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1. Introduction

The hyperfine splitting (HFS) Ehfs = Mϒ(1S) − Mηb(1S) in the bottomonium system results

within the Standard Model (SM) from a different spin configuration of the bottom quark and anti-

quark. Mϒ(1S) is a spin one (triplet) state where Mηb(1S) is a spin zero (singlet) state. A deviation

of SM based predictions from the experimental results could be a hint of new physics and it is

thus important to obtain an accurate SM based prediction. Several distinct methods to predict Ehfs

are being in use. We shortly discuss a selection of them including the experimental measurements

done so far in the respective overview section. Then we revise the method employing lattice non-

relativistic QCD (lNRQCD). We present details required for the perturbative matching of QCD to

lNRQCD at the one-loop level and present our result.

2. Experimental overview

The ϒ bound state in the spin one configuration was first observed in 1977 by the E288 col-

laboration in the di-muon channel as an excess over the Drell-Yan background in the proton beam

collision with a fixed target. The precise position of the ϒ(1S) resonance is nowadays measured

with e+e− colliders and the current PDG value is
√

s = M(ϒ1S) = 9460.30±0.26 MeV.

The ϒ bound state in a spin zero configuration (ηb) was first observed by the Babar collabo-

ration in 2008 [2]. Here ηb(1S) was produced in the radiative decay of ϒ(3S) plus an additional

photon. After the subtraction of the non-resonant background and the resonant background of the

alternative decay into χb(2P) plus photon and the subtraction of the production of ϒ(1S) plus ini-

tial state radiation the detected photon spectrum is peaked at the energy corresponding to a HFS

of Ehfs = 71.4+2.3
−3.1 ±2.7 MeV. In 2009 Babar published another analysis using the radiative decay

of ϒ(2S) getting a slightly lower value [3]. In 2010 the CLEO collaboration published an analysis

based on the ϒ(3S) decays indeed finding an excess of events in the region where Babar found the

ηb [4]. However, the evidence of the excess is – due to the small number of signal events – less

significant than the one from Babar.

In 2012 the Belle collaboration used a different production channel to determine the mass of ηb

with – up to now – highest precision [5]. Starting with a ϒ(5S) state decaying via an intermediate

resonance into two pions and hb(1P) or hb(2P), which then decays further into ηb(1S) plus photon,

Belle finds consistent peaks in the hb(1P) and hb(2P) yield at an energy corresponding to a smaller

HFS of Ehfs = 57.9±2.3 MeV.

The current world average by PDG [6] for the HFS was obtained by a weighted average of all

four results leading a value of Ehfs = 62.3±3.2 MeV.

All experimental values for the HFS are shown in Fig 1.

3. Theory overview

The following methods allow predictions for Ehfs:

• Phenomenologic potential models [7]

• Perturbative (potential) non-relativistic QCD (pNRQCD) calculation [8]

2



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
8
9

Hyperfine splitting in the bottomonium system on the lattice and in the continuum Nikolai Zerf

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È

È lNRQCD, new result

lQCD HPQCD 2013

lNRQCD HPQCD 2013

lNRQCD HPQCD 2012

lQCD MILC 2009

NRQCD NLL, KPPSS 2004

PDG average

Belle 2012

CLEO 2010

Babar 2009

Babar 2008

20 40 60 80 100 120

Ehfs HMeVL

Figure 1: Experimental and selected theory prediction values for the HFS. The gray band represents the

world average determined by PDG.

• Lattice QCD simulations [9, 10]

• Lattice NRQCD simulations [11, 12]

The reference included in the list above lead to publications using the very method to obtain a value

for Ehfs = Mϒ(1S)−Mηb(1S).

In the method of phenomenologic potentials one models a generic qq-potential with free pa-

rameters in a first step. Then the free parameters are fitted with the requirement that the model

predictions are in agreement with experimental measurements for different mesonic states. With

the obtained fitted parameters the potentials are applied to the bb state with proper quantum num-

bers, where the energy shifts due to the HFS are evaluated within the framework of perturbation

theory within quantum mechanics involving wave-functions and Hamiltonians. Although the ob-

tained predictions can agree very well with the experimental measurements, the method itself is

unable to judge if physics beyond the SM is hidden inside the experimental data, because the fit-

ted potentials may already contain such a contribution. Moreover radiative corrections cannot be

implemented in a systematic way following first principles.

