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1. Introduction

The knowledge of higher-order corrections is crucial for the discovery and characterization
of potential new-physics signals. From the theoretical point of view, this is a very challenging
task due to the increasing computational complexity of multi-loop multi-leg processes. In fact,
the presence of singularities (or ill-defined expressions) forces the application of regularization
methods to obtain finite results, such as dimensional regularization (DREG) [1, 2, 3, 4]. There are
different kind of singularities;

e ultraviolet (UV), associated with the high-energy behavior of the theory;

e infrared (IR), related with the presence of degenerate configurations in the low-energy limit;

e and threshold singularities, which may appear when virtual particles are produced on-shell;

as well as other spurious or non-physical divergences. In the context of DREG, threshold singu-
larities do not introduce €-poles because they are integrable singularities; however, it is crucial to
introduce a proper prescription to deal with them. On the other hand, renormalization success-
fully cures UV divergences by applying a well-known and systematic procedure. For the IR case,
it is also possible to achieve a finite result when IR-safe observables are considered. Only under
that assumption, Kinoshita-Lee-Nauenberg (KLN) [5] theorem guarantees the cancellation of IR
singularities among all the possible degenerate configurations associated with the same final state
observable. In particular, this involves taking into account real and virtual corrections, which differ
in the number of external particles.

In this article, we focus in the treatment of IR singularities through a new method, which is
based in the loop-tree duality (LTD) theorem [6, 7, 8]. In the standard approach, which is based
in the subtraction method [9, 10, 11, 12, 13, 14, 15, 16, 17], the IR-singular behavior of scattering
amplitudes is exploited to write local counter-terms which could be integrated analytically. The in-
tegrated counter-terms are combined with the virtual contributions, whilst their unintegrated form
is used to perform a local regularization of the real terms. Contrary to this, the main idea behind
LTD is to rewrite virtual amplitudes as real radiation terms, and perform an integrand level combi-
nation with the real contribution. In this way, dual amplitudes originated from the virtual part act
directly as counter-terms for the real-emission amplitudes.

The outline of this article is the following. In Section 2 we review the basic ideas behind LTD,
introducing suitable notation. Then, in Section 3, we study the divergent structure of a triangle
Feynman integral. In particular, we prove that IR poles are originated in a compact region of
the integration space. After that, we explain the implementation of a fully inclusive cross-section
computation at next-to-leading order (NLO) in Section 4. We focus the discussion in the real-virtual
momenta mapping, which plays a crucial role to achieve the IR cancellation. Some details about
the numerical implementation are given, emphasizing the possibility of obtaining four-dimensional
representations at integrand level. Finally, in Section 5 we present the conclusions and discuss
about possible extensions of these ideas.
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2. Basics of LTD

The real and virtual contributions share the same kind of IR singularities, in spite of involving
a different number of final-state particles. In LTD loop integrals are related with phase-space in-
tegrals of tree-level objects called dual integrals [6]. In any relativistict, local and unitary theory,
this property is directly translated to scattering amplitudes, and virtual amplitudes become expre-
sible in terms of dual amplitudes. In this article, we analyze one-loop corrections, but these ideas
are naturally extended to higher-loops [6, 18, 19, 20, 21]. Let’s consider an N-leg scalar one-loop
integral, whose dual representation is given by the sum of N dual integrals. Each dual integral is
associated with a possible one-cut, so we have

LY%p,...on) ==Y I /53(61[) Gp(4i3q;) (2.1)

i€ay jeoy, j£i
where the cut condition is obtained through
8 (q1) =21160(qi0) (47 — ). (2:2)
which forces g; to be on-shell, and
RO p— ijea=1{12.. N}, 2.3)
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are dual propagators, with kj; = g; — g;. The four-momenta of the external legs are p;, which
are taken as outgoing, and we use ¢ as the loop momentum. Also, we denote the internal line
momenta as g; ; = (gi0,4i), where g; o is the energy component whilst q; refers to the spacial part.
If k; = p1 +...+ p; represents a sum of external momenta (which fulfills ky = 0 due to momentum
conservation), then we have ¢; = { +k; and k;; = k; — k;.

