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1. Introduction

The study of high precision scattering amplitudes in Quantum Chromodynamics and the
Standard Model is important for the Run II of the Large Hadron Collider (LHC). However, the
precise computation suffers from problems of the large number of loop Feynman diagrams and
difficult loop integrations. This work aims at developing a new method of reducing loop integrals to
the minimal set of integrals, i.e., master integrals (MIs).

Traditionally, integral reduction can be achieved by applying integration-by-parts (IBP) iden-
tities [1]. There are several implements of IBPs generating codes AIR [2], FIRE [3–5] and Re-
duze [6, 7], based on Laporta algorithm [8], or LiteRed [9], based on a heuristic search of the
symbolic IBP reduction. For multi-loop diagrams with high multiplicities or many mass scales,
it may take a lot of computer time to finish the integral reduction. There are also several new
approaches for integral reduction, based on the study of the Lie algebra structure of IBPs [10],
Syzygy computation [11, 12], reductions over finite fields [13], and differential geometry [14].
Besides, the number of master integrals can be determined by the critical points [15].

We present a new method of integral reduction, for a class of multi-loop diagrams, based on
unitarity [16–33] and the analysis of algebraic curves [34–36]. We show that for a D-dimensional
L-loop diagram, if the unitarity cut solution V is an irreducible algebraic curve, then the on-shell
IBPs correspond to exact meromorphic 1-forms on V . For an algebraic curve, it is very easy to find
the exact meromorphic 1-forms. Hence we get the on-shell IBP easily.

We consider some complicated diagrams to show the power of our method: (1) D = 4 planar
double box with internal massive legs. The unitarity cut for this diagram is an elliptic curve. (2)
D = 4 non-planar crossed box with internal massive legs. The unitarity cut for this diagram is a
genus-3 hyperelliptic curve. For these examples, we get all the on-shell IBPs analytically. in the
time order of minutes.

2. Integral Reduction via the Analysis of Algebraic Curves

Generically, for a quantum field theory, the L-loop amplitude can be written as [16, 17],

AL-loop
n = ∑

k
ckIk + rational terms , (2.1)

The set {Ik} is called the master integral (MI) basis. Traditionally, the integral reduction is done by
using IBP identities [1], ∫ dDl1

(2π)D . . .
dDlL
(2π)D

∂

∂ lµ

i

vµ

i

Dα1
1 . . .Dαk

k
= 0, (2.2)

if there is no boundary term.
We present a new way of integral reduction, based on maximal unitarity method and algebraic

curves. Given a Feynman integral with k propagators, maximal unitarity splits (2.1) as [18–33],

Int = ∑
i

ciIi +
(
integrals with fewer-than-k propagators

)
+ rational terms (2.3)

where the first sum is over the master integral with exact k propagators.
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The condition the all internal legs are on-shell, is called the maximal unitarity cut,

V : D1 = . . .= Dk = 0, (2.4)

and the solution set for this equation system is an algebraic variety V . V can be a set of discrete
points, algebraic curves or surfaces. (See [37, 38] for the detailed mathematical study.) Maximal
unitarity replaces the original integral with contour integrals [26–33], schematically,∫ dDl1

(2π)D . . .
dDlL
(2π)D

N(l1, . . . lL)
Dα1

1 . . .Dαk
k
→
∮ dDl1

(2π)D . . .
dDlL
(2π)D

N(l1, . . . lL)
Dα1

1 . . .Dαk
k

= ∑
j

w j

∮
C j

ω (2.5)

where ω is a differential form on V , and contours c j’s are around the poles of ω and also the
nontrivial cycles of V [30, 32]. w j are weights of these contours. In particular, to extract the
coefficients ci in (2.1), we can find a special set of weights w{i}j [26–32] such that,

ci = ∑
j

w{i}j

∮
C j

ω (2.6)

Our observation is that if a differential form ω on V is integrated to zero, around all singular
points on V , poles of ω and non-trivial cycles of V .∮

C j

ω = 0, ∀ j (2.7)

then from (2.6) and (2.3), the integral corresponding to ω can be reduced to integrals with fewer
propagators.

