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In this work we study which are the minimal anomaly-free chiral fermion sets, beyond the stan-
dard model, that lead to vector-like particles with respect to SU(3) and U(1)em after symmetry
breaking. We focus on fermion multiplets with SU(3) and SU(2) dimensions less than or equal to
10 and 5, respectively. Furthermore, we study whether the addition of such chiral fermions allows
for gauge coupling unification, at some high scale compatible with proton decay limits.
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1. Introduction

In the standard model (SM) there is no symmetry principle that relates the hypercharge, αy,
weak, αw and strong, αs, gauge couplings, α1,2,3 = κ1,2,3 αy,w,s. However, at one-loop level and
for κi = (5/3,1,1) α1 = α2 around 1013 GeV and α2 = α3 around 1017 GeV. The gauge coupling
unification (GCU) can be improved either by considering different normalization constants κi or
by including extra particles in the theory. The last option introduces the issue of anomalies, i.e.,
the breaking of the symmetry of the Lagrangian at the quantum level. There are three types of
anomalies: the triangular chiral anomaly [1, 2] that ensures the renormalizability of a theory; the
mixed gauge-gravitational anomaly [3, 4] that ensures the general covariance of a theory and the
Witten’s anomaly [5] that imposes that any theory with SU(2) gauge group must have an even
number of Weyl doublet to be mathematically consistent. These three anomalies must be absent in
a consistent theory.

In the next two sections we will study [6] which are the minimal sets of chiral fermions, with
arbitrary quantum numbers, that are free of anomalies and whether they lead to GCU.

2. Anomaly Cancellation

In this section we study which are the minimal sets of chiral fermions, beyond the SM particle
content, that are free of anomalies. In order to preserve the parity symmetry, we will consider only
those that lead to vector-like particles with respect to U(1)em and SU(3). Since the SM is anomaly-
free, the study is reduced to the contributions coming from the extra fermions. Without loss of
generality, we consider the new fields as left-handed and with (d3(R),d2(R))yR

quantum numbers
under (SU(3),SU(2))U(1). The anomaly-free conditions, with respect to the SM gauge group, to
be verified are the following:

[SU(3) -SU(3) -SU(3)] : ∑
R

A3(R)d2(R) = 0 , (2.1a)

[SU(3) -SU(3) -U(1)] : ∑
R

yR t3(R)d2(R) = 0 , (2.1b)

[SU(2) -SU(2) -U(1)] : ∑
R

yR t2(R)d3(R) = 0 , (2.1c)

[U(1) -U(1) -U(1)] : ∑
R

y3
R d2(R)d3(R) = 0 , (2.1d)

[gravity-gravity-U(1)] : ∑
R

yR d2(R)d3(R) = 0 . (2.1e)

The quantities di(R), yR, Ai(R) and ti(R) are, respectively, the dimension, hypercharge, cubic
anomaly and Dynkin index of the representation R with respect to the subgroup Gi of the SM; Ai(R)
and ti(R) are listed in Ref. [7].

The anomaly-free conditions given above are invariant under an overall rescaling of the hy-
percharge; this overall normalization will be important in determining the chiral sets in such a way
that they lead to vector-like particles after electroweak symmetry breaking. Furthermore, the Wit-
ten’s anomaly imposes that the sum of t2 over all the representations in each set must be an integer
number. To simplify our search we will consider representations with SU(2) dimensions up to 5
and SU(3) dimensions up to 10 and rational hypercharges.
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Set Particle content

P1 (d,1)5z/6 ⊕ (d,2)−2z/3 ⊕ (d,3)z/6

P2 (d,1)7z/6 ⊕ (d,3)−5z/6 ⊕ (d,4)z/3

P3 (d,1)3z/2 ⊕ (d,4)−z ⊕ (d,5)z/2

P4 (d,2)4z/3 ⊕ (d,3)−7z/6 ⊕ (d,5)z/6

Table 1: Minimal anomaly-free chiral fermion sets for d ≤ 10 and d2(R) ≤ 5. Due to Witten’s
anomaly, the SU(3) dimension in P1 and P4 needs to be an even number.

Sets with only one or two chiral fermions we end up with multiplets in the adjoint representa-
tion of SU(3) (octect) and SU(2) (triplet) with zero hypercharge or with vector-like solutions like
(d,d′)y⊕ (d,d′)−y, that we are not interested in (more details see [6]). For three multiplets and
limiting the search to d≡ d3(R)≤ 10 and d2(R)≤ 5 we obtain four different sets of solutions, see
Table 1. We see that d3(R) is equal for all multiplets within each set and it can take all possible
values (1, 3, 6, 8 or 10) for P2 and P3 however in P1 and P4 the SU(3) dimension can only take
even values due to the Witten’s anomaly [5]. The SU(3) dimension equal for the three multiplets
of each set because we chose d3(R)≤ 10.

The overall rescaling z of the hypercharge is determined by the conditions for the electric
charge cancellation

3

∑
p=1

∑
jp

[
jp + yp(z)

]m
= 0 , (2.2)

where m is an odd positive integer number and jp = −sp,−sp + 1, . . . ,sp− 1,sp with sp given in
terms of the SU(2) dimension as sp = (d2(Rp)−1)/2. The value of z is then determined for m = 5:
|z|= 0, 1 or 3 independent of the set. For d = 1 and 8 the three values of z are allowed however for
d = 3, 6 and 10 only |z|= 1 is viable.

3. Gauge Coupling Unification

In this section we study the possibility of having unification of the gauge couplings in a non-
supersymmetric extension of the SM by the fermions in Table 1. We will consider the presence of
just the Higgs and gauge fields of the SM.

