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a fourth of the full process for the final state specified above, ttbb production constitutes the main

contribution with about 92%. Surprisingly, interference effects result in a reduction of the cross-

section by five per cent. Furthermore, we consider NLO QCD corrections for the production of

a Higgs boson, two charged leptons, two neutrinos, and two b jets. We discuss the size of the

corrections and the scale dependence for the integrated cross section and different distributions.
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1. Introduction

After the discovery of a Higgs boson with a mass around 125GeV by the CMS and ATLAS

collaborations [1, 2], its properties need to be precisely investigated using all accessible Higgs

production and decay modes. The production of a Higgs boson in association with a top-quark

pair is of particular interest as it allows to directly access the top-quark Yukawa coupling. In the

ongoing run 2 of the LHC the determination of the tt̄H signal and the potential measurement of the

top-quark Yukawa coupling will be pursued and corresponding theoretical predictions are required.

Next-to-leading-order (NLO) QCD corrections for the production of a top–antitop pair in asso-

ciation with a Higgs boson have been calculated in Refs. [3, 4, 5, 6, 7] and matched to parton show-

ers [8, 9, 10]. Recently electroweak corrections to tt̄H production have been computed [11, 12, 13].

NLO QCD corrections for the important background processes tt̄bb̄ and tt̄jj production have been

worked out in Refs. [14, 15, 16, 17] and Refs. [18, 19, 20], respectively, and matched to parton

showers in Refs. [21, 22, 23] and Ref. [24]. In all these calculations the top quarks and the Higgs

boson have been treated as stable particles.

In these proceedings we summarise a leading-order study of Higgs-boson production in associ-

ation with a top-quark pair (tt̄H) including the subsequent semileptonic decay of the top-quark pair

and the decay of the Higgs boson into a bottom–antibottom-quark pair, pp → tt̄H → ℓ+νℓjjbb̄bb̄

[25]. We consider this process in three different scenarios, 1) the full process with all Standard

Model (SM) Feynman diagrams for the 8-particle final state, 2) tt̄bb̄ production, where only dia-

grams with resonant top–antitop-quark pairs are taken into account, and 3) tt̄H production, where

in addition a resonant Higgs boson is required. Comparing the predictions in the three scenarios

allows us to examine the size of the irreducible background for Higgs production in association

with a top–antitop-quark pair. We have in particular studied different methods of assigning a b-jet

pair to the Higgs boson and compared their performance in reconstructing the Higgs signal. Fur-

thermore, we have investigated the size of interference effects between contributions to the matrix

elements of different order in the strong and electroweak coupling constants.

We also report on a calculation of the NLO QCD corrections to the hadronic production of a

positron, a muon, missing energy, two b jets and a SM Higgs boson, pp → e+νeµ−ν̄µbb̄H [26],

which includes the resonant production of a top–antitop-quark pair in association with a Higgs

boson with a subsequent leptonic decay of the top and the antitop quark. Our calculation includes

all NLO QCD effects in tt̄H production and top decays and also takes into account all off-shell,

non-resonant and interference effects of the top quarks.

2. Calculational framework

The full LO process pp → ℓ+νℓjjbb̄bb̄ involves partonic channels with up to 78,000 diagrams.

All matrix elements are calculated with RECOLA [27] which provides a fast and numerically stable

computation. RECOLA uses recursive methods and allows to specify intermediate particles for a

given process. The phase-space integration is performed with an in-house multi-channel Monte-

Carlo program, using phase-space mappings similar to Ref. [28].

We use the complex-mass scheme [29, 30, 31] for the consistent description of all resonances

that are not treated in the pole approximation.
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We investigate the cross section and differential distributions for the LHC operating at 13TeV.

We employ LHAPDF 6.05 with CT10 parton distributions and neglect contributions from the sup-

pressed bottom-quark parton density and flavour mixing. The electromagnetic coupling α is de-

rived from the Fermi constant in the Gµ scheme. The width of the top quark Γt is calculated at LO

and NLO QCD including effects of off-shell W bosons according to Ref. [32].

We use a standard set of acceptance cuts:

non-b jets: pT,j > 25GeV, |yj|< 2.5,

b jets: pT,b > 25GeV, |yb|< 2.5,

charged lepton: pT,ℓ+ > 20GeV, |yℓ+ |< 2.5,

missing transverse momentum: pT,miss > 20GeV,

jet–jet distance: ∆Rjj > 0.4,

b-jet–b-jet distance: ∆Rbb > 0.4,

jet–b-jet distance: ∆Rjb > 0.4.