We focus on the cases for which the number of propagators equals DL−1 and the maximal uni-
tarity cut gives one irreducible variety. In such a case, the cut solution V is a smooth algebraic curve
with well defined complex structure. The condition (2.7) implies that ω is an exact meromorphic
form on V , since the integral

F(P) =
∫ P

O
ω, ∀P ∈V (2.8)

is independent of the path and dF = ω . Then from the study of meromorphic functions on V , we
can list generators for F and then derive all forms which satisfy (2.7). Explicitly, for this class of
diagram, we find that the scalar integral on the cut becomes a holomorphic form on V .∫ dDl1

(2π)D . . .
dDlL
(2π)D

1
D1 . . .Dk

∣∣∣∣
cut

=
∮

Ω (2.9)

where the 1-form Ω is globally holomorphic on V . On the cut, the components of li’s become
meromorphic functions. Let F(l1, . . . lL) be a polynomial in the components of loop momenta, then
take the derivative of F ,

dF = f Ω. (2.10)

The resulting f Ω is an exact meromorphic 1-form. From the analysis above, we get that,∫ dDl1
(2π)D . . .

dDlL
(2π)D

f
D1 . . .Dk

= 0+(integrals with fewer propagators), (2.11)

so we obtain an integral reduction relation.
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3. Elliptic Example: Double Box with Internal Masses

The method explained in the previous section can be used for integral reduction for various
topologies, for instance, the double-box (Fig. 1) with three different masses for the internal
propagators.

m1

m1

m1 m2

m2

m2

m3

l2l1

k1

k2

k4

k3

Figure 1: Planar double box diagram with 3 internal mass scales

3.1 Maximal unitarity

The denominators for double box diagrams are

D1 = l2
1 −m2

1 , D2 = (l1− k1)
2−m2

1 , D3 = (l1− k1− k2)
2−m2

1 ,

D4 = l2
2 −m2

2 , D5 = (l2− k4)
2−m2

2 , D6 = (l2− k3− k4)
2−m2

2 ,

D7 = (l1 + l2)2−m2
3 .

(3.1)

We parametrize the loop momenta as,

lµ

1 = α1kµ

1 +α2kµ

2 +α3
s
2
〈1|γµ |2]
〈14〉 [42]

+α4
s
2
〈2|γµ |1]
〈24〉 [41]

,

lµ

2 = β1kµ

3 +β2kµ

4 +β3
s
2
〈3|γµ |4]
〈31〉 [14]

+β4
s
2
〈4|γµ |3]
〈41〉 [13]

.

(3.2)

The solutions for the maximal unitarity cut,

D1 = D2 = . . .= D7 = 0. (3.3)

defines an elliptic curve. To see this, we first solve for the variables α1, α2, α3, β1, β2 and β3 in
terms of α4 and β4,

α1 = 1 , α2 = 0 , α3 =
m2

1t(s+ t)
α4s3 ,

β1 = 0 , β2 = 1 , β3 =
m2

2t(s+ t)
β4s3 ,

(3.4)

Then the remaining one equation relates α4 and β4,

K(α4,β4) = A(α4)β
2
4 +B(α4)β4 +C(α4) = 0, (3.5)
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Here A(α4), B(α4) and C(α4) are quadratic polynomials of α4, whose coefficients depend on
kinematic variables. Formally, β4 depends on α4 as,

β4 =
−B(α4)±

√
∆(α4)

2A(α4)
, ∆ = B2−4AC, (3.6)

where ∆ is a quartic polynomial in α4 with four distinct roots. Hence the maximal unitarity cut
defines an elliptic curve, i.e., algebraic curve with genus one,

On the cut, by a short calculation, the scalar double box integral on the cut, becomes∫ d4l1
(2π)4

d4l2
(2π)4

1
D1 . . .D7

∣∣∣∣
cut

=
s2t
16

∮ dα4√
∆
, (3.7)

where the overall factor is not important for the following discussion. As [32], it is remarkable
that dα4√

∆
is the only holomorphic one-form associated with the elliptic curve. On the cut, the

loop-momentum components αi, βi become elliptic functions.

3.2 Integral reduction

We now focus on the double box integral with numerator N,

I[N] =
∫ d4l1

(2π)4
d4l2
(2π)4

N
D1 . . .D7

, (3.8)

Integrand reduction method via Gröbner basis method [39, 40] determines that the integrand
basis contains 32 terms. On the cut, the integral becomes a meromorphic one-form,

I[N]|cut ∝

∮ dα4

η
N(α3,α4,β3,β4) (3.9)

where N is a polynomial in α3, α4, β3 and β4, and therefore also an elliptic function. If two integrals
on the cut, differ by the contour integrals of an exact meromorphic one-form ω , then

I[N1]− I[N2]