The distinctive feature of LTD is the introduction of the modified 10 prescription. The idea
of using the residue theorem and cut diagrams was already applied in the Feynman’s tree theorem
(FTT) [22, 23], which establishes that loop amplitudes are reconstructed as the sum over all pos-
sible multiple-cuts. In fact, these m-cuts are simply obtained by replacing propagators with the
associated Dirac’s delta given in Eq. (2.2); no other modification is required to recover the exact
loop integral. On the other hand, LTD only makes use of single cuts by modifying the Feynman’s
prescription and introducing the arbitrary future-like vector 717. Notice that the prescription depends
on the sign of the product 1 - k;;, i.e. different cuts might have a different prescription. This point
is crucial to exactly recover the discontinuity structure of virtual amplitudes. In other terms, since
FTT and LTD are equivalent, the multiple-cut information is codified into the dual propagators
through their modified :0 prescription.

Finally, let’s make a comment about the relation among loop and phase-space (PS) measures.
In the context of DREG, virtual contributions involve the integral over ¢ without any other con-
straint. On the other hand, real radiation terms are obtained after the integration over the extra
particle’s PS. Since real particles are involved, they are subjected to physical requirements, i.e.
they must fulfill momentum conservation and the corresponding on-shell relation. The last condi-
tion is implemented through the introduction of the Dirac’s delta given in Eq. (2.2). In consequence,
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we can start from the virtual contribution and use LTD at one-loop; the dual integration measure
becomes

~ d ~
[[8a) = [ S8 4

which resembles a real PS measure in d-dimensions. So, LTD converts the usual d-dimensional
loop measure into a (d — 1)-dimensional integration. The associated integration domain becomes
= (g -
14
ml2 +10) = 0. In this way, dual contributions are expressed in the same form as the real part,

the forward on-shell hyperboloid associated with the solution of the equation Gg(g;)~

allowing a direct combination at integrand level. We will explain the consequences of this fact in
the following sections.

3. Formal example: disentangling IR singularities in loops

LTD offers the attractive possibility of studying the divergent structure of virtual contributions
(loop integrals, in particular) and identifying the regions responsible of the appearance of these
singularities. Let’s analyze the simplest IR-divergent Feynman integral, i.e. a scalar triangle in the
time-like (TL) region. The process is represented by the kinematical configuration ps — p; + p2,
with p% =0= p% and p% =512 > 0. Using the notation introduced in Section 2, we have g; = {4+ py,
¢> =L+ p1» and g3 = £. Then, we parametrize g; in the center-of-mass frame, choosing p; (p2)
along the positive (negative) z-axis. Using the dimensionless variables (&;0,v;), the kinematical
invariants of this system are given by

2gi-p1/si2=Eovi, 2qi-p2/si2="G&io(1—vi), (3.1
and we define the d-dimensional integration measures as
s\ ¢
d[Sio] = cr <“2) o d&io,  dlvi] = (vi(1—vy)) *dvi, 3.2)

with cr the usual loop volume factor in d dimensions. Here, &;  is related to the energy component
of g;, whilst v; is an angular variable. Since there are three internal lines, the application of LTD

leads to
—51r —10\ ¢ 3
50 ) = T S12 7t ~y'r .
(plap2> PS) 51282 ‘uz l:ZI ) (3 3)
with the dual integrals
L= : -1 -1
L = — d[él,o]/ di] &g (i(l—v1)) ", (3.4)
S12 Jo 0 '
1= ! (1—vy)!
L = — d / dv| ————, 3.5
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I L ]/1[ | (3.6)
= —— 1% . .
3 s12 Jo 300 Jo 3 1+&p0

It is worth appreciating that the dual prescription becomes relevant for I, because the denominator
vanishes inside the integration domain. This is related with the presence of a threshold singularity.
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Explicitly, two internal lines become simultaneously on-shell when &, o = 1 and the diagram can
be split into two physical tree-level terms. These contributions resemble those obtained after the
application of Cutkowsky’s rules. In fact, we can remove the imaginary part of I, by adding the
Cutkowsky contribution, and this removes the purely imaginary €-poles allowing to obtain a four-
dimensional representation of L(!) (p1,p2,—p3) [7, 24].

