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1. Introduction

In the Standard Model (and many of its extensions) quark masses enter as fundamental pa-

rameters mq into the underlying Lagrange density. Once quantum corrections are considered one

has to fix the precise definition of mq. For heavy quarks a natural one is the on-shell definition

where one requires that the quark propagator Sq(q) has a pole for q2 = (MOS
q )2. However, there are

many situations where other definitions are more convenient. As an example we mention the decay

rate of Higgs bosons to bottom quarks where, when expressed in terms of the MS bottom quark

mass evaluated at the appropriate scale, potentially large logarithms are automatically summed up.

A further example is the threshold production of top quark pairs in electron-positron annihilation.

For this process one has to adopt a properly constructed (so-called) threshold mass which, on the

one hand, is of short-distance nature as the MS mass. On the other hand, it has similar features as

the on-shell mass. In particular, it has a physical definition at threshold.

It is important to have precise relations among the various mass definitions. In Ref. [1] four-

loop corrections to the relation between the MS and on-shell heavy quark definition has been com-

puted. This result has been used to derive next-to-next-to-next-to-leading order (N3LO) relations

among the MS and the most popular threshold masses, namely the PS [2], 1S [3, 4, 5] and RS [6]

masses.

The relation between the MS (m) and the on-shell mass (M) is obtained by considering in a

first step their relation to the bare mass, m0:

m0 = ZMS
m m , m0 = ZOS

m M . (1.1)

Here, ZMS
m is known to five-loop order [7]. However, in our calculation, only the four-loop result is

necessary [8, 9, 10]. ZOS
m is computed from the scalar and vector contribution of the quark two-point

function with on-shell external momentum via

ZOS
m = 1+ΣV (q

2 = M2)+ΣS(q
2 = M2) . (1.2)

One-, two- and three-loop results to ZOS
m have been computed in Refs. [11], [12] and [13, 14, 15, 16],

respectively. Four-loop result have recently been computed in Ref. [1].

By construction, the ratio of the two equations in (1.1) is finite which leads to

zm(µ) =
m(µ)

M
. (1.3)

It is convenient to cast the perturbative expansion in the form

zm(µ) = ∑
n≥0

(αs

π

)n

z
(n)
m , (1.4)

with z
(0)
m = 1. In the next section we present results for zm up to four-loop order and discuss the

numerical effects for charm, bottom and top quarks. Afterwards we consider in Section 3 the

relation between the MS and various threshold masses. Section 4 contains our conclusions.
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2. Four-loop MS-on-shell relation

For the computation of the fermion self energy we use an automated setup which generates

all contributing amplitudes with the help of qgraf [17]. The output is transformed to FORM3-

readable [18] input using q2e and exp [19, 20]. Afterwards projectors for the scalar and vector

part are applied, traces are taken and the scalar products in the numerator are decomposed in propa-

gator factors. This leads to several million different integrals encoded in functions with 14 different

indices which belong to 100 different integral families.

The Laporta algorithm [21] is applied to each family using FIRE5 [22] and crusher [23]

which are written in C++. Then we use the code tsort [24], which is part of the latest FIRE

version, to reveal relations between primary master integrals (following recipes of Ref. [25]) and

end up with 386 four-loop massive on-shell propagator integrals, i.e. with p2 = M2.

Up to this point the whole calculation is analytic. However, at the moment not all master

integrals could be evaluated analytically but only numerically using FIESTA [26, 27, 28] which

leads to an accuracy of about five to six digits for the highest ε expansion term. For some integrals

a two- or threefold Mellin Barnes representation could be derived which enabled us to obtain a

precision of more than eight, in some cases even more than 20 digits.

For each integral which is evaluated numerically, each ε coefficient gets a separate uncertainty

assigned. Since it results from a numerical Monte Carlo integration we interpret it as a standard de-

viation and combine the individual uncertainties in the final expression quadratically. Furthermore,

we multiply the uncertainty in the final result for the MS and on-shell relation by a factor five.

Note that we have performed the calculation allowing for a general gauge parameter ξ keeping

terms up to order ξ 2 in the expression we give to the reduction routines. We have checked that ξ

drops out after mass renormalization but before inserting the master integrals.

