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Jet production in the colorful NNLO framework Adam Kardos

1. Introduction

The automation of computing QCD jet cross sections at NLO [1, 2, 3, 4, 5, 6, 7, 8] and even at
NLO+PS [9, 10] accuracy brought NLO QCD computations to the masses. With maturing NNLO
subtraction schemes [11, 12, 13, 14, 15, 16], the steadily increasing number of available two-loop
matrix elements and new techniques devoted to the computation of these, we expect a significant
increase in the number of NNLO QCD computations in the coming years. This is necessitated by
the ATLAS and CMS experiments at CERN providing measurements and data with unprecedented
precision and hence becoming an instant driving force to push the computational frontier.

From the theoretical point of view, the knowledge of NNLO QCD corrections are welcome
to give some insight into the convergence of the perturbative expansion in terms of the strong
coupling. It is believed and already confirmed by NNLO calculations that the scale dependence
representing the uncertainty coming from missing terms due to the truncation of the perturbative
expansion, is drastically decreased if NNLO corrections are incorporated in the theoretical predic-
tion. If this tendency could be verified for many more processes it will be reassuring for the validity
of the perturbative approach. At NLO there are processes where the scale uncertainty bands are
such that the LO and NLO predictions do not overlap indicating that the two predictions taken
with two different accuracies are not compatible. For these processes it would be important to
see whether the uncertainty bands of the NLO and NNLO predictions overlap thus indicating a
converging behavior in the perturbative expansion.

To make NNLO predictions we decided to use the CoLoRFulNNLO subtraction scheme [11,
12] developed through the years to treat final-state kinematic singularities of the NNLO-type. To
illustrate the difference between an NLO and NNLO calculation in QCD consider the perturbative
expansion of some jet cross section which can be formally written as:

σNNLO = σ
LO +σ

NLO +σ
NNLO , (1.1)

where σLO, σNLO and σNNLO stand for the Leading-Order, Next-to-Leading-Order and Next-to-
Next-to-Leading-Order contributions, respectively. In QCD cross section is meant to stand for the
cross section calculated for some jet quantity measured through the jet function J with m partons
at the Born level. The LO and NLO corrections to a jet cross section represented by a jet function
J can be written in the form of:

σ
LO =

∫
m

dσ
B
m Jm ,

σ
NLO =

∫
m+1

[
dσ

RJm+1−dσ
R,A1
m+1 Jm

]
ε=0

+
∫

m

[
dσ

V
m +

∫
1

dσ
R,A1
m+1

]
ε=0

Jm , (1.2)

where the NLO correction consists of two contributions where the first, the real-emission part, is
regularized by subtracting off kinematical singularities appearing in singly unresolved regions of
the m+1 parton phase space. The regularization of the second, virtual, part is done by integrating
the previous subtraction terms over the singly unresolved part of the phase space making the sin-
gularities manifest in form of single and double poles in ε cancelling against poles of the virtual
squared matrix element.
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The structure of the NNLO correction follows the same structure though with more terms:

σ
NNLO = σ

NNLO
m +σ

NNLO
m+1 +σ

NNLO
m+2 ,

σ
NNLO
m+2 =

∫
m+2

{
dσ

RR
m+2Jm+2−dσ

RR,A2
m+2 Jm−

[
dσ

RR,A1
m+2 Jm+1−dσ

RR,A12
m+2 Jm

]}
ε=0

,

σ
NNLO
m+1 =

∫
m+1

{(
dσ

RV
m+1 +

∫
1

dσ
RR,A1
m+2

)
Jm+1−

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)A1
]

Jm

}
ε=0

,

σ
NNLO
m =

∫
m

{
dσ

VV
m +

∫
2

[
dσ

RR,A2
m+2 −dσ

RR,A12
m+2

]
+
∫

1

[
dσ

RV,A1
m+1 +

(∫
1

dσ
RR,A1
m+2

)A1
]}

ε=0

Jm ,

(1.3)

where the lines correspond to the (m+2), (m+1) and m parton contributions, respectively. In the
(m+ 2) parton contribution the (m+ 2) parton matrix element contains kinematic singularities in
both singly and doubly unresolved regions of phase space allowed by the jet function. In order to
regularize these A1 and A2 subtractions are defined, respectively. Beside of these singularities the
A1 subtractions contain kinematic singularities coming from the doubly unresolved, while the A2

from the singly unresolved region of the phase space. In the second line containing the (m+ 1)
parton contribution only singularities arising from singly unresolved regions of the phase space ap-
pear provided the (m+1) parton matrix element contains (m+1) partons. The required subtraction
terms are essentially different from the ones used for the NLO contribution since the (m+1) parton
matrix element contains a loop thus having factorization properties in different forms compared to a
tree level matrix element. Apart from the subtractions for the (m+1) parton matrix element further
subtraction terms have to be defined for the

∫
1 dσ

RR,A1
m+2 contribution too, which are also different

from the ones used in an NLO calculation. The last row only contains the two-loop squared matrix
element and all the integrated subtractions in order to cancel the poles coming from the two-loop
squared matrix element.

