with the elastic unitarity condition 1.5 to give the Muskhelishvili-Omnès integral equation [3, 4]. The latter has a known solution in the form (so-called FF phase representation)

$$
\begin{equation*}
\Gamma_{\pi}(t)=P_{n}(t) \exp \left[\frac{t}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{\delta_{\Gamma}\left(t^{\prime}\right)}{t^{\prime}\left(t^{\prime}-t\right)} d t^{\prime}\right] \tag{2.2}
\end{equation*}
$$

where $P_{n}(t)$ is an arbitrary polynomial (normalized at $t=0 \mathrm{GeV}^{2}$) and δ_{Γ} is the $F F$ phase.
Next the δ_{Γ} phase is related with the S-wave isoscalar $\pi \pi$-scattering phase shift in the $4 m_{\pi}^{2} \leq t \leq 16 m_{\pi}^{2}$ region. From the parametrized form of the partial wave scattering amplitude $M_{0}^{0}=e^{i \delta_{0}^{0}} \sin \delta_{0}^{0}$ and the elastic unitarity condition one obtains an expression for the imaginary part of $\Gamma_{\pi}(t), \operatorname{Im}\left\{\Gamma_{\pi}\right\}=e^{i \delta_{0}^{0}} \Gamma_{\pi}^{*} \sin \delta_{0}^{0}(t)$, which needs to be identical to $\operatorname{Im}\left\{\Gamma_{\pi}(t)\right\} \equiv\left|\Gamma_{\pi}(t)\right| \sin \delta_{\Gamma}(t)$ for every t. A comparison implies

$$
\begin{equation*}
\delta_{0}^{0} \equiv \delta_{\Gamma} \tag{2.3}
\end{equation*}
$$

Figure 1: Raw experimental data on δ_{0}^{0} (a) and the same data after the GKPY procedure (b).

The existing data on δ_{0}^{0} are very scattered. However, with help of the rigorous theoretical approach by Kaminski et al. [1] the data can be reprocessed with errors dramatically reduced, Fig 1. To find an appropriate description of δ_{0}^{0}, analytic properties of $\Gamma_{\pi}(t)$ are exploited. It can be shown that $\Gamma_{\pi}(t)$ has a square-root type branch point at $t=4 m_{\pi}^{2}$, which can be removed by applying the conformal mapping into the variable q

$$
\begin{equation*}
q=\sqrt{\frac{t-4}{4}} \quad\left(m_{\pi}=1\right) \tag{2.4}
\end{equation*}
$$

Neglecting higher branch points, $\Gamma_{\pi}(q)$ has only poles and zeros. Taking in addition into account the reality condition 1.3 a general parametrization of $\tan \delta_{\Gamma}$ can be worked out, leading to

$$
\begin{equation*}
\delta_{\Gamma}(q) \equiv \delta_{0}^{0}(q)=\arctan \frac{A_{1} q+A_{3} q^{3}+A_{5} q^{5}+A_{7} q^{7}+\ldots}{1+A_{2} q^{2}+A_{4} q^{4}+A_{6} q^{6}+\ldots} \tag{2.5}
\end{equation*}
$$

where A_{i} are real numbers (A_{1} being the S-wave isoscalar $\pi \pi$ scattering length a_{0}^{0}). Next a fit to the (reprocessed) data is performed (Fig $1(\mathrm{~b})$) where the number of parameters is chosen such as to minimize the $\chi^{2} / n d f$. The minimum is reached with five coefficient having the following numerical values

$$
\begin{align*}
& A_{1}=0.23456 \pm 0.00778 \\
& A_{3}=0.11595 \pm 0.00296 \\
& A_{5}=-.01180 \pm 0.00031 \\
& A_{2}=-.10376 \pm 0.00373 \\
& A_{4}=-.00288 \pm 0.00046 \tag{2.6}
\end{align*}
$$

[^1]

Figure 2: Poles (\times) and branch points (\bullet) of the integrands of Eqs. 2.8 with contours of integrations in the upper and the lower half q-planes, respectively.

The identity $\arctan (z)=i[\ln (1-i z)-\ln (1+i z)] / 2$ allows to insert the phase in the logarithmic form into the $F F$ expression 2.2, obtaining

$$
\begin{equation*}
\Gamma_{\pi}(t)=P_{n}(t) \exp \left[\frac{q^{2}+1}{2 \pi i} \int_{-\infty}^{\infty} \frac{q^{\prime} \ln \frac{\left(1+A_{2} q^{\prime 2}+A_{A} q^{4}\right)+i\left(A_{1} q^{\prime}+A_{3} q^{\prime 3}+A_{5} q^{\prime 5}\right)}{\left(1+A_{2} q^{\prime}+A_{4} q^{4}\right)-i\left(A_{1} q^{\prime}+A_{3} q^{3}+A_{q} q^{\prime}\right)}}{\left(q^{\prime 2}+1\right)\left(q^{\prime 2}-q^{2}\right)} d q^{\prime}\right] \tag{2.7}
\end{equation*}
$$