The gauge couplings α1,2,3 evolve with the energy scale according to the renormalization group
equations that, at one-loop level, have exact solution given by

α
−1
i (Λ) = α

−1
i (MZ)−

1
2π κi

(
bSM

i +b1
i r1 +b2

i r2 +b3
i r3

)
ln
(

Λ

MZ

)
. (3.1)

At some high energy scale the three gauge couplings unify in a common value αU , that we consider
to be . 1 to ensure the perturbative regime.

The contribution of the extra three fermions is encoded in the parameters r1,2,3 as

r1,2,3 =
ln(Λ/M1,2,3)

ln(Λ/MZ)
, 0≤ r1,2,3 ≤ 1 , (3.2)
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and becomes relevant above the thresholds M1,2,3.
In Ref. [6] it is explained how to compute the one-loop beta coefficients, bi, that are bSM

1 =

41/6, bSM
2 =−19/6 and bSM

3 =−7 for the SM.
To study whether the sets in Table 1 lead to unification of the gauge couplings, we performed

the so-called B-test. In this test we compare two quantities,

B≡
sin2

θw−
κ2 α

κ3 αs
κ2

κ1
−
(

1+
κ2

κ1

)
sin2

θw

and B̃≡ 2π

α

[
1
κ1
−
(

1
κ1

+
1
κ2

)
sin2

θw

]
, (3.3)

determined completely in terms of α−1, αs and sin2
θw at MZ scale, with those obtained from the

remaining data. For κ1 = κ2 = κ3 = 1 (no GUT embedding) and α−1 = 127.944± 0.014, αs =

0.1185±0.0006, sin2
θw = 0.23126±0.00005 [8] we get B = 0.308±0.001 and B̃ = 431.4±0.1.

We choose, without lost of generality, to scan r2 and r3 inside the allowed range and determine
the scale of the remaining particle and the unification scale through the expressions

r1 =
BB′12−B′23

b1
2

κ2
− b1

3
κ3
−B

(
b1

1
κ1
− b1

2
κ2

) and ln
(

Λ

MZ

)
=

B̃
B1−B2

, (3.4)

where

B′i j =
1
κi

(
bSM

i + b2
i r2 +b3

i r3

)
− 1

κ j

(
bSM

j + b2
jr2 +b3

jr3

)
.

The results are given in Figures 1 and 2. For each set, the allowed intermediate mass scales
(colored bars) for the multiplets, ordered as they appear in Table 1, and the unification scale (black
bar) in terms of the SU(3) dimension are given. In our search we accepted only the solutions for
which the unification scale is higher than 5×1015 GeV in order to be consistent with proton decay
bounds.

Looking over the results one verifies that there is no gauge coupling unification for z = 0
in none of the sets. For P1, it is possible to have unification only when d = 8 and the overall
normalization is z = 3 (Figure 1). For P2 and z = 1 (first row left panel of Figure 2) it is possible
to have unification for d = 3, 6 and 8. In this case, the masses of (d,4)−1 and (d,5)1/2 are above
109 GeV, while the mass of the weak singlet (blue bar) can take values around the TeV scale or
even lower. For z = 3 (first row right panel of Figure 2) there are solutions only for d = 1 and 8.
The set P3 is very similar to P2 but with an additional solution for d = 10 and z = 1 (second row
left panel Figure 2). The content of P4 leads to gauge unification for z = 1 with any even SU(3)
dimension (last row left panel of Figure 2) with the intermediate scales above 1010 GeV while for
z = 3 there is unification only for d = 8 (last row right panel of Figure 2) with intermediate scales
higher than 1015 GeV.

From the results one sees that some of the new particles decouple from the theory at very
high scales much larger than the electroweak scale. Since the charged scalars are very constrained
by electroweak precision data, the generation of large masses for the extra fermions via vacuum
expectation value of some extra scalar fields seems to be unfeasible. One possible way out is to
generate them dynamically, what will be analyzed somewhere else.
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Figure 1: Intermediate, MI , and unification, Λ, scales as function of SU(3) dimension, d, for P1
with z = 3. The colored bars are to the energy scales of (d,1) 5

2
(blue), (d,2)−2 (green), (d,3) 1

2
(red) and Λ (black).

4. Conclusions

In this work we studied which are the minimal sets of chiral fermions, beyond the SM, that
are free of anomalies and lead to vector-like particles under SU(3) and U(1)em after symmetry
breaking. We considered fermions with arbitrary quantum numbers under the SM gauge group and
we restricted our search to d3(R) ≤ 10 and d2(R) ≤ 5. For such requirements we found four sets
with three multiplets each.

We studied also whether the addition, to the SM, of such anomaly-free sets would lead to
gauge coupling unification. We performed an approximate study where the non-supersymmetric
running of gauge couplings is taken at one-loop level. Among all the possibilities only 16 solutions
lead to successful gauge unification. In Ref. [6] we extended the study presented here to the case
where the chiral fermions were part of SU(5) representations, with dimensions less than 70. It was
also studied the gauge and gravitational unification at string scale for both scenarios, fermion with
arbitrary quantum numbers and fermions in multiplets of SU(5) representations.
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Figure 2: Intermediate, MI , and unification, Λ, scales as function of the SU(3) dimension, d, for P2
(first row), P3 (second row) and P4 (last row) with z = 1 (left panels) and z = 3 (right panels). For
each value of d the colored bars correspond to the energy scales of the first (blue), second (green)
and third (red) multiplets in Table 1, Λ is in black.
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