(2.1)

3. Irreducible background and interference effects in pp → ℓ+νℓjjbb̄bb̄

We consider three scenarios to calculate the process pp → ℓ+νℓjjbb̄bb̄:

• In the first scenario, the full process, we include all SM contributions to the process pp →

ℓ+νℓjjbb̄bb̄. Matrix elements involving external gluons receive contributions of O
(

αsα
3
)

,

O
(

α2
s α2

)

and O
(

α3
s α

)

, whereas amplitudes without external gluons receive an additional

O
(

α4
)

term of pure electroweak origin.

• In the second scenario we only take those diagrams into account that contain an intermediate

top–antitop-quark pair. The resulting amplitude, labelled tt̄bb̄ production in the following,

corresponds to the production of a bottom–antibottom pair and an intermediate top–antitop

pair followed by its semileptonic decay, i.e. pp → tt̄bb̄ → ℓ+νℓjjbb̄bb̄. Note that we use

the pole approximation [33, 34, 35] for the top quarks only, hence we take into account

all off-shell effects of the remaining unstable particles. As a consequence of the required

top–antitop-quark pair the amplitudes receive no contribution of O
(

α3
s α

)

.

• Finally, we consider the signal process pp→ tt̄H→ ℓ+νℓjjbb̄bb̄ and label it tt̄H production. In

addition to the intermediate top–antitop-quark pair we require an intermediate Higgs boson

decaying into a bottom–antibottom-quark pair and use the pole approximation for the top-

quark pair and the Higgs boson. The requirement of the Higgs boson eliminates contributions

of O
(

α2
s α2

)

from the amplitude.

In this analysis we take the bottom quarks massive and use the fixed renormalization and

factorization scale according to Ref. [4],

µfix = µR = µF =
1

2
(2mt +mH) = 236GeV. (3.1)

In Tables 1–3 we present individual contributions to the integrated cross section for the three

scenarios. While the first column specifies the partonic initial states (q = u,d,c,s), the following
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pp Cross section [fb]

O
(

(α4)2
)

O
(

(αsα
3)2

)

Total

qq̄ 0.014887(2) 2.1467(2) 2.1621(2)

gg – 5.230(1) 5.2298(9)

∑ 0.014887(2) 7.377(1) 7.3920(9)

Table 1: Composition of the cross section in fb for tt̄H production at the LHC at 13TeV.

pp Cross section [fb]

O
(

(α4)2
)

O
(

(αsα
3)2

)

O
(

(α2
s α2)2

)

Sum Total

qq̄ 0.018134(6) 2.4932(9) 0.9199(2) 3.4312(9) 3.4366(6)

gg – 7.818(4) 16.650(9) 24.47(1) 23.010(7)

∑ 0.018134(6) 10.311(4) 17.570(9) 27.90(1) 26.446(7)

Table 2: Composition of the cross section in fb for tt̄bb̄ production at the LHC at 13TeV.

columns contain the contributions resulting from the square of matrix elements of specific orders

in the strong and electroweak coupling. The column labelled “Sum” represents the sum of the

preceding columns, whereas the last column labelled “Total” provides the integrated cross section

including in addition all interference effects between different orders in the couplings.

In Table 1 we show the cross section for tt̄H production and the corresponding contributions

resulting from quark–antiquark annihilation and gluon fusion. About 70% of the events originate

from the gluon-fusion process. While the bulk of the contributions results from matrix elements

of order O
(

αsα
3
)

, quark–antiquark annihilation receives an additional tiny contribution from pure

electroweak interactions. Note that there are no interferences between diagrams of O
(

α4
)

and

O
(

αsα
3
)

in this scenario.

