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The rare decay H→ Zγ in perturbative QCD Dominik Kara

1. Introduction

The H → γγ decay mode was among the most significant signatures in the Higgs boson dis-
covery [1, 2], it has been measured in the meantime [3, 4] with a relative precision of below twenty
per cent. The branching ratio for H→ Zγ , including the leptonic branching ratio of the Z boson, is
considerably lower and only upper bounds could be established on it up to now [5, 6]. Once estab-
lished, this decay will provide access to a broader spectrum of observables than H→ γγ , since the
decay of the Z boson to leptons will enable the study of spin-dependent particle correlations.

Higher order QCD corrections to H → Zγ from gluon exchange in the top quark loop were
derived in [7] by performing a purely numerical evaluation of the relevant two-loop integrals in
terms of five-dimensional Feynman parameter representations. The results derived in [7] use an
on-shell renormalization for the top quark mass and the Yukawa coupling. In this talk, we report
on the analytical computation of the NLO QCD corrections to H→ Zγ as described in [8].

Besides its phenomenological implications for H → Zγ , our calculation also provides an im-
portant subset of two-loop integrals relevant to the two-loop amplitudes gg→ Hg and qg→ Hq
with full top quark mass dependence. These amplitudes are known at present only at one loop [9],
corresponding to the leading order in perturbation theory. For precision studies of the transverse
momentum distribution of the Higgs boson and of Higgs-boson-plus-jet production, an effective
field theory in the limit of infinite top quark mass is used commonly. In this approach, NLO
QCD corrections were derived [10–13] and the calculation of the NNLO corrections is well-
advanced [14–18]. The effective field theory description is however inappropriate at large trans-
verse momenta, where the top quark loop is resolved by the recoiling jet; and it is precisely in this
region that deviations from the Standard Model due to new heavy states could become visible. The
calculation of NLO QCD corrections with exact top quark mass dependence is therefore recognized
as high-priority aim [19, 20], and the integrals derived here will be an important step towards it.

2. The H→ Zγ decay in the Standard Model

The decay width H→ Zγ is obtained as

Γ =
G2

F α m2
W

4m3
H

(
m2

H −m2
Z

) |A|2 (2.1)

with Fermi’s coupling constant GF , the fine-structure constant α and the Higgs and Z boson masses
mH and mZ , respectively. Depending on the particle coupled to the external Higgs boson, the
amplitude can be further decomposed into contributions from the W boson and the fermions q:

A = cW AW +∑
q

cqAq . (2.2)

The coupling factors are

cW = cosθw , cq = Nc
2Qq

(
I3
q −2Qq sin2

θw
)

cosθw
, (2.3)

where θw is the weak mixing angle, Nc the number of colors, Qq the charge of the fermion and I3
q

the third component of its weak isospin. Due to the mass hierarchy of the particles involved, we
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will only consider the dominant pieces coming from the W boson, the top quark and the bottom
quark.

The Born-level contribution to the amplitude arises at one loop, it is written as:

A(1) = cW A(1)
W + ctA

(1)
t + cbA(1)

b . (2.4)

Higher-order perturbative corrections are obtained by a loop expansion of the amplitude A. Next-
to-leading order QCD corrections affect only At and Ab, they correspond to two-loop graphs with
an internal mass:

Aq(mH ,mZ,mq,αs,µ) = A(1)
q (mH ,mZ,mq)+

αs(µ)

π
A(2)

q (mH ,mZ,mq,µ) . (2.5)

3. Calculation of the two-loop amplitude

To compute the two-loop QCD contribution A(2)
q , we project all Feynman diagrams gener-

ated by QGRAF [21] onto the relevant tensor structure using FORM [22]. The resulting Feyn-
man integrals are reduced to a set of master integrals with the help of integration-by-parts (IBP)
identities [23], which are solved using the Laporta algorithm [24] implemented in the REDUZE2
code [25, 26]. After the reduction, the amplitude can be expressed in terms of a certain number of
master integrals depending on the loop order.

Each of these master integrals has a specific mass dimension, which can be scaled out by
multiplying with the appropriate power of the mass mq running in the loop, such that the resulting
dimensionless integrals are only functions of the mass ratios m2

H/m2
q and m2

Z/m2
q. We parametrize

this dependence by introducing Landau-type variables

m2
H =−m2

q
(1−h)2

h
, m2

Z =−m2
q
(1− z)2

z
. (3.1)

3.1 Differential equations and integral basis

To compute the two-loop master integrals, we use the method of differential equations [27–
30]. In this method, differential equations in internal masses and external invariants are derived for
each integral by performing the differentiation on the integrand, which is then related to the original
master integral by the IBP identities. With this, we obtain inhomogeneous differential equations in
either Landau variable, plus a trivial homogeneous equation in mq for each integral. The differential
equations are solved in a bottom-up approach, i.e. starting from the master integrals with the lowest
number of different propagators (‘topology’) because they will show up in differential equations of
higher topologies.