In the following we show the MS-on-shell relation in the form where the on-shell mass is

computed from the MS mass. We discuss the top, bottom and charm quark case and use as input

the following MS masses: mt ≡ mt(mt) = 163.643 GeV, mb ≡ mb(mb) = 4.163 GeV [29], and

mc(3 GeV ) = 0.986 GeV [29]. The corresponding values for the strong coupling are given by

α
(6)
s (mt)= 0.1088, α

(5)
s (mb)= 0.2268, and α

(4)
s (3 GeV)= 0.2560. They have been computed from

α
(5)
s (MZ) = 0.1185 [30] using RunDec [31, 32]. In the case of the charm quark we also provide

results for µ = mc using the input values mc ≡ mc(mc) = 1.279 GeV and α
(4)
s (mc) = 0.3923. Note

that the choice µ = 3 GeV is preferable since it has the advantage that low renormalization scales

µ ≈ mc are avoided. Our results read

Mt = mt

(

1+0.4244αs +0.8345α2
s +2.375α3

s +(8.49±0.25)α4
s

)

= 163.643+7.557+1.617+0.501+0.195±0.005 GeV , (2.1)

Mb = mb

(

1+0.4244αs +0.9401α2
s +3.045α3

s +(12.57±0.38)α4
s

)

= 4.163+0.401+0.201+0.148+0.138±0.004 GeV , (2.2)

Mc = mc(3 GeV)
(

1+1.133αs +3.119α2
s +10.98α3

s +(51.29±0.52)α4
s

)

= 0.986+0.286+0.202+0.182+0.217±0.002 GeV , (2.3)
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Mc = mc

(

1+0.4244αs +1.0456α2
s +3.757α3

s +(17.36±0.52)α4
s

)

= 1.279+0.213+0.206+0.290+0.526±0.016 GeV . (2.4)

For the top quark the higher order corrections become successively smaller by a factor two to three

leading to a four-loop correction term of about 200 MeV. This is the same order of magnitude as

the intrinsic uncertainty of the MS-on-shell relation given by ΛQCD. The four-loop corrections are

still smaller than the current uncertainty of the top quark form the TEVATRON and the LHC [33].

However, they are not negligible.

For the bottom and charm quark case the situation is completely different. No convergence is

observed when increasing the loop order. In the case of the charm quark where mc(mc) is chosen

as a starting point one even observes a four-loop coefficient which is almost twice as large as the

three-loop one.

From the above results one can conclude that the immediate application of the MS-on-shell

relation is only meaningful for the top quark case. For the lighter quarks the on-shell mass param-

eter should be avoided. If necessary an appropriately chosen threshold mass should be used as we

will discuss in the next section.

In the following we present for the top quark mass the inverted relation of Eq. (2.1) which

reads1

mt = Mt

(

1−0.4244αs −0.65441α2
s −1.944α3

s − (7.23±0.22)α4
s

)

= 173.34−7.948−1.324−0.425−0.171±0.005 GeV , (2.5)

where Mt = 173.34 GeV [33] and α
(6)
s (Mt) = 0.1080 has been used. This equation can be used to

compute mt(mt) for a given value for the on-shell mass Mt .

3. Relation between MS and threshold masses to N3LO

In this section we present numerical results for the MS quark masses using input values for the

PS, 1S and RS threshold masses. In practical applications the latter are extracted from comparisons

with experimental data. The derivation of the N3LO relations is discussed in Ref. [1] following the

prescriptions provided in the original references [2, 3, 4, 5, 6].

Table 1 shows results for the MS top quark mass computed from the PS, 1S and RS threshold

mass values given in the first and second row. Note that these values are chosen in such a way that in

all three cases the same MS mass is obtained after applying four-loop corrections, which facilitates

the comparison. Note also, that in contrast to the corresponding table in Ref. [1] we choose for the

factorization scale of the PS mass µ f = 80 GeV instead of µ f = 20 GeV. This is suggested by the

N3LO threshold analysis of σ(e+e− → tt̄) performed in Ref. [34]. The factorization scale for the

RS mass is kept at µ f = 20 GeV.

In all three cases one observes a rapid convergence of the perturbative series. In fact, the

NNLO term amounts to at most 210 MeV (1S mass), and at N3LO at most 20 MeV (RS mass).

After increasing the four-loop MS-on-shell term by 3%, which is the current uncertainty on the

four-loop coefficient in Eq. (1.4), the mass values reduces by 6 MeV. Combining these two sources

1Note that the MS value used in Eq. (2.1) has been obtained using Eq. (2.5) to three-loop accuracy.
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input mPS = m1S = mRS =

#loops 168.204 172.227 171.215

1 164.311 165.045 164.847

2 163.713 163.861 163.853

3 163.625 163.651 163.663

4 163.643 163.643 163.643

4 (×1.03) 163.637 163.637 163.637

Table 1: mt(mt) in GeV computed from the PS, 1S and RS quark mass using LO to N3LO accuracy. The
numbers in the last line are obtained by taking into account the uncertainty of the four-loop coefficient, i.e.,
it is increased by 3%.