In a perturbative pNRQCD calculation there is a systematic way to implemented radiative

corrections within the tower of effective field theories QCD ⊃ NRQCD ⊃ pNRQCD. Moreover,

one can be sure that the prediction is purely based on QCD. In Ref. [8] Ehfs was calculated within

the next-to-leading logarithmic approximation. The uncertainty in the scale variations is still quite

sizeable but the central value is lower than in other extraction method. This can be due to missing

non-perturbative contributions. However, there is no reliable estimate of the size of such contribu-

tions.

To cover all non-perturbative contributions one can rely on full lattice QCD simulations. The

difficulty here is that the bottom quark mass mb is much larger than ΛQCD and in order to resolve

the UV dynamics of bottom quarks, one is in principle forced to use a small lattice spacing a ∼
1/mb. At the same time one needs a large lattice to avoid cutting off non-perturbative IR dynamics

3



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
8
9

Hyperfine splitting in the bottomonium system on the lattice and in the continuum Nikolai Zerf

L ∼ 1/ΛQCD. Both requirements together lead to a computing intensive simulation setup which can

be dealt with nowadays [9, 10].

To overcome the need to resolve the full dynamics up to scaled including mb one can just

simulate the dynamics of NRQCD on the lattice. Because NRQCD does not contain scales of the

order of mb in dynamical fashion, one can chose the inverse lattice distance to be smaller than mb.

In fact one requires

mb > a−1 > mbv . (3.1)

Here v is the relative velocity of the bottom quark and antiquark, and we require the inverse of a to

be larger than mbv because scales of this magnitude are still dynamical in NRQCD and thus need to

be resolved in a lattice simulation. The residual dependence of NRQCD on the hard modes ∼ mb

(which are not dynamical in NRQCD) is obtained via a matching calculation where one requires

the agreement of QCD amplitudes with their NRQCD counterparts within the non-relativistic kine-

matics. During this procedure free parameters in the NRQCD Lagrangian – so called matching

coefficients – are determined. Because QCD is perturbative at the scale mb one can obtain the

matching coefficient within perturbation theory.

In the following we present the calculation of radiative corrections to the lNRQCD matching

coefficient of the four fermion operator contribution to the HFS at the one loop order.

4. Matching lNRQCD to QCD

The terms responsible for generation of the HFS (at order order O(v4)) in the NRQCD La-

grangian read (see e.g.[13, 14])

Lσ =
cF

2mq

ψ†Bσψ +(ψ → χc)+dσ
CFαs

m2
q

ψ†σψχ†
c σ χc, (4.1)

ψ and χc are the two component Pauli-spinor fields of the heavy quark and anti-quark. B is the chro-

momagnetic field. The relevant matching coefficients are the anomalous chromomagnetic coupling

cF and the effective coupling constant dσ of the four fermion interaction. cF can be determined

non-perturbatively [15, 11] and is in good agreement with the perturbative one loop evaluation [16].

dσ was calculated in Ref. [16], however we do not agree with the obtained QCD amplitude.

In Fig we show the box diagrams required for the extraction of the matching coefficient dσ .

In QCD diagrams (a-d) and in NRQCD diagrams (c-f) do contribute. In order to regulate the

corresponding amplitudes in the infrared we introduce a non-vanishing gluon mass λ . Our QCD

result reads:

M
QCD
1PI =

CFα2
s

m2
q

[

CA

2
log

(mq

λ

)

+(ln2−1)TF

+

(

1− 2πmq

3λ

)

CF

]

ψ†σψχ†
c σ χc,

(4.2)
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(a) (c) (e)

(b) (d) (f)

Figure 2: One-loop box Feynman diagrams relevant for the determination of dσ .

Where we use CF = 4/3,TF = 1/2 and CA = 3. Our lNRQCD amplitude reads:

M
NRQCD
1PI =

CF α2
s

m2
q

[

−
(

δ +
1

2
ln(λa)

)

CA

− 2πmq

3λ
CF

]

ψ†σψχ†
c σ χc +O

(

a2
)

, (4.3)

Besides a single negative power of λ in the Abelian part (∼ CF ) corresponding to the Coulomb

singularity there is only a logarithmic dependence on λ up to higher order terms in aλ which

do vanish in continuum limit. Because the infrared structure of lNRQCD and QCD do agree, all

singularities appearing for λ → 0 cancel in the difference of QCD and lNRQCD amplitude. The

non-singular Abelian part of the lNRQCD result vanishes in the limit a → 0. Thus one only needs

the lattice calculation of the non-Abelian term δ . Note that beside the a2λ 2 terms the Abelian

part of Eq. (4.3) includes the linear lattice artifact ∼ amb associated with the lattice cutoff of the

Coulomb singularity.