The composition of the cross section for tt̄bb̄ production is shown in Table 2. We find a sig-

nificant enhancement of the production rate compared to tt̄H production, and thus the irreducible

background σ Irred.
tt̄bb̄

= σ Total
tt̄bb̄

−σ Total
tt̄H = 19.06fb exceeds the tt̄H signal by a factor of 2.6. The major

contribution to the irreducible background is due to QCD production of O
(

(α2
s α2)2

)

. The addi-

tional contributions of O
(

(αsα
3)2

)

in the tt̄bb̄ scenario result from Feynman diagrams involving

electroweak interactions with Z bosons, W bosons and photons, where in particular tt̄Z production

contributes 1.01fb. The difference between the fifth (Sum) and sixth (Total) column in Table 2 is

due to interference contributions between matrix elements of different orders in the coupling con-

stants. These cause a reduction of the cross sections by about 5%. The dominant effect is due to

interferences of diagrams of O
(

αsα
3
)

where a W boson is exchanged in the t-channel with dia-

grams of O
(

α2
s α2

)

that yield the dominant irreducible background. These kinds of interferences

are absent in the qq̄ channel. On the other hand, we found the interference of the tt̄H signal process

with the dominant irreducible background of order O
(

α2
s α2

)

to be below one per cent.
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pp Cross section [fb]

O
(

(α4)2
)

O
(

(αsα
3)2

)

O
(

(α2
s α2)2

)

O
(

(α3
s α)2

)

Sum Total

gq – 0.231(4) 0.370(2) 0.365(1) 0.966(4) 0.944(9)

gq̄ – 0.0421(6) 0.0679(3) 0.0608(2) 0.1708(7) 0.167(1)

qq(′) 0.001471(2) 0.0575(5) 0.1106(2) 0.07871(9) 0.2483(6) 0.2478(8)

qq̄ 0.01973(3) 2.531(6) 0.957(1) 0.00333(1) 3.511(6) 3.538(4)

gg – 8.01(2) 17.19(6) 0.00756(2) 25.21(6) 23.71(6)

∑ 0.02120(3) 10.87(2) 18.69(6) 0.516(2) 30.10(6) 28.60(6)

Table 3: Composition of the cross section in fb for the full process at the LHC at 13TeV. Here

qq(′) denotes pairs of quarks and/or antiquarks other than qq̄.

The results for the full process are listed in Table 3. Here, additional partonic channels (gq, gq̄,

qq(′)) contribute about 5%. The cross section increases by merely 8% relative to tt̄bb̄ production.

The contributions of order O
(

(α3
s α)2

)

are below 2% and the interference pattern is similar to the

case of tt̄bb̄ production.

In Ref. [25] we investigated the irreducible background and interference effects for various

distributions. We found that assigning two b jets to the top- and antitop-quark decay by maximis-

ing a combined Breit–Wigner likelihood function and assigning the remaining two b jets to the

potential Higgs boson yields a good unbiased determination of the b-jet pair originating from the

Higgs-boson decay. While interference effects lead to a constant shift in most of the differential

distributions, they cause non-uniform shape changes in a few distributions like the one in the in-

variant mass of the pair of bottom quarks not resulting from the top quarks and the azimuthal angle

between these bottom quarks.

4. NLO QCD corrections to pp → e+νeµ−ν̄µbb̄H

We have computed the NLO QCD corrections to the full hadronic process pp→ e+νeµ−ν̄µbb̄H

including all resonant, non-resonant, and off-shell effects of the top quarks and all interferences at

13TeV (for details see Ref. [26]). We include the tree-level amplitudes at O
(

αsα
5/2

)

for gluon-

induced and quark–antiquark-induced processes and the corresponding NLO corrections of order

αs. The bottom quark is considered massless in this study. The corresponding real corrections

receive also contributions of quark–gluon- and antiquark–gluon-initiated processes. We apply the

Catani–Seymour subtraction formalism [36, 37] for the regularization and analytical cancellation

of IR singularities. We employ RECOLA [27] for the computation of all matrix elements as well as

colour- and spin-correlated squared matrix elements needed for the evaluation of subtraction terms.

The matrix elements for the virtual corrections are calculated with RECOLA in dimensional

regularisation, which uses the COLLIER [38] library for the numerical evaluation of one-loop scalar

[39, 40, 41, 42] and tensor integrals [43, 44, 45]. We sucessfully compared our results for the virtual

NLO contribution to the squared amplitude, 2ReM ∗
0 M1, with MADGRAPH5_AMC@NLO [46]. In

5
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pp σLO [fb] σNLO [fb] K

gg 1.5906(1)+33.7%
−23.6% 2.024(3)+8.4%

−16.2% 1.273(2)

qq̄ 0.67498(9)+24.1%
−18.1% 0.495(1)+17.2%

−39.5% 0.733(2)

gq
( )

0.136(1)+295%
−166%

∑ 2.2656(1)+30.8%
−22.0% 2.656(3)+0.9%

−4.6% 1.172(1)

Table 4: Composition of the integrated cross section for pp → e+νeµ−ν̄µbb̄H(j) at the 13TeV

LHC with the dynamical scale. In column one we list the partonic initial states, where q = u,d,c,s

and q
( )

= q, q̄. The second and third column give the integrated cross sections in fb for LO and NLO,

resp., including scale uncertainties. The last column provides the K factor with K = σNLO/σLO.

addition we checked the Ward identity for the matrix elements of the gluon-initiated process at tree

and one-loop level.