100 150 200 250 300

µ (GeV)

163.5

164.0

164.5

165.0

165.5

166.0

m
t(
m

t)
 (
G
e
V
)

PS

1 loop
2 loops
3 loops
4 loops

Figure 1: MS top quark mass mt(mt) computed from the PS mass with LO, NLO, NNLO and N3LO
accuracy as a function of the renormalization scale used in the MS-threshold mass relation.

of uncertainties one ends up in a final uncertainty below 20 MeV which is sufficient for a precise

determination of mt at a future linear collider [34].

Let us at this point have a closer look to the PS mass. In Table 1 the renormalization scale has

been fixed to µ = mt . It is also interesting to consider different values of µ and compute in a first

step mt(µ) which is then evolved to mt(mt) using renormalization group methods. In Figure 1 we
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Figure 2: MS top quark mass mt(mt) computed from the PS, 1S and RS mass with NNLO (dashed) and
N3LO (solid line) accuracy as a function of the renormalization scale used in the MS-threshold mass relation.
For µ = 300 GeV the lines from bottom to top correspond to the PS, 1S and RS mass.

plot the result for mt(mt) computed from mPS
t = 168.204 GeV using LO, NLO, NNLO and N3LO

accuracy (from short-dashed to solid lines). Whereas the LO curve shows a variation of several

hundred MeV the N3LO is basically independent of µ . Actually, in the considered range from

mt/2 to 2mt it varies by less than 20 MeV, a number comparable to the difference between the

NNLO and N3LO result at the central scale µ = mt .

The behaviour of the NNLO and N3LO curve of Figure 1 is magnified in Figure 2 (red curves).

In addition the corresponding results are shown for the 1S (green) and RS (blue) mass. In all three

cases one observes a significant improvement of the µ dependence when going from NNLO to

N3LO. Furthermore, the N3LO curves of all three threshold masses only depend mildly on µ .

In Table 2 results for the MS bottom quark mass are shown. They are computed from the PS,

1S and RS masses as given in the first and second row of the table using LO, NLO, NNLO and

N3LO accuracy. Similar to the top quark case, one observes a rapid convergence with a shift below

10 MeV from the last perturbative order. A variation of the four-loop MS-on-shell coefficient leads

to a shift of 4 MeV in the MS mass.

In Table 3 we show the corresponding results for the MS charm quark mass. Even in this case

6
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input mPS = m1S = mRS =

#loops 4.483 4.670 4.365

1 4.266 4.308 4.210

2 4.191 4.190 4.172

3 4.161 4.154 4.158

4 4.163 4.163 4.163

4 (×1.03) 4.159 4.159 4.159

Table 2: mb(mb) in GeV computed from the PS, 1S and RS quark mass using LO to N3LO accuracy. The
numbers in the last line are obtained by taking into account the uncertainty of the four-loop coefficient, i.e.,
it is increased by 3%. The factorization scales for the PS and RS mass are set to 2 GeV.

input mPS = m1S = mRS =

#loops 1.155 1.552 1.044

1 1.078 1.265 1.028

2 1.021 1.119 1.008

3 0.993 1.033 0.991

4 0.986 0.986 0.986

4 (×1.03) 0.984 0.984 0.984

Table 3: mc(3 GeV) in GeV computed from the PS, 1S and RS quark mass using LO to N3LO accuracy.
The numbers in the last line are obtained by taking into account the uncertainty of the four-loop coefficient,
i.e., it is increased by 3%. The factorization scales for the PS and RS mass are set to 2 GeV.

we observe a reasonable convergence of the perturbative series. For the PS and RS mass the N3LO

corrections are even below 10 MeV.

4. Conclusions

In this contribution we considered the four-loop relation between the MS and on-shell heavy

quark masses and applied it to the top, bottom and charm case. Whereas the perturbative series

converges well for top it does not for the other two cases. This suggests that the on-shell top quark

mass is a reasonably good parameter at the order of 100 MeV or even better. For all three cases the

perturbative relation between the threshold (PS, 1S, RS) and the MS masses is perturbatively well

behaved. Thus, in case a threshold mass is determined from a physical quantity like a (threshold)

cross section or a bound state energy it can be related to the corresponding MS mass with high

precision.