As it was shown the singularity structure of matrix elements present in an NNLO calculation
are much more delicate and the number of possible subtractions is also much larger compared to the
NLO case. Hence hand-constructed subtractions for every single process are prone to fail, the heavy
book-keeping of subtraction terms does not help avoiding mistakes like leaving out subtraction
terms which can be hard to detect in the NNLO case. The integrated subtraction terms can have
poles as high as O(ε−4), but if a subtraction only gives rise to poles O(ε−1) and the corresponding
subtraction term is left out the resulting divergent integral will still result in a finite numerical value
due to the mild divergence left inside making the mistake hard to be detected.

So, it is more profitable to create a framework for the subtractions which automatically assigns
subtraction terms to singular regions detected by an algorithm, which even helps to better organize
the numerical computations and the overall structure of the numerical program. In this talk we
introduce such a framework illustrated for the case of e+ e−→ 3jets.

2. Numerical implementation

The numerical code is written in standard fortran90 to fully exploit the new features of
the language such as dynamical allocations, operator overloading, user defined types, explicit in-
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terfaces to subroutines and finally modules. While dynamical allocation, user defined types and
operator overloading come handy when dealing with momenta, finally interfaces and modules pro-
vide a safety nest against typing mistakes in the argument field of routines and functions.

We decided to separate the code into two pieces: sources containing general, process-independent
routines are put in the main directory of the code while those which belong to a specific process
can be found in the directory of the process in question.

The interaction with the code is achieved via input cards where not only the physical parame-
ters can conveniently be adjusted but the run can be fine-tuned by allowing the user to freely turn on
and off contributions making the possibility to provide LO predictions for m, (m+1) and (m+2)
parton processes, NLO predictions for m and (m+ 1) parton processes and as an ultimate goal
obtaining NNLO predictions for the m parton process.

When the code is started flavor configurations are generated for all possible subprocesses.
When subprocesses are set up the code evaluates the matrix elements for all of them and looks
for possible numerical relations between to minimize the number of calls to matrix elements. If
a squared matrix element is found to be a numerical multiple of a different one, e.g. the squared
matrix element for e+ e− → uūg and e+ e− → dd̄g only differ by a factor of four only, this nu-
merical value is registered and during runtime only the first squared matrix element is evaluated
with a suitably chosen prefactor to take into account the contribution of the second squared matrix
element and the subprocess it represents.

2.1 Checking cancellations

In the calculation two types of cancellations can occur and could be checked therefore. The
first is the cancellation between the squared matrix element and the relevant subtraction term in a
given degenerate region of phase space and the second is the cancellation of poles between various
contributions in the (m+1) and m parton lines. While for the first case the cancellation improves
as going more deeply in the degenerate region for the second case the cancellation of poles is
exact, within numerical precision, in the whole available phase space. As these cancellations are
essential, the code offers the possibility to check upon them. In case of subtraction terms both
individual terms and full lines ((m+ 1) and (m+ 2)parton contributions) can be tested in both
singly and doubly (only for the (m+2) parton contribution) unresolved regions of the phase space.
We found checking against individual subtraction terms useful during the development of the code,
while checking against the complete sum of subtraction terms can be beneficial for checking for
overall consistency. At this point it is worth noting that considering the e+ e−→ qq̄ggg subprocess
more than 100 subtraction terms have to be evaluated with heavy cancellations occurring among
them in the (m+ 2) parton contribution. As an illustration on Fig. (1) 10.000 phase space points
were generated in two singly unresolved parts of the (m+ 2) parton phase space and the order
of cancellation is shown for three different values of the two-particle invariants that control the
collinearity or the rescaled energy as an indicator of softness demonstrating the improvement in
cancellation as going more and more deep into the unresolved region of phase space. Fig. (2)
depicts the behavior of the total sum of subtraction terms in the (m+ 2) parton contribution as
approaching one particular triple collinear and a double-collinear limit with three different values
for the two- and three-particle invariants governing the collinearity for 10.000 phase space points
for each resolution value.
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Figure 1: Degree of cancellation of the sum of subtraction terms of the (m+2) parton contribution against
the (m+2) parton squared matrix element depicted as the ratio of the two in 10.000 phase space points for
three different, fixed y56 = p5 · p6/Q2 and y6 = E6/

√
Q2 values representing the limits when p5 and p6 tend

to be collinear and the soft limit of p6.
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Figure 2: Degree of cancellation of the sum of subtraction terms against the (m + 2) squared matrix
element depicted as the ratio of the two in 10.000 phase space points for three different, fixed y567 = (p5 +
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2/Q2 and y56 = p5 · p6/Q2, y47 = p4 · p7/Q2 values representing the triple-collinear limit when p5,p6

and p7 tend to be collinear simultaneously with each other and the double collinear limit where p5,p6 and
p4,p7 get collinear.