Now theory of residues is used (Fig. 2). The integral (I) in 2.7 can be split and evaluated separately for the upper and lower half-plane $I=I_{1}+I_{2}(b \equiv-i q)$

$$
\begin{equation*}
I_{1}=\int_{-\infty}^{\infty} \frac{q^{\prime} \ln \frac{\left(q^{\prime}-q_{2}\right)\left(q^{\prime}-q_{3}\right)\left(q^{\prime}-q_{4}\right)\left(q^{\prime}-q_{5}\right)}{q^{\prime}-q_{1}^{1}}}{\left(q^{\prime}+i\right)\left(q^{\prime}-i\right)\left(q^{\prime}+i b\right)\left(q^{\prime}-i b\right)} d q^{\prime}, \quad I_{2}=\int_{-\infty}^{\infty} \frac{q^{\prime} \ln \frac{q^{\prime}-q_{1}}{\left(q^{\prime}-q_{2}^{*}\right)\left(q^{\prime}-q_{3}^{3}\right)\left(q^{\prime}-q_{4}^{*}\right)\left(q^{\prime}-q_{5}^{*}\right)}}{\left(q^{\prime}+i\right)\left(q^{\prime}-i\right)\left(q^{\prime}+i b\right)\left(q^{\prime}-i b\right)} d q^{\prime}, \tag{2.8}
\end{equation*}
$$

where the integration over the (infinite) half-circles is vanishing since the integrands decrease rapidly enough for $|q| \rightarrow \infty$. The computation of residua allows for evaluation of the integrals $I_{1,2}=2 \pi i \sum_{n=1}^{2}$ Res $_{n}$, finally giving

$$
\begin{equation*}
I=\frac{2 \pi i}{q^{2}+1} \ln \left[\frac{q-q_{1}}{\left(q+q_{2}\right)\left(q+q_{3}\right)\left(q+q_{4}\right)\left(q+q_{5}\right)} \frac{\left(i+q_{2}\right)\left(i+q_{3}\right)\left(i+q_{4}\right)\left(i+q_{5}\right)}{i-q_{1}}\right] . \tag{2.9}
\end{equation*}
$$

Substituting 2.9 into 2.7 leads to an explicit expression for the pion scalar form factor. We identify the pole $q=-q_{3}$ on the second Riemann sheet in the t-variable as the $f_{0}(500)$ resonance, thus determining its mass and width to be

$$
\begin{align*}
m_{f_{0}(500)} & =(472 \pm 10) \mathrm{MeV} \tag{2.10}\\
\Gamma_{f_{0}(500)} & =(524 \pm 22) \mathrm{MeV} . \tag{2.11}
\end{align*}
$$

These results are in agreement with those obtained by [5, 6]. The predicted behavior of the scalar pion form factor on the interval $-3 \mathrm{GeV}^{2}<t<3 \mathrm{GeV}^{2}$ is shown in Fig. 3 .

Figure 3: Behavior of the pion scalar form factor in the region $-3 \mathrm{GeV}^{2}<t<3 \mathrm{GeV}^{2}$.

3. Summary and conclusion

We have demonstrated that analytic properties of $\Gamma_{\pi}(t)$ together with the GKPY procedure allow for a prediction of the $\Gamma_{\pi}(t)$ behavior and an unambiguous determination of the $f_{0}(500)$ resonance parameters with small model dependence. Our numbers confirm some of the previously published determinations.

Acknowledgment

This work was supported by the Slovak Grant Agency for Sciences VEGA, Grant No. 2/0158/13 and the Slovak Research and Development Agency, contract No. APVV-0463-12.

References

[1] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, and F. J. Yndurain, The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV , Phys. Rev. D83 (2011) 074004, [arXiv:1102. 2183].
[2] J. Gasser and U. G. Meissner, Chiral expansion of pion form-factors beyond one loop, Nucl. Phys. B357 (1991) 90-128.
[3] N. Muskhelishvili, Singular integral equations:. P. Noordhoff, 1953.
[4] R. Omnes, On the Solution of certain singular integral equations of quantum field theory, Nuovo Cim. 8 (1958) 316-326.
[5] I. Caprini, G. Colangelo, and H. Leutwyler, Mass and width of the lowest resonance in QCD, Phys. Rev. Lett. 96 (2006) 132001, [hep-ph/ 0512364].
[6] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, and J. Ruiz de Elvira, Precise determination of the f0(600) and f0(980) pole parameters from a dispersive data analysis, Phys. Rev. Lett. 107 (2011) 072001, [arXiv:1107.1635].

[^0]: *Speaker.

[^1]: ${ }^{1}$ The ChPT predicts the norm to be $0.99 \pm 0.02 m_{\pi}^{2}$ [2].