∣∣∣∣
cut

=
∮

ω = 0 (3.10)

where the second equality holds for all contours, i.e., two fundamental cycles and small contours
around the poles, because ω is exact. Then the integral reduction between I[N1] and I[N2] is achieved
at the level of double box diagram,

I[N1]− I[N2] = 0+(integrals with < 7 propagators) (3.11)

Note the α4 and β4 generate all elliptic functions on this elliptic curve. In practice, we find that
to find such ω’s, it is sufficient to consider the exterior derivatives of polynomials in α3, α4, β3 and
β4, So we need to find the one forms {dα3,dα4,dβ3,dβ4} and then use the chain rule to generate
integral reduction relations. We can start by calculating dα4 in terms of the holomorphic one-form,

dα4 = η
dα4

η
= (2A(α4)β4 +B(α4))

dα4

η
, (3.12)
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where we used the definition η =
√

∆ and (3.6) to rewrite η in function of β4. The purpose of this
step is to get the a polynomial form of f .

We can now easily find dα3,

dα3 = d
(

λ1

α4

)
=−λ1

1
α2

4
dα4 =−

α2
3

λ1
dα4 , λ1 ≡

m2
1t(s+ t)

s3 (3.13)

To generate the remaining 1-forms, we again use the form of elliptic curve. Recall that,

K(α4,β4) = A(α4)β
2
4 +B(α4)β4 +C(α4) = 0 . (3.14)

The identity dK = 0 reads,

dβ4 =−
(
A′(α4)β

2
4 +B′(α4)β4 +C′(α4)

) dα4

η
. (3.15)

Finally we can easily calculate dβ3,

dβ3 = d
(

λ2

β4

)
=−λ2

1
β 2

4
dβ4 =−

β 2
3

λ2
dβ4 , λ2 ≡

m2
2t(s+ t)

s3 (3.16)

Then use the chain rule, we get all the on-shell IBPs. For example, we analytically obtain this
relation,

Idbox[α
3
4 ] =

1
2s4(4m2

2− s)

(
3s3 (m2

1s−m2
2s−m2

3s−4m2
2t + st

)
Idbox[α

2
4 ]

+ s(4m2
1s2t−2m2

2s2t−2m2
3s2t +m4

1s2−2m2
2m2

1s2−2m2
3m2

1s2 +m4
2s2 +m4

3s2

−2m2
2m2

3s2 +2m2
1st2−4m2

2st2−8m2
2m2

1st−8m2
2m2

1t2 + s2t2)Idbox[α4]

+ m2
1t(s+ t)

(
m2

1s−m2
2s−m2

3s−4m2
2t + st

)
Idbox[1]

)
+ . . . (3.17)

where . . . stands for integrals with fewer than 7 propagators. Consider all polynomials whose exterior
derivative satisfy the renormalizability conditions, we obtain 23 integral relations. Furthermore,
consider Levi-Civita insertions which integrate to zero,

ε(l2,k1,k2,k3) l2 · k1 , ε(l2,k1,k2,k3) l1 · k4 , ε(l1, l2,k1,k2) , ε(l1, l2,k1,k3) . (3.18)

we get 4 more integral relations. So the total number of MIs is #MIdbox = 32− 23− 4 = 5, and
explicitly the MIs can be chosen as,

MIdbox =
{

Idbox[α4β3], Idbox[α
2
4 ], Idbox[α4], Idbox[β3], Idbox[1]

}
. (3.19)

The whole computation takes about 120 seconds with our Mathematica code. The relations are
numerically verified by FIRE [3, 4].

4. Hyperelliptic Example: Nonplanar Crossed Box with Internal Masses

We now proceed in studying the integral reduction of the massive nonplanar double box (Fig. 2).
Unlike the previous examples, this diagram’s maximal unitarity cut provides a genus-3 hyperelliptic
curve [37, 38]. To illustrate our method, we consider the two-loop crossed box diagrams with
massless external legs and three internel masses scales {m1,m2,m3}.

6
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l1

l2

k1

k2

k3k4

m1

m1

m1

m3

m3m2

m2

Figure 2: Nonplanar double box

4.1 Maximal Unitarity and geometric properties

The denominators for the Fig. 2 are,

D1 = l2
1 −m2

1 , D2 = (l1− k1)
2−m2

1 , D3 = (l1− k1− k2)
2−m2

1 ,

D4 = l2
2 −m2

3 , D5 = (l2− k3)
2−m2

3 , D6 = (l1− l2 + k4)
2−m2

2 ,

D7 = (l1 + l2)2−m2
2 .