The same cancellation of kinematic singularities can be shown for the (m+ 1) parton contri-
bution as well and it shows exactly the same behavior as seen for the doubly and singly unresolved
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cases for the (m+2) parton contribution.
As for pole cancellation in the (m+ 1) and m parton contributions the program can print out

the pole structure of various terms in randomly selected phase space points to see the degree of
cancellation which should be exact up to numerical precision over the full phase space.

2.2 Integration over phase space

In order to arrive at a jet cross section the squared matrix elements and all the subtractions have
to be integrated. As for the integrator we decided to use KALEU [17] but this was only our personal
preference and due to the flexibility brought into the code by handy fortran90 constructs the
user can change it to whatever his choice is for integrator.

KALEU is set up such to have separate instances for each subprocess allowing for the most
efficient optimization since the various subprocesses can have completely different dynamics ham-
pering optimizations. KALEU is a true multi-channel integrator coming with the possibility to
optimize over dipole channels to better mimic the dynamic behavior of the real-emission minus
subtractions part of an NLO calculation. In our case we would like to use the integrator in an
NNLO framework having not only singly but doubly unresolved regions of phase space as well. To
enhance the efficiency of integration for the (m+2) parton contribution, in particular in the doubly
unresolved regions, we extended the original KALEU code to include also double-dipole channels,
too. The multi-channel enabled invariant phase space measures can be written in the following
symbolic form:

dφm = dφm ,

dφm+1 = dφm+1⊕∑
i, j,k

dφm⊗Di j,k ,

dφm+2 = dφm+2⊕∑
i, j,k

dφm+1⊗Di j,k⊕ ∑
i, j,k
m̂,n̂,l̂

k 6=m̂,n̂

dφm⊗Dm̂n̂,l̂⊗Di j,k , (2.1)

where the m parton phase space is constructed through the multichannel approach with channels
derived from the Feynman diagrams relevant for the underlying Born subprocess, the (m+1) par-
ton phase space is constructed through multichannels coming from the underlying real subprocess
extended with channels coming from the underlying Born subprocesses times all possible dipoles
and finally the (m+ 2) parton phase space is constructed using channels from the (m+ 2) parton
subprocess, all possible underlying real subprocesses times a dipole and all possible underlying
Born subprocesses times two dipoles resulting in the same (m+ 2) parton flavor configuration.
When double dipoles are generated those are left out where the spectator of the second dipole (the
one mapping from the (m+ 1) parton phase space to the (m+ 2) parton one) coincides with a
member of the splitting pair of the first dipole (which maps from the m parton to the (m+1) parton
phase space) to avoid the occurrence of an unresolved spectator.

Scale uncertainty studies form an essential part of any fixed order calculation in perturbation
theory to have an idea about the size of terms neglected in the perturbative expansion. The code
is equipped with facilities to produce predictions for different scale choices and sweeps through
ranges of scales. To keep the computation time at minimum, tree-level amplitudes are only eval-
uated once provided scale dependence only enters through strong coupling factored out from the

6
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# of loops
# of partons

m m+1 m+2

0
B , Bi j , Bi jk , Bi jkl

Bµν , Bµν

i j , Bαβ µν
R , Ri j , Rµν RR

1 V , Vi j , V µν RV

2 VV

Table 1: Various squared matrix elements needed to be supplied by the user in order to obtain predictions
up to NNLO accuracy. Latin indices stand for color and greek indices stand for spin degrees of freedom
needed to define the color- and spin correlated squared matrix elements.

squared matrix elements1 while for the squared matrix elements including loop(s) a special flag
is used to indicate whether the squared matrix element is evaluated for the first time in the given
phase space point or not, allowing the user to store the squared matrix element and re-evaluates the
scale-dependent part only in subsequent evaluations at the same point but with a different scale.

