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Transverse momentum resummation of colorless final states at the NNLL+NNLO

1. Introduction

Data collected in Run 1 and the first part of Run 2 of the Large Hadron Collider (LHC) is in
good agreement with the Standard Model (SM) predictions so far. The discovery [1, 2] of a scalar
resonance with a mass of 125 GeV appears to be fully consistent with the Higgs boson predicted by
the SM. This suggests that Beyond the Standard Model (BSM) physics may appear only as small
deviations from the SM picture, which demands highly-accurate theoretical predictions.

Vector-boson pair production is an important class of processes at hadron colliders. They are
sensitive to modifications of the vector-boson trilinear couplings which arise in a large set of BSM
theories; they constitute an irreducible background to Higgs studies as well as new-physics searches.
In particular Higgs measurements, e.g., the H→W+W− channel, employ categories based on the
Higgs transverse momentum or jet rates in order to reduce the background.∗ Such analyses strongly
rely on an accurate modeling of such observables for both signal and backgrounds.

In this article we report on a general framework to perform precision computations for the
transverse-momentum spectrum of a system of colorless final-state particles implemented in the
numerical code MATRIX† [14]. The predictions involve next-to-next-leading order (NNLO) accuracy
in QCD combined with small-pT resummation at next-to-next-to-leading logarithmic (NNLL)
accuracy. Besides the inclusive transverse-momentum spectrum, the framework allows for fiducial
cuts on the colorless final states, owing to the fact that the implementation is fully-differential in the
degrees of freedom of the colorless final-state system. This implies also the possibility to include
off-shell effects and spin correlations when leptonic decays of any color-neutral boson are involved
at the amplitude level. The resummation method is unitary [15], so that after integration over pT the
known NNLO rate is recovered.

As a first application of the resummation framework implemented in MATRIX, the transverse-
momentum distributions of on-shell ZZ and W+W− pairs at NNLL+NNLO have been studied in
Ref. [16], which is recapitulated in this report. The ZZ pT spectrum has already been measured [17]
at the LHC. The resummed transverse-momentum distributions in ZZ and W+W− production have
been studied before at lower perturbative and logarithmic accuracy in Refs. [18–22].

2. Automation of transverse-momentum resummation in the MATRIX framework

The general transverse-momentum resummation procedure was developed already in the
eighties [23–31]. For more details on the specific transverse-momentum resummation formalism
that we implemented in the MATRIX framework, we refer the reader to Refs. [15, 32, 33].

Consider a general hard-scattering process (inclusive in all parton radiation)

h1(P1)+h2(P2)→F (pT ,y,M)+X , (2.1)

where F denotes the system of an arbitrary combination of colorless particles produced in the
collision of the two hadrons h1 and h2 with momenta P1 and P2, respectively. In the center-of-mass

∗Details on theoretical predictions and respective uncertainties of these quantities can be found, e.g., in Refs. [3–11].
†MATRIX (“MUNICH Automates qT subtraction and Resummation to Integrate X-sections") is a general-purpose

Monte Carlo program which combines the automated parton-level NLO generator MUNICH [12] (“MUlti-chaNnel
Integrator at Swiss (CH) precision”) with the qT -subtraction formalism [13] to obtain NNLO accuracy.
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frame the momentum q = ∑i pi of the system F , with the sum running over all particles in F , is
fully determined by the invariant mass M2 = (∑i pi)

2, the rapidity y = 1
2 ln q·P1

q·P2
, and the transverse-

momentum pT . We shall further describe the full kinematics of each particle i inside F by the
system momentum qµ = ∑i pµ

i (with p2
i = mi) and additional phase-space variables Ω. The latter do

not affect the pT -resummation procedure, but allow for a fully-differential description regarding the
Born-level phase space, which becomes particularly relevant when considering leptonic final states.