The coefficients of the individual master integrals in the homogeneous and inhomogeneous
terms of the differential equations are rational functions of h and z. Upon partial fractioning, only
a limited number of polynomials in h and z appear. These form the so-called alphabet {l1, . . . , l12}
associated with this set of master integrals:

l1 = z , l4 = h , l7 = h− z , l10 = h2z−hz−h+ z ,

l2 = z+1 , l5 = h+1 , l8 = hz−1 , l11 = z2−hz− z+1 ,

l3 = z−1 , l6 = h−1 , l9 = h2−hz−h+1 , l12 = z2h−hz− z+h . (3.2)
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With an appropriate choice of basis integrals [30], the full system of differential equations for
all 28 master integrals (written as 28-component vector ~M) takes the form of a total differential,

d~M(h,z) = ε

12

∑
k=1

Rk dlog(lk) ~M(h,z) , (3.3)

where the matrices Rk contain only rational numbers. In this case, two important features can
be exploited. First, the differential equations can be integrated order by order in ε in terms of
generalized harmonic polylogarithms (GHPLs) [31–34]. They are defined as iterated integrals
according to

G(w1, . . . ,wn;x)≡
∫ x

0
dt

1
t−w1

G(w2, . . . ,wn; t) , G
(
~0n;x

)
≡ logn x

n!
, (3.4)

with indices wi and argument x. Second, the results will be expressed as a linear combination of
GHPLs of homogeneous weight. We arrive at a total differential of the form (3.3) starting from the
Laporta basis~I depicted in Fig. 1 and subsequently applying the algorithm described in [35].

Since the alphabet (3.2) is not linear in the Landau variables, we further decompose it to
enable the integration in either h or z, which yields a solution up to an integration constant that
only depends on the other variable. This boundary value is then determined by imposing regularity
in special kinematic points, where the integrals are known to be regular from physical arguments.
In our case, these points are given by

h = 1 ↔ m2
H = 0 , h = z ↔ m2

H = m2
Z ,

z = 1 ↔ m2
Z = 0 , h =

1
z
↔ m2

H = m2
Z , (3.5)

i.e. they correspond to the limit where the masses of the external particles either vanish or coincide.
By taking limits in these kinematic points, we are left with GHPLs that contain the same

variable x ∈ {h,z} both in the argument and in the indices. In order to simplify the result and to
obtain a unique representation, we use an inhouse MATHEMATICA implementation [36, 37] relying
on the symbol and coproduct formalism [38] to transform GHPLs of the type

G(w1(x), . . . ,wn(x);x)→ G(a1, . . . ,an;x) , (3.6)

where the transformed indices ai are nothing but complex numbers. In doing so, we end up with
GHPLs up to weight four, which are given by

G(a1, . . . ,an;h) with ai ∈ {0,±1,z,
1
z
,Jz,

1
Jz
,K±z ,L±z } ,

G(b1, . . . ,bn;z) with bi ∈ {0,±1,c, c̄} , (3.7)

where

c =
1
2

(
1+ i
√

3
)
, K±z =

1
2

(
1+ z±

√
–3+2z+ z2

)
,

Jz =
z

1− z+ z2 , L±z =
1

2z

(
1+ z±

√
1+2z−3z2

)
(3.8)
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Figure 1: Two-loop master integrals for the calculation of A(2)
q . Dashed lines are massless, whereas internal

solid lines denote propagators with mass mq. Double and solid external lines correspond to virtualities m2
H

and m2
Z , respectively. Dotted propagators are taken to be squared.
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for the underlying set of master integrals. Further transformations of the type

G(w1(x), . . . ,wn(x);y)→ G(c1(y), . . . ,cn(y);x) (3.9)

become necessary when the integration is performed in a different variable compared to the integra-
tion of a master integral of a subtopology which enters the differential equation under consideration.

We would like to state that the results of the master integrals were checked in several ways.
We performed transformations of the type (3.9) and verified that the solution fulfills the differential
equation in the other variable. This check works only up to a constant, which is why we compared
each master integral numerically against SECDEC [39] and found agreement to high precision.

3.2 Renormalization

After the manipulations described in the beginning of Section 3 and after inserting the analytic
results of the master integrals, we are left with the unrenormalized two-loop amplitude.

For its renormalization, we consider three different prescriptions:

(a) quark mass and Yukawa coupling in the on-shell (OS) scheme.

(b) quark mass in the OS scheme, Yukawa coupling in the MS scheme.

(c) quark mass and Yukawa coupling in the MS scheme.