2.3 User defined input

The code itself provides a computational framework at NNLO accuracy using the methodol-
ogy of the CoLoRFulNNLO subtraction scheme but to get it working for a specific process the
user ought to supply the corresponding matrix elements. These include tree level squared matrix
elements for the m parton (B), (m+1) parton (R) and (m+2) parton (RR) subprocesses, one-loop
squared matrix elements for m (V ) and (m+ 1) (RV ) parton subprocesses and two-loop squared
matrix elements for m parton (VV ) subprocesses. Beside squared matrix elements at the m parton
level for tree and one-loop contributions, while at the (m+ 1) parton level for tree contributions
spin- and color-correlated squared matrix elements are needed as well. In Tab. (1) we summarized
the needed quantities. Along with these the user should mind to include a jet function and an
analysis which suits his needs.

Beside of the matrix elements to fully construct the m parton contribution of the full NNLO
contribution the code needs the integrated version of the subtraction terms present in the (m+ 2)
parton contribution. At present we know the pole structure of the integrated subtraction terms
analytically, the finite part is only available numerically. In this talk we focus on the (m+ 2) and
(m+ 1) parton contributions to the NNLO correction and leave the discussion on the integrated
subtraction terms for a further, more detailed publication.

3. Towards phenomenology

We demonstrate the capabilities of our framework in the case of 3-jet production in electron-
positron annihilation. For this process the kinematics is non-trivial, the two-loop matrix element
squared is known [18, 19] and the NNLO correction to event shape observables was already com-
puted for this process [20, 21] offering the possibility of comparison and validation.

1We would like to remind the reader that the CoLoRFulNNLO subtraction scheme is so far available for colorless
initial states hence no factorization scale is present.
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Figure 3: The 1−T and C-parameter distribution at
√

s = 90GeV with NNLO corrections partially taken
into account, for details see the text.

In this section the (m+ 2) and (m+ 1) parton contributions2 of the NNLO correction is to
be calculated for various event shapes observables. It needs to be stressed that this partial result
is unphysical. Including the missing m parton contribution, significant cancellations can occur
completely altering not just the size of the correction but the shape of the distributions as well.

Since our primary intention is to demonstrate that our code can calculate the two most compu-
tationally intensive part of the total NNLO correction ((m+1) and (m+2)) and not a comparison
to already available physical predictions, we employed the following set of physical parameters in
our calculation:

√
s = 90GeV, µR = mZ, mZ = 91.1876GeV, mW = 80.385GeV, αs(mZ) = 0.118

and 1/αEM = 132.23. To illustrate the computational capabilities of our code the six most used
event shapes were selected and calculated: thrust (1−T ), C-parameter, wide jet broadening (BW ),
total jet broadening (BT ), the 2-to-3 jet transition variable (Y3) and the heavy jet mass (ρ), for a
definition of these variables, see [21]. On Fig. (3) the 1−T and the C-parameter distribution , on
Fig. (4) the wide and total jet broadening and finally on Fig. (5) the 2-to-3 jet transition variable and
the heavy jet mass is depicted. The reader should note that on these figures the NNLO differential
cross sections are depicted for the event shapes but omitting the m parton contribution in the NNLO
correction, that is

O
dσ∗NNLO

dO
= O

dσLO

dO
+O

dσNLO

dO
+O

dσNNLO
m+1

dO
+O

dσNNLO
m+2

dO
, (3.1)

where O is the event shape variable.

The missing contribution (m parton contribution) does not pose any problem in the sense that if
the integrated subtraction terms are set up and the two-loop squared matrix element is implemented
the numerical integration converges fairly rapidly resulting in smooth distributions for all the event
shapes. From these distributions it can be concluded that our program can produce distributions for
observables having NNLO accuracy which can be used in an experimental analysis.

2As yet the talk was delivered the calculation of the finite part of the integrated subtraction terms and the validation
of the two-loop squared matrix element was ongoing.
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Figure 4: The same as Fig. (3) but for the wide and total jet broadening.

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Y
3
d
σ

d
Y
3
[p
b
]

0 1 2 3 4 5 6 7 8 9 10

− log Y3

NNLO∗

e+ e− → γ∗ → 3jet√
s = 90GeV

µR = mZ

0

2

4

6

8

10

12

ρ
d
σ d
ρ
[p
b
]

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
ρ

NNLO∗

e+ e− → γ∗ → 3jet√
s = 90GeV

µR = mZ

Figure 5: The same as Fig. (3) but for the 2-to-3 jet transition variable and for the heavy jet mass.

4. Conclusions

In this talk we introduced a new framework to calculate QCD NNLO corrections for processes
where the initial state is colorless. In devising this framework our aim was to create a flexible,
easily extendable code which is also user friendly. For demonstrating its operation we calculated
six key event shape observables routinely considered in electron-positron annihilation in the case
of 3-jet production. Our code was able to provide stable and reliable predictions for the (m+ 1)
and (m+2) parton part of the complete NNLO correction. Once the m parton contribution is ready
comparisons can be done with existing predictions, which are postponed for a later publication.
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