With the QCD factorization theorem we can write the differential cross section as follows:

dσF

dM2 dp2
T dydΩ

(y, pT ,M,Ω,s) = ∑
a1,a2

∫ 1

0
dx1

∫ 1

0
dx2 fa1/h1(x1,µ

2
F) fa2/h2(x2,µ

2
F)

×
dσ̂F

a1a2

dM2dp2
T dŷdΩ

(ŷ, pT ,M,Ω, ŝ,αS(µ
2
R),µ

2
R,µ

2
F) , (2.2)

where fa/h(x,µ2
F) (a = q, q̄,g) denotes the density functions of parton a in hadron h. µF and µR

are the factorization and renormalization scales, respectively, and dσ̂F
a1a2

denotes the partonic cross
section. The rapidity ŷ and the center-of-mass energy ŝ of the partonic scattering process are given
by ŷ = y− 1

2 ln x1
x2

and ŝ = x1x2s, where y and s are their hadronic counterparts.
The transverse-momentum distribution for pT & M is consistently described by fixed-order

perturbation theory in the QCD strong coupling constant (αs). When pT � M the presence of
logarithmically-enhanced contributions αn

S lnm(M2/p2
T ) spoil the perturbative expansion in αs.

These terms arise due to an incomplete cancellation of soft and collinear terms order by order in
perturbation theory; only their all-order resummation allows for a physical prediction at small pT .

We decompose resummation and fixed-order expansion at the level of the partonic cross section

dσ̂F
a1a2

dM2 dp2
T dŷdΩ

=
dσ̂

F ,(res.)
a1a2

dM2 dp2
T dŷdΩ

+
dσ̂

F ,(fin.)
a1a2

dM2 dp2
T dŷdΩ

. (2.3)

The first term on the r.h.s. of Eq. (2.3) resums logarithmically-enhanced contributions at small pT to
all orders. The second term instead contains no such contributions and thus remains finite as pT → 0
when computed in fixed-order perturbation theory.

Small-pT resummation is done in impact-parameter (b) space to consistently account for both
momentum conservation and factorization of the phase space. The resummed cross section is thus
expressed by a Bessel transformation from b to pT space‡

dσ̂
F ,(res.)
a1a2

dM2 dp2
T dŷdΩ

=
M2

ŝ

∫
∞

0
db

b
2

J0(bpT ) W F
a1a2

(b, ŷ,M,Ω, ŝ;αS,µ
2
R,µ

2
F) , (2.4)

with the 0-order Bessel function J0(x). For simplicity we use Mellin moments of W F . To retain the
rapidity dependence, however, we must apply ‘double’ (N1,N2) Mellin moments with respect to
z1,2 = e±ŷM/

√
ŝ as defined in Ref. [32]. This allows us to cast W F in the following factorized form

W F
(N1,N2)

(b,M,Ω;αS,µ
2
R,µ

2
F) = σ

F ,(0)(αS,M,Ω) (2.5)

×
[
1+

αS

π
H

F ,(1)
(N1,N2)

(M2/µ
2
R,M

2/µ
2
F ,M

2/Q2)+
(

αS

π

)2
H

F ,(2)
(N1,N2)

(M2/µ
2
R,M

2/µ
2
F ,M

2/Q2)+ . . .
]

× exp
{

Lg(1)(αSL)+g(2)(N1,N2)
(αSL;M2/µ

2
R,M

2/Q2)+
αS

π
g(3)(N1,N2)

(αSL,M2/µ
2
R,M

2/Q2)+ . . .
}
,

‡This is strictly true only for processes induced by qq̄ scattering, which are free from azimuthal correlations. In the
case of gluon fusion this induces an additional complication at the NNLL accuracy [34].
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Transverse momentum resummation of colorless final states at the NNLL+NNLO

where σF ,(0) is the partonic leading-order (LO) cross section. The coefficient functions H
F ,(i)
(N1,N2)

of
the αs expansion determine all perturbative higher-order terms that behave as constants as b→ ∞,
while the exponential Sudakov contains the complete dependence on b and resums order-by-order
all logarithmically-divergent b-dependent terms. Eq. (2.5) includes explicitly all terms for NNLL
accuracy: Lg(1) collects the LL contributions, the function g(2)(N1,N2)

in combination with H
F ,(1)
(N1,N2)

controls the NLL terms, and g(3)(N1,N2)
and H

F ,(2)
(N1,N2)

are relevant for NNLL precision. The explicit
form of the resummed logarithms is given by

L = ln
(

Q2b2

b2
0

+1
)
, (2.6)

with b0 = 2e−γE (and the Euler number γE = 0.5772...). The scale Q is termed resummation scale.
It parameterizes the ambiguities in the resummation procedure and must be chosen of the order
of the hard scale M. Its variations can be exploited as an uncertainty estimate of yet uncalculated
higher-order logarithmic corrections.