Once we have written the dual contributions, we analyze the structure of their integrands to
identify the origin of loop singularities. The integration domain is defined by the possitive-energy
solutions of Gr(g;)~! = 0 in the loop-momentum space, which are geometrically described by
intersecting light-cones (LCs) when considering massless propagators. In Fig. 1, these domains
are shown for each dual contribution; we distinguish between forward (g; o > 0) and backward
(gi0 < 0) LCs. The intersections among LCs produce different kinds of singularities, as discussed
in Refs. [20, 21]. For the massless triangle, the intersection among the three LCs originates a
soft singularity, which is associated with double &-poles. On the other hand, forward-backward
intersections lead to collinear singularities. For instance, the intersection among the forward LC
of I} and the backward LC of I3 originates single €-poles related with those introduced in the
collinear limit p; || ¢;. Analogously, when the forward LC of I, intersects the backward LC for I;,
we obtain those singularities associated with the collinear region ¢; || p,. While forward-forward
intersections cancel among dual contributions, the integrable threshold-singularity is associated
with the intersection of the forward LC for /; and the backward LC for /5. In that region, q% =0= q%
implies that two internal lines are on-shell and, moreover, they have positive energy; thus, the dual
diagram factorizes into the product of two tree-level amplitudes.

$o

threshold

¢z

Figure 1: Location of threshold and IR singularities in the (&, &;) space. Forward-forward (FF) singular-
ities cancel among dual contributions whilst forward-backward (FB) intersections lead to IR and threshold
singularities. In particular, the collinear singularities are spread along the FB intersections, and the soft one
is associated with the intersection of the three light-cones.

To conclude this section, let’s use the graphical information available in Fig. 1 to identify
the regions that contribute to the IR singular structure of the triangle. We define the following
soft/collinear integrals;

1Y = 1(&o<w), 3.7)
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19 =hw<Eop<1iv <1/2), (3.8)
12(0) = 12(6270 <l4+w;v> 1/2) , (3.9)

where we introduced an arbitrary cut w > 0 to deal with the threshold region. Performing an explicit
computation, we find

_ —10 —€
IIR — I(S)+I(C)+I(C) _ Cl <S121>
1 1 2 S ‘uz
2

1 . 1
< |2 +1log(2)log (w) — % —2Lip (_w> +log (2)] +0(¢), (3.10)

which implies that L) (p1, pa, —p3) = '+ 0(£°), i.e. all the IR singular structure of the triangle
is due to a compact region in the integration domain. This is a crucial property to achieve a local
cancellation of IR singularities when adding the real corrections [7, 8, 24].

4. Physical example: yx — ¢g at NLO

Let’s combine real and virtual contributions through the application of LTD. The first imple-
mentation of this approach was presented in Ref. [7], where we obtained the NLO corrections to a
generic 1 — 2 decay in the context of a scalar theory. Here, we will briefly describe the procedure
for computing NLO QCD corrections to y* — gg. A more detailed presentation is available in Ref.
[24].

In first place, we compute the renormalized one-loop correction to ¥ (p3) — q(p1) + G(p2),
ie.

oV = 2112 [ i R O[7"Y) ~ (Zo(pn) + AZap2)) L4 OF] . @)

that also includes the self-energy corrections to all the external particles; this is a crucial point to
achieve a fully local cancellation of IR singularities. Besides that, let’s mention that the presence
of a non-trivial structure in the numerator leads to UV divergent terms that must be absorbed into
renormalization counter-terms. Using LTD and expressing the internal momenta qﬁl in terms of
(é,"o,v,‘), we obtain

o) = oyl +oy)+ ol 4.2)

where G\(,lg are the renormalized dual cross-sections.
On the other hand, the real correction corresponds to the process y* (p3) — q(p) +g(p5) +

g(p).), and is given by

1 ~ 512
G}g) — c® crgsCr () / dylr/ der V1Yo Y12) ¢

X {4( Yo —s)+2(1—e) <y2’+y,”>], 4.3)
y]ry2r ylr y2r

where y! iS12 = 2p)- p’j, 09 denotes the Born level cross-section and ¢ is the PS volume factor in

d-dimensions. Then, we separate the real-radiation PS into two regions which only contains one
collinear configuration. Explicitly, we use the identity

1=00—1,)+00',—¥3), (4.4)
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to split the three-body PS into two disjoint regions, R = {y}, < ¥,} and R, = {)}, <}, }. Imple-
menting this separation at integrand level in Eq. (4.3), we obtain

ol =l <) L hi={1,2}, 4.5)

which fulfill Glgl) = lglf + Glg%. The following step is the introduction of a momentum mapping
that allows to generate 1 — 3 on-shell kinematics using the variables (&;o,v;). For instance, we
define

F=q,  Pl'=—dyraiph =pf —dgi +ouphy,
2
u u 4q3
=(1-— (04] s o) = —-, (46)
pZ ( )pZ 2q3p2

and express y;; in terms of (& 0,v1) according to

;. vbo ;o (=v)(1=&0)&i0 ;o
A T S T R 1P Yo=1-8&o. &7

This mapping is specially suited for R; because it properly describes the limit y}, — 0, correspond-

ing to the collinear configuration ¢; || p;. An analogous momentum transformation is obtained for