We use the anti-kT algorithm [47] for the jet reconstruction with a jet-resolution parameter

R = 0.4. Only final-state quarks and gluons with rapidity |y| < 5 are clustered into infrared-safe

jets. As default, we use a dynamical scale following Ref. [8],

µdyn = µR = µF =
(

mT,t mT,t̄ mT,H

)
1
3 with mT =

√

m2 + p2
T. (4.1)

Alternatively, we choose a fixed scale according to Ref. [4] as given in (3.1). Scale uncertain-

ties are determined by computing integrated and differential cross sections at seven scale pairs,

(µR/µ0, µF/µ0) = (0.5,0.5),(0.5,1),(1,0.5),(1,1),(1,2),(2,1),(2,2). The central value corre-

sponds to (µR/µ0, µF/µ0) = (1,1), and the error band is constructed from the envelope of these

seven calculations.

In Table 4 we present the integrated cross sections for the dynamical scale (4.1). The cross

sections for the fixed scale (3.1) are lower by only about 1 %, and the K factor for the fixed scale is

of 1.176(1). The contribution of the dominating gluon-fusion channel increases from about 70 % at

LO to 76 % at NLO. The gluon–(anti)quark induced real-radiation subprocesses contribute about

5 %. The inclusion of NLO QCD corrections reduces the scale dependence from 31 % to 5 %.

In Figure 1 we display the dependence of the integrated LO (blue) and NLO (red) cross sections

on the values of the fixed (dashed line) and dynamical scale (solid line) while keeping µR = µF.

Varying only µR or µF results in smaller variations.

The effects of the finite top-quark width have been determined via a numerical extrapolation to

the zero-top-width limit, Γt → 0. For fixed scale µfix finite-top-width effects shift the LO and NLO

cross section by −0.07± 0.01% and −0.14± 0.22%, respectively, which are within the expected

order of Γt/mt.

We have investigated various differential distributions, two of which are shown in Figure 2 for

the dynamical scale choice (4.1). The upper panels show the LO (blue, dashed) and NLO (red,

solid) predictions with uncertainty bands from scale variations. The lower panels display the LO

(blue) and NLO (red) predictions with scale uncertainties normalized to the LO results at the central

scale. Figure 2a shows the transverse-momentum distribution of the positron. Using the dynamical

6
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Figure 1: Scale dependence of the LO and NLO integrated cross section at the 13TeV LHC.
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Figure 2: Transverse-momentum distributions at the 13TeV LHC for the dynamical scale (4.1): (a)

for the positron (left), (b) for the b-jet pair (right) and The lower panels show the K factor.

scale, the K factor changes only slightly (within 20 %) over the displayed range, and the NLO band

lies within the LO band. The residual scale variation is at the level of 10% at NLO. This behaviour

is typical for most other distributions (see Ref. [26]). A notable exception is the distribution in the

transverse momentum of the b-jet pair (Figure 2b), where we observe an increase of the K factor

for high transverse momentum to a value of 1.8 at pT ≃ 400GeV. This originates from the fact

that this region is suppressed for on-shell top quarks, an effect known already from tt̄ production,

where it is even more pronounced [48].

5. Conclusions

We have investigated the irreducible background to the production of a Higgs boson decaying

7
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into bottom quarks in association with a top–antitop-quark pair including its decay. While tt̄H

production contributes roughly a fourth to the ℓ+νℓjjbb̄bb̄ final state, the major contribution of

92% is furnished by tt̄bb̄ production. Interference effects lower the corresponding cross section by

about 5%. We have calculated the next-to-leading-order QCD corrections to off-shell top–antitop-

quark production in association with a Higgs boson with leptonic decay of the top quarks. Using a

dynamical scale, we find K factors mostly in the range 1.0−1.4 and residual scale uncertainties at

the level of 10% for distributions.
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