Let us turn now to the finite component of the cross section (second term on the r.h.s of
Eq. (2.3)), which is computed by removing all logarithmic terms, given by the αs expansion of the
resummed cross section in Eq. (2.4), from the customary perturbative truncation of the partonic
cross section at a fixed-order (f.o.):[

dσ̂
F ,(fin.)
a1a2

dM2d p2
T dŷ

]
f.o.

=

[
dσ̂F

a1a2

dM2d p2
T dŷ

]
f.o.

−

[
dσ̂

F ,(res.)
a1a2

dM2d p2
T dŷ

]
f.o.

. (2.7)

It gives the dominant contribution to the pT spectrum for pT & M, where the fixed-order result
is perfectly viable and any resummation effect is necessarily artificial. Indeed, the choice of the
logarithms made in Eq. (2.6) reduces the impact of resummation at large pT . Moreover, for the given
choice of the logarithms the argument of the Sudakov form factor vanishes at b = 0, which allows
us to enforce a unitarity constraint in Eq. (2.3) such that the integration over all pT reproduces the
differential fixed-order rate dσ/(dM2 dydΩ).

Finally, let us give some details on how the practical implementation and computation of
Eq. (2.3) in the MATRIX framework [14] is actually performed. We start from the NLO calculation
of F+jet production for the fixed-order component (first term on r.h.s.) of Eq. (2.7), computed
with the fully-automated NLO generator MUNICH [12], which applies Catani–Seymour dipole
subtraction [35] and OPENLOOPS [36] to obtain all required tree-level and one-loop amplitudes.§

The MUNICH code is already combined with an automated implementation of the qT -subtraction
formalism [13] in the MATRIX framework to obtain NNLO accuracy, as applied in the NNLO
computations of Refs. [43–46]. In fact, the finite component of Eq. (2.7) is identical in the qT -
subtraction formalism and can thus simply be taken from the NNLO implementation in the MATRIX

framework. To obtain the pT -resummed cross section in Eq. (2.3), we must only replace all
hard-collinear terms (contributing at pT = 0) in the NNLO computation by the proper all-order
resummation formula of Eq. (2.4).

§The evaluation of tensor integrals in the one-loop amplitudes relies on the COLLIER library [37], which is numerically
highly stable and based on the Denner–Dittmaier reduction techniques [38, 39] and the scalar integrals of Ref. [40]. For
problematic phase-space points, OPENLOOPS provides a rescue system using the quadruple-precision implementation of
the OPP method in CUTTOOLS [41], involving scalar integrals from ONELOOP [42].
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Transverse momentum resummation of colorless final states at the NNLL+NNLO

We have implemented Eq. (2.4) by extending the numerical program used for gluon-induced
Higgs production [6] such that it covers also the case of quark-initiated processes. One complication
was the implementation of the collinear coefficients in Mellin space, which were already available
in the code for gluon-initiated processes [6, 47], while the ones relevant to quark-initiated processes,
given in x space in Ref. [48], we converted ourselves.