(1)

R;. Then, we use the corresponding mapping to rewrite oy ; in terms of (&; o, v;). Since

1-2
6 (s, — Y1) = Z1(610,v1) = 9(1—2V1)9< I " 51,0) : (4.8)

-V

1—+1—
0y, —ya) = #a2(E0,v2) = 6 <F - 52.,0) ; 4.9)

the regions Ry and R, are mapped into subsets inside the integration domain of the dual cross-
sections G\(,li and G\(}%, respectively. So, we define 6\(,1_3 = 65,13 (R;) with i = {1,2}. Notice that it
is not required to deal with G\(,l_% because it does not contribute to the IR-singular structure of the

(1) (1)

virtual part. In other words, only the integrands of le,l and le.z are needed to locally regularize
the divergent behavior of the real contribution in the regions R and R,, respectively.

Once the real and dual cross-sections are expressed using the same sets of variables, we pro-
ceed to combine them at integrand level. At this point, we realize that the isolation of the IR
singularities of the loop integrals into a compact region of the parameter space becomes essential,
because the real contribution has a finite integration domain. We conclude that

ci={12}, (4.10)

are finite integrals in the limit € — 0. Moreover, since the NLO corrections to the total cross-section
are finite by virtue of KLN theorem, the sum of the dual contributions which are not used in the

definition of Gl_(l)’ ie.

— (1 1 ~ (1 1 _(1 1
V= (%,i - 53) + ("5,3 - 5,%) +oy), @.11)

is also finite when € = 0. The most important point is that we can explicitly find four-dimensional
representations for Eqs. (4.10) and (4.11). For Gl.(l) it is straightforward to prove that the limit
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(1)

€ — 0 leads to a regular integrand. In the case of 6\/1 , there are some subtleties since it involves
three different sets of variables. If we just implement a shift in the energy component and unify the
angular variables, i.e. (& o+ a;,vi) = (§o,v), taking the limit € — 0 would lead to missing finite
parts. This is due to a mismatch in the collinear limits of the different dual integrands. To cure
this behavior, we must use the same coordinate system to describe the three internal momenta ql’.‘ .
Once we perform this change of variables, we can consider € — 0 at integrand level and recover

the same result obtained in DREG.

Finally, if we add the four-dimensional representations of Eqs. (4.10) and (4.11), we obtain

s

0)
o 4.12)

I . S o
which agrees with the well-known total cross-section at NLO in og. We would like to emphasize
that, following the procedure sketched here, the result shown in Eq. (4.12) is obtained through a
purely four-dimensional implementation.

5. Conclusions and outlook

The loop-tree duality (LTD) theorem is a theoretical tool which allows to decompose loop-
integrals in terms of dual contributions. These dual contributions are build using single cuts by
invoking to a suitable modification in the :0 prescription. In this article, we firstly applied LTD to
analyze the IR singular structure of the massless triangle integral. This led us to the conclusion that
soft and collinear poles are originated in a compact region of the integration domain.

After that, we center in the description of the NLO QCD corrections to the process y+ — ¢4.
We showed a procedure to combine real and virtual contributions, and implement the computation
considering the limit € — O at infegrand level. This a distinctive aspect of our approach, because
it is not trivial to find an integral representation which is compatible with commuting the limit
€ — 0 and the integral. In other words, we know that the addition of real and virtual contributions
should lead to finite results; i.e. using DREG, we integrate and after that we take the limit € — 0,
because all e€-poles cancel. Our claim is stronger, because we found an algorithm that allows
to directly combine real and virtual terms before integration, based in the dual decomposition of
virtual amplitudes. As explained in Section 4, the representation that we obtained is not only
four-dimensional but also compatible with the commutativity of the limit € — 0. And the essential
component of this technique is the real-virtual mapping, which allows to generate the real radiation
kinematics from the Born level invariants, plus the spatial component of the loop momentum. In
this way, singularities of the dual and real terms are mapped into the same points in the integration
domain, leading to a fully local regularization.

In conclusion, this approach constitutes an alternative to the traditional subtraction method,
with the appealing possibility of increasing the computational efficiency [24, 25]. Moreover, the
four-dimensional representations that we found can be obtained using purely algebraic methods,
which also might shed light into the mathematical structures behind scattering amplitudes and
cross-sections.
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