(4.1)

The on-shell constrains are D1 = . . . = D7 = 0. We use the same loop momenta parametrization
(3.2). Again, we first solve for α1, α2, α3, β1, β2 and β4 in terms of α4 and β3,

α1 = 1 , α2 = 0 , α3 =
m2

1t(s+ t)
α4s3 ,

β1 =−(α4 +α3 +
t
s
) , β2 = 0 , β4 =

(m2
3)t(s+ t)
β3s3 .

(4.2)

The rest two variables satisfy a polynomial equation,

K(α4,β3) = A(α4)β
2
3 +B(α4)β3 +C(α4) = 0, (4.3)

whose solution can be formally represented as,

β3 =
−B(α4)±

√
∆(α4)

2A(α4)
, ∆≡ B2−4AC (4.4)

Unlike the previous examples, ∆(α4) here is a degree-8 polynomial in α4 with 8 distinct roots.
Hence the unitarity cut of this diagram provides a genus-3 hyperelliptic curve.

4.2 Integral reduction

First, the integrand reduction via Gröbner basis [39, 40] determines that, the integrand basis
contains 38 terms in the numerator. Then, consider the maximal cut for the scalar integral of this
diagram. The residue computation gives,

Ixbox[1]|7−cut =
s3(s+ t)

16

∮
α4dα4√

∆(α4)
. (4.5)

7
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Note that unlike the elliptic case, on a genus-3 curve there are three holomorphic 1-forms.

dα4√
∆(α4)

,
α4dα4√

∆(α4)
,

α2
4 dα4√
∆(α4)

(4.6)

the scalar integral cut corresponds to the second one.
This hyperelliptic curve have 6 fundamental cycles and 8 poles as shown in the previous

subsection. By global residue theorem, only 7 poles’ residues are independent. Therefore we may
perform maximal unitarity by computing integrals over 6+7 = 13 contours. Therefore the number
of master integers must be 13.

Following what we did for elliptic cases, we calculate the differential forms {dα3,dα4,dβ3,dβ4}.

dα4 =
η

η
dα4 = (2A(α4)β4 +B(α4))

dα4

η
= (2A(α4)β4−B(α3))

α3

λ1

α4 dα4

η
, (4.7)

where we have used the usual definition η ≡
√

∆. In the second equality, we used the on-shell
identity, α3α4 = λ1 ≡ m2

1t(s+t)
s3 to recover the form of the scalar integral cut (4.5). The step is not

needed for elliptic cases. Then,

dα3 = d
(

λ1

α4

)
=−λ1

1
α2

4
dα4 =−

α2
3

λ1
dα4 , (4.8)

where again we have used (4.2) to simplify our expression. The exterior derivatives for βi are more
complicated,

dβ3 =−
(
A′(α4)β

2
3 +B′(α4)β3 +C′(α4)

) α3

λ1

α4dα4

η
, (4.9)

and,

dβ4 = d
(

λ2

β3

)
=−λ2

1
β 2

3
dβ3 =−

β 2
4

λ2
dβ3 , λ2 =

m2
3t(s+ t)

s3 (4.10)

Given a polynomial function of {αi,βi}, we can use the chain rule to generate the on-shell IBPs.
Again, we also consider Levi-Civita insertions. In total, we generate 25 on-shell IBPs and 6

Levi-Civita insertions identities. Hence there are 38−25−6 = 7 MIs for the non-planar crossed
box diagram with three internal mass scales. Define that X = (l1 + p4)

2/2 and Y = (l2 + p1)
2/2,

and the MIs can be chosen as:{
Ixbox[X3], Ixbox[Y 2], Ixbox[XY ], Ixbox[X2], Ixbox[X ], Ixbox[Y ], Ixbox[1]

}
. (4.11)

For this non-planar diagram, the analytic integral reduction relations are significantly more compli-
cated. The integral reduction at the level of crossed box takes about 22 minutes with our Mathematica
code, and the relations obtained by our method have been numerically verified by FIRE [3, 4].

5. Outlooks

Beyond the cases discussed, it would be interesting to study the ε-dependent part of the integral
reduction, based on our method. One apparent difficulty is that the spacetime dimension is not a
constant, so the cut solution’s dimension or geometric structure is not fixed. This problem can be
solved by using the dimension-dependent measure and dimension-independent propagators in the
integrand. The research on two-loop maximal unitarity in dimensional regularization scheme [41],
also based on algebraic geometry tools, help us to understand IBPs with dimensional regularization
from a geometric viewpoint.
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