The completely general and largely automated implementation of pT resummation in the
MATRIX framework allows us to compute the resummed transverse-momentum spectrum for any
system F of colorless particles produced in hadron collisions up to NNLL+NNLO, provided that
the two-loop virtuals are available for that process. This is possible thanks to the fact that all the
relevant resummation coefficients are known at sufficiently high order, and, in particular, a general
relation between the virtual amplitudes at one and two loop and the hard function has been worked
out up to O(α2

S) in Ref. [33]. In fact, the latter encodes all the process dependence, while the
other coefficients only had to be determined separately for gluon- and quark-initiated processes:
The collinear coefficients can be deduced from the ones computed for Higgs production [47] and
Drell-Yan [48]; the universal g(i) functions in Eq. (2.5) have been expressed up to i = 3 in Ref. [15]
in terms of the perturbative coefficients A(1), A(2) [27, 49], A(3) [50], B̃(1)

N [27], B̃(2)
N [30, 51, 52].

We stress again that our setup is fully differential in the momentum of all particles inside
F . Besides the possibility to study the pT spectrum of F with kinematic cuts on its constituents,
this implies that leptonic decays of color-neutral bosons can be performed at the amplitude level
including off-shell effects and spin correlations, whenever the two-loop helicity amplitudes are
known for a process, which in turn allows to apply general fiducial cuts as long as they are not
imposed on the associated jets.¶

3. Results: Application to W+W− and ZZ production

This Section contains the numerical results for the resummed transverse-momentum spectra
of VV ′ pairs with VV ′ ∈ {W+W−,ZZ} at the

√
s = 8 TeV LHC. The only perturbative information

we had to supplement to our framework presented in Section 2 are the virtual amplitudes for the
production of on-shell W+W− and ZZ pairs [44, 45].

Our setup uses the Gµ scheme with GF = 1.16639×10−5 GeV−2, mW = 80.399 GeV and mZ =

91.1876 GeV. The parton densities are taken from NNPDF3.0 [54]. We consider N f = 5 massless
quarks/antiquarks for ZZ production, while we employ the 4-flavor scheme for W+W− to split off
bottom-quark contributions in order to eliminate the contamination from tt̄ and Wt production. Our
central scale choices are µF = µR = µ0 = 2mV for the factorization and renormalization scales, and
the resummation scale is set to a fixed value of Q = mV as argued in Ref. [16].

3.1 Inclusive transverse-momentum spectrum

We start by comparing the resummed NNLL+NNLO prediction (blue, solid) for the inclusive
W+W− transverse-momentum distribution to the NNLO result (black, dotted) in Fig. 1.‖ As

¶This procedure required us to implement the recoil due to the pT of the produced final-state system for the Born-like
kinematics of the resummed component in Eq. (2.4). We checked that our implementation is equivalent to the prescription
of Ref. [53].

‖The general considerations apply also to ZZ production so that it is sufficient to focus on W+W− pT spectra at first.
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Figure 1: NNLL+NNLO pT spectrum (blue, solid) of the W+W− pair at (a) small and
(b) large pT is compared to NNLO (black, dotted) and the finite component of Eq. (2.3)
(magenta, dash-double dotted). The lower insets show the NNLL+NNLO to NNLO ratio.

expected, the fixed-order curve diverges at small pT and provides no physical prediction in that
region. The resummed result, on the other hand, has a well behaved spectrum down to vanishing
transverse momenta. Its spectrum features a kinematical peak at pT ∼ 5 GeV. At low transverse
momenta (pT ≤ 80 GeV) in Fig. 1 (a), we also study the impact of the finite component (cf. Eq. (2.3))
to the resummed distribution (magenta, dash-double dotted), which contributes below 1% in the
peak region and ∼ 19% at pT = 50 GeV.

Looking at the ratio of fixed-order and resummed predictions at large transverse momenta
(80 GeV≤ pT ≤ 400 GeV) in the lower inset of Fig. 1 (b), we see that the NNLL+NNLO distribution
smoothly merges into the NNLO result. We checked that this behaviour is indeed preserved up
to very large transverse momenta, which, in fact, renders a hard switching [55] to the fixed-order
result feasible. Therefore, the NNLL+NNLO computation provides a uniform prediction which
consistently combines low- and high-pT results.