Acknowledgments

We thank the High Performance Computing Center Stuttgart (HLRS) and the Supercomput-

ing Center of Lomonosov Moscow State University [35] for providing computing time used for

7



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
9
4

Four-loop relation between the MS and on-shell quark mass Matthias Steinhauser

the numerical computations with FIESTA. P.M. was supported in part by the EU Network HIG-

GSTOOLS PITN-GA-2012-316704. This work was supported by the DFG through the SFB/TR 9

“Computational Particle Physics”. The work of V.S. was supported by the Alexander von Humboldt

Foundation (Humboldt Forschungspreis).

References

[1] P. Marquard, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Phys. Rev. Lett. 114 (2015) 14,
142002 doi:10.1103/PhysRevLett.114.142002 [arXiv:1502.01030 [hep-ph]].

[2] M. Beneke, Phys. Lett. B 434 (1998) 115 [hep-ph/9804241].

[3] A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. D 59 (1999) 074017 [hep-ph/9811239].

[4] A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. Lett. 82 (1999) 277 [hep-ph/9809423].

[5] A. H. Hoang and T. Teubner, Phys. Rev. D 60 (1999) 114027 [hep-ph/9904468].

[6] A. Pineda, JHEP 0106 (2001) 022 [hep-ph/0105008].

[7] P. A. Baikov, K. G. Chetyrkin and J. H. KÃijhn, JHEP 1410 (2014) 76 doi:10.1007/JHEP10(2014)076
[arXiv:1402.6611 [hep-ph]].

[8] K. G. Chetyrkin, Phys. Lett. B 404 (1997) 161 [hep-ph/9703278].

[9] J. A. M. Vermaseren, S. A. Larin and T. van Ritbergen, Phys. Lett. B 405 (1997) 327
[hep-ph/9703284].

[10] K. G. Chetyrkin, Nucl. Phys. B 710 (2005) 499 [hep-ph/0405193].

[11] R. Tarrach, Nucl. Phys. B 183 (1981) 384.

[12] N. Gray, D. J. Broadhurst, W. Grafe and K. Schilcher, Z. Phys. C 48 (1990) 673.

[13] K. G. Chetyrkin and M. Steinhauser, Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509].

[14] K. G. Chetyrkin and M. Steinhauser, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434].

[15] K. Melnikov and T. v. Ritbergen, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391].

[16] P. Marquard, L. Mihaila, J. H. Piclum and M. Steinhauser, Nucl. Phys. B 773 (2007) 1
[hep-ph/0702185].

[17] P. Nogueira, J. Comput. Phys. 105 (1993) 279.

[18] J. A. M. Vermaseren, math-ph/0010025.

[19] R. Harlander, T. Seidensticker and M. Steinhauser, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228].

[20] T. Seidensticker, hep-ph/9905298.

[21] S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].

[22] A. V. Smirnov, Comput. Phys. Commun. 189 (2014) 182 doi:10.1016/j.cpc.2014.11.024
[arXiv:1408.2372 [hep-ph]].

[23] P. Marquard, D. Seidel, unpublished.

[24] A. Pak, J. Phys. Conf. Ser. 368 (2012) 012049 [arXiv:1111.0868 [hep-ph]].

[25] A. V. Smirnov and V. A. Smirnov, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885
[hep-ph]].

8



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
9
4

Four-loop relation between the MS and on-shell quark mass Matthias Steinhauser

[26] A. V. Smirnov and M. N. Tentyukov, Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129
[hep-ph]].

[27] A. V. Smirnov, V. A. Smirnov and M. Tentyukov, Comput. Phys. Commun. 182 (2011) 790
[arXiv:0912.0158 [hep-ph]].

[28] A. V. Smirnov, Comput. Phys. Commun. 185 (2014) 2090 [arXiv:1312.3186 [hep-ph]].

[29] K. G. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm,
Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110 [hep-ph]].

[30] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38 (2014) 090001.

[31] K. G. Chetyrkin, J. H. Kühn and M. Steinhauser, Comput. Phys. Commun. 133 (2000) 43
[hep-ph/0004189].

[32] B. Schmidt and M. Steinhauser, Comput. Phys. Commun. 183 (2012) 1845 [arXiv:1201.6149
[hep-ph]].

[33] [ATLAS and CDF and CMS and D0 Collaborations], arXiv:1403.4427 [hep-ex].

[34] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser, Phys. Rev. Lett. 115

(2015) 19, 192001 doi:10.1103/PhysRevLett.115.192001 [arXiv:1506.06864 [hep-ph]].

[35] V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, “‘Lomonosov’: Supercomputing at
Moscow State University.” In Contemporary High Performance Computing: From Petascale toward
Exascale (Chapman & Hall/CRC Computational Science), pp.283-307, Boca Raton, USA, CRC
Press, 2013.

9