The difference of the QCD and lNRQCD amplitude has to be covered by an effective four-

quark operator. The coefficient in the Lagrangian is then given by

dσ = αs

[(

δ +
1

2
L

)

CA +(ln2−1)TF +CF

]

, (4.4)

where L = ln(mqa).

In the case of a naively discretized lattice action an analytical calculation of the constant

including the logarithm using the expansion by region method introduce by Becher and Mel-

nikov [17] was performed. The analytic results reads:

δ naive =−7

3
+28π2b2 −256π2b3 = 0.288972 . . . , (4.5)

Here the lattice tad-pole integrals are b2 = 0.02401318 . . ., b3 = 0.00158857 . . .. In the calculation

of the lNRQCD amplitude we systematically neglect higher-order 1/mb terms, in particular com-

ing from the expansion of the non-relativistic quark propagator which we take in the static quark

approximation.

We cross-checked our analytic result with an independent numerical calculation based on

HiPPy/HPsrc package [18]. Here we use the program COLOR [19] to reduce the color amplitudes

analytically, leaving only the Lorentz-amplitudes for the integration with the CUBA library [20].
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For the improved lattice action – used by the HPQCD collaboration [11] in lattice simulation

– we use the same numerical setup, except we provide HPsrc with the electronic Feynman-rules

following from the improved action. Our numerical result for the improved action reads then:

δ = 0.1446(28) . (4.6)

5. Determination of the HFS

The HFS was calculated within a lattice simulation for three different lattice spacings. First

taking into account terms up to O(v4) in the action action [11] and later including O(v6) terms [12].

The lattice result without the four-quark operator contribution is available inside the stated refer-

ences. In order to take the four quark operator contributing to the HFS into account we add its

effect

∆Ehfs =−dσ
4CF αs

m2
q

|ψ(0)|2, (5.1)

on top of the lattice data for the HFS. For the O(v4) and O(v6) action we obtain from a constrained

fit:

E
O(v4)
hfs = 57.5±dis 2.6±rel 6.0±rad 4.8 MeV ,

E
O(v6)
hfs = 51.5±dis 3.1±rel 1.8±rad 4.3 MeV . (5.2)

Here the first error indicates the discretization uncertainty. The second error is due to neglected

higher order relativistic corrections and the last error reflects the uncertainty of higher order radia-

tive correction. The latter is estimated via the size of the known double logarithmic two loop terms

of cF and dσ as well as the stated numerical uncertainty in the one loop coefficient cF . We combine

the two results where we only treat the error due to higher order radiative corrections correlated.

The final result reads:

Ehfs = 52.9±5.5 MeV . (5.3)

6. Discussion

In Fig. 1 we compare our result with all experimental determinations and a selection of pre-

vious theory determinations. Compared to the most recent lNRQCD analysis value our result is

about 10 MeV smaller. Half of the difference is due to the difference in the one-loop QCD ampli-

tude (the QCD result of Ref. [16] has been corrected shortly after this talk, see the erratum, and

now agrees with eq. (4.2)). The remaining difference is mainly a consequence of the different

treatment of lattice artifacts and 1/(amb) suppressed contributions in dσ . We do not include any

lattice artifacts proportional to amb and/or 1/(amb) suppressed contributions in the matching co-

efficient. The 1/(amb) contributions are small for lattice spacings used in the actual simulations.

At the same time the one-loop contribution does not account for the linear lattice artifact in the

given order. Due to the non-perturbative character of the Coulombic interaction the contribution

of the multiple Coulomb gluon exchanges to the coefficient of ∼ amb term is not suppressed. The

latter should be determined from the non-perturbative lattice data and the one-loop result can only

6
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be used for a rough estimate. We have found that the effect of the linear artifact on the continuum

extrapolation is within the error bars given above. For the O(v4) action the continuum limit works

extremely well. We expect that for the O(v6) action the continuum limit improves after taking into

account the one loop matching for all relevant higher order operators up to order O(v6).
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