We now turn to our best prediction for W+W− and ZZ transverse-momentum spectra including
scale uncertainties that are shown in Figs. 2 (a) and (b), respectively. We compare the resummed
NNLL+NNLO result (blue, solid) to NLL+NLO (red, dashed). The uncertainty bands reflect the
combined uncertainty from independent µF , µR and Q variations in the ranges mV ≤{µF ,µR}≤ 4mV

and mV/2≤ Q≤ 2mV , while constraining 0.5≤ µF/µR ≤ 2 and 0.5≤ Q/µR ≤ 2. By and large we
find a consistent reduction of the residual uncertainties: For W+W− the uncertainty at NNLL+NNLO
(NLL+NLO) amounts to about ±8% (±12%) at the peak, ±3% (±5%) at pT = 20 GeV and ±10%
(±15%) at pT = 200 GeV; in case of ZZ the pattern of the uncertainties in the small- and intermediate-
pT region is very similar; only at large transverse momenta they are larger than for W+W− reaching
up to about ±17% at NNLL+NNLO for pT = 200 GeV.

The behaviour in the large-pT region is driven by the fixed-order distribution. Let us recall

6
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Figure 2: pT spectrum of (a) the W+W− pair and (b) the ZZ pair at NLL+NLO (red,
dashed) and NNLL+NNLO (blue, solid); thick lines: central prediction; bands: µF , µR

and Q uncertainties computed as described in the text; thin lines: borders of bands. The
lower insets show the ratio to NNLL+NNLO.

that for W+W− the NNLO corrections [56–58] for pT . 200 GeV with respect to NLO are quite
large (∼ 40%) and that at least the NLO scale variations underestimate considerably the theoretical
uncertainty, given the fact the NLO and NNLO bands do not overlap in that region [16]. Therefore,
it is not surprising that we find non-overlapping and hardly-overlapping bands at large transverse
momenta for W+W− and ZZ, respectively.

3.2 Rapidity dependence of the transverse-momentum spectrum

As described in Section 2 our implementation of the general resummation formalism is fully
differential in the VV ′ phase space, i.e., it allows for arbitrary cuts on the kinematics of the VV ′ pair
(and even on any of its decay products, once we include the leptonic VV ′ decays by applying the
helicity amplitudes of Refs. [59, 60]). A natural double-differential observable concerns the VV ′ pT

distribution with an additional cut on the rapidity of the vector-boson pair.
Fig. 3 (a) shows the shape, i.e., normalized such that its integral yields one, of NNLL+NNLO

pT distributions of W+W− pairs in various rapidity ranges: |y| < 0.5 (red, solid), 0.5 < |y| < 1
(blue, dashed), 1 < |y|< 2 (black, dotted), 2 < |y|< 3 (magenta, dash-dotted) and 3 < |y| (orange,
dash-double dotted). In Fig. 3 (b) these curves are normalized to the shape of the inclusive pT

distribution. The general observations are the following:

• The pT shapes are hardest at central rapidities and become softer as the rapidity increases.

• In the central region (|y| < 2) the shape of the W+W− transverse momentum spectrum is
rather insensitive to the specific rapidity value. Indeed, the curves become only slightly harder
than in the inclusive case.

7
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Figure 3: (a) W+W− transverse-momentum shapes at NNLL+NNLO with cuts on the
rapidity of the W+W− pair: |y|< 0.5 (red, solid), 0.5 < |y|< 1 (blue, dashed), 1 < |y|< 2
(black, dotted), 2 < |y| < 3 (magenta, dash-dotted) and 3 < |y| (orange, double-dash
dotted); (b) shape-ratio with respect to the inclusive spectrum.

• In the forward rapidity region the curves feature a significant distortion towards a softer
spectrum with respect to the inclusive shape; with deviations of more than a factor of two in
the shape-ratio. These effects, however, are strongly phase-space suppressed.

The observed pattern can be understood in the following way: rapidity and transverse momen-
tum are two not completely independent phase-space variables. Indeed, they affect their mutual
upper integration bounds. At higher rapidities the kinematically allowed range of transverse mo-
menta is reduced: this squeezes the pT spectrum which consequently becomes softer. This effect
has been observed also in previous studies in the case of Higgs boson production [32].