All three prescriptions yield the same pole parts of the renormalization counter terms and produce
finite expressions for the renormalized amplitude. They are related by finite scheme transforma-
tions, which is why we choose to compute the renormalized amplitude in scheme (a) and use it to
derive the results in schemes (b) and (c). In the pure OS scheme, the quantity

1
mq

δmOSC(1)
q +ZOS A(1)

q (3.10)

has to be added to the unrenormalized two-loop amplitude in order to remove its divergences, where
ZOS and δmOS are the Yukawa and mass renormalization constants, respectively [40]:

ZOS =
αs(µ)

π
16 iπ

2 Sε

CF

4
3−2ε

ε (1−2ε)
, δmOS = mq ZOS . (3.11)

Next, we express the OS quantities Mq and Yq in terms of MS quantities mq and yq at a particular
matching scale µm using the standard relations (e.g. [41–43]):

Mq = mq(µ) (1+∆) , Yq = yq(µ) (1+∆) , ∆ =
αs(µ)

π
CF

(
1+

3
4

log
µ2

m2
q(µ)

)
. (3.12)

We perform this matching at the scale of the running MS quark mass mq. Starting from the OS
result A(2,a)

q (mH ,mZ,Mq), these scheme transformations induce finite shifts in the amplitudes of the
prescriptions (b) and (c):

A(2,b)
q (mH ,mZ,mq,µ) = A(2,a)

q (mH ,mZ,mq(µ))+∆ · A(1)
q (mH ,mZ,mq(µ)) ,

A(2,c)
q (mH ,mZ,mq,µ) = A(2,b)

q (mH ,mZ,mq(µ))+∆ ·
∂A(1)

q (mH ,mZ,Mq)

∂Mq

∣∣∣∣∣
Mq=mq(µ)

. (3.13)
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In practice, the coefficient ∆ emerges by making the following replacements in A(1)
q , where the

Landau variables h̄ and z̄ are defined according to Eq. (3.1) with mq = mq(µ):

h = h̄−2∆ h̄
h̄−1
h̄+1

, z = z̄−2∆ z̄
z̄−1
z̄+1

. (3.14)

4. Numerical results

The calculation of the master integrals and the amplitude outlined in Section 3 is performed in
the Euclidean region, where m2

H and m2
Z in Eq. (3.1) are negative and the master integrals are real.

In order to get a physical expression, the results have to be analytically continued to the physical
Minkowski region, where we distinguish three kinematic regions:

I: m2
Z < m2

H < 4m2
q , II: m2

Z < 4m2
q < m2

H , III: 4m2
q < m2

Z < m2
H .

It is obvious that the top quark amplitude is calculated in Region I, while the bottom quark
amplitude is computed in Region III. Region II is not needed for the physical values of the masses.

Since the analytical expression for A(2)
q is given in terms of GHPLs, it can be evaluated us-

ing GINAC [34, 44]. This leads to the following next-to-leading-order decay width Γ(2) in the
renormalization schemes (a), (b) and (c):

Γ
(2,a) µ=mH

=

[
7.07533+0.42800

αs(µ)

π

]
keV

µ=mH
= 7.09072keV , (4.1)

Γ
(2,b) µ=mH

=

[
7.09409+

αs(mH)

π

(
−0.53266−0.76661 log

m2
H

m2
t (mH)

+0.01229 log
m2

H

m2
b(mH)

)]
keV

µ=mH
= 7.09403keV , (4.2)

Γ
(2,c) µ=mH

=

[
7.05934+

αs(mH)

π

(
0.64587+0.10597 log

m2
H

m2
t (mH)

+0.01453 log
m2

H

m2
b(mH)

)]
keV

µ=mH
= 7.08438keV . (4.3)

An estimation of the uncertainty on the prediction from missing higher orders is provided by vary-
ing mH/2 < µ < 2mH in Fig. 2.

We observe that the NLO results for the decay width are consistent between the three schemes.
The relative size of the NLO correction is 2o/oo in scheme (a), below 10−5 in scheme (b) and 3o/oo

in scheme (c). The very small corrections in scheme (b) are however in large part due to numerical
cancellations between a priori unrelated terms. The spread between the different schemes is 1.3o/oo

at µ =mH , and variations of the renormalization scale change the predictions in either given scheme
by at most 0.4o/oo.

5. Conclusions

We have revisited the QCD corrections to the rare loop-induced Higgs boson decay H → Zγ .
The relevant two-loop three-point integrals with two different external masses and one internal mass
were derived analytically, using a reduction to master integrals, which were then computed using
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Figure 2: Scale variation of the next-to-leading-order decay width Γ(2) in the renormalization schemes (a),
(b) and (c) for 30GeV < µ < 300GeV.

differential equations. These integrals are also an important ingredient to the two-loop amplitudes
for Higgs-plus-jet production in gluon fusion with full dependence on the internal quark masses.

We investigated the dependence of the corrections on the renormalization scheme used for the
quark mass and Yukawa coupling. We observe that the results for the decay rate in on-shell and
MS schemes, as well as in a hybrid scheme with on-shell mass and MS Yukawa coupling, are well
consistent with each other, and that corrections are in the sub-per-cent range in all three schemes
(being smallest in the hybrid scheme). We confirm the previously available numerical on-shell
result [7] and agree with an independent caclulation [? ]. The residual QCD uncertainty on the
H → Zγ decay rate is around 1.7o/oo from the combination of scale variation and spread between
the different renormalization schemes.
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