3.3 pT -veto efficiencies for W+W− production

In this section we study efficiencies of the transverse-momentum of the W+W− pair, defined as

ε(pveto
T ) = σ(pT < pveto

T )/σtot , (3.1)

at various orders in resummed and fixed-order perturbation theory. Fig. 4 shows predictions for
ε(pveto

T ) at the NNLL+NNLO (blue, solid), approximate NNLL+NLO (magenta, dash-double dot-
ted), NLL+NLO (red, dashed), NNLO (black, dotted) and NLO (grey, dash-dotted) as a function of
pveto

T . In the lower inset the results are normalized to the reference NNLL+NNLO prediction. Ap-
proximate NNLL+NLO denotes NLL+NLO, but adding the g(3) function in the Sudakov exponent in
Eq. (2.5), and corresponds to the approximation considered in Refs. [19, 22]. The uncertainty bands
involve the independent variations of µF , µR and, where applicable, Q, as described in Section 3.1.

The general observation is that both resummation and perturbative higher-order effects yield a
sizable reduction of the pT -veto efficiency and therefore are vital for a precise theoretical prediction
of that quantity. Indeed, the approximated NNLL+NLO result gives some improvement over

8
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Figure 4: pT -veto efficiency of the W+W− pair at various orders: NLL+NLO (red,
dashed), NNLL+NNLO (blue, solid), NLO (grey, dash-dotted), NNLO (black, dotted),
approximate NNLL+NLO (magenta, dash-double dotted); thick lines: central prediction;
bands: uncertainty due to combined scale variations; thin lines: borders of bands.

the NLL+NLO one, but is still roughly 5% above the reference prediction at NNLL+NNLO for
pveto

T ∼ 25− 30 GeV. This suggests that the jet-veto efficiency obtained from the reweighting of
POWHEG [61] plus PYTHIA6 [62] with the approximate NNLL+NLO result of the inclusive
W+W− pT spectrum in Ref. [22], which was used in the W+W− measurement by CMS [63], might
decrease when using the full NNLL+NNLO prediction.

3.4 Comparison to data of the ZZ spectrum

In Fig. 5 we compare the experimental measurement of the ZZ pT distribution by CMS presented
in Ref. [17] to predictions at various orders in resummed and fixed-order perturbation theory. Let us
stress that the comparison is done at the level of shapes, more precisely the bins add up to one, and
that the comparison is not completely consistent, since the experimental pT shape is measured in
the fiducial volume, while our predictions are for the fully-inclusive spectrum. Fiducial cuts are not
expected to change the picture dramatically though.

That being said, we observe a remarkable agreement between our best NNLL+NNLO prediction
(blue, solid curve) and the data points (black dots), except for the single bin (75 GeV≤ pT ≤
100 GeV) where the experimental uncertainties are largest. Even in this bin the deviation is still
below the two sigma level though. We note that also the NNLO (black, dotted) and NLL+NLO (red,
dashed) results are in reasonable agreement with the data, the NNLL+NNLO result, however, being
always closer to the data points in the low-pT region where resummation effects are relevant; the
NLO central prediction (grey, dash-dotted), on the other hand, is quite off in that region.
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Figure 5: (a) Experimental measurement of the ZZ pT shape in the fiducial region from
Ref. [17] and (b) comparison of the data with various predictions at higher orders.

4. Conclusions and outlook

We presented a general implementation of small-pT resummation in the MATRIX framework.
Logarithmically enhanced contributions are resummed through NNLL accuracy and consistently
combined with the NNLO cross section for any process with colorless final states, as long as the
respective two-loop amplitude is known.

In this proceedings article we further reviewed the first application of this framework to on-shell
W+W− and ZZ production [16], showing results for both the inclusive pT distribution of the pair
and within cuts on its momentum. We also reported on results for the pT -vetoed cross section and a
comparison to experimental data of the ZZ pT spectrum.

Exploiting the helicity amplitudes of Refs. [59, 60] to include the leptonic decays of the vector
bosons with off-shell effects and spin correlations as well as the application to further processes is
left to future work.
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