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1. Introduction

After an almost two year shutdown, the Large Hadron Collider (LHC) started delivering

physics data in 2015. This marked the begin of Run 2 at the LHC and opened the path to an

even deeper understanding of the Standard Model (SM) physics and hopefully to new discover-

ies. Protons are now collided at the LHC at the record breaking energy of 13 TeV, almost double

the collision energy of Run 1 (
√

s = 7,8 TeV). On the 15th of December 2015, the ATLAS and

CMS experiments both reported a number of results using
√

s = 13 TeV proton collision data.

Even though the amount of data on which analyses are based is still limited, experimentalists have

succeeded in producing numerous results for the SM physics, including new results for the Higgs

boson and the top quark. Additionally, many searches for physics beyond the SM, yielding many

improved limits beyond Run 1, have been presented. In 2016 we shall wait for more (and updated)

results. To describe experimental data various theoretical tools are needed, among others, Monte

Carlo (MC) generators that are widely used in all experimental analyses. Such programs need to

be improved as data become more precise. There are various ways to reach better accuracy of the-

oretical predictions. In particular, one such possibility is an increase of the order in the fixed order

perturbation expansion. Next-to-leading order (NLO) calculations can now be performed in a fully

automatic manner. We mention here only the HELAC-NLO framework [1], that will be used in our

studies. The software has recently been used to calculate NLO QCD corrections to a process with

five objects in the final state, i.e. W+W−bb̄ j [2]. Adding one more order complicates the picture

tremendously. For next-to-next-to-leading order (NNLO) calculations, such automatic frameworks

are not yet publicly available. In addition, a list of processes that have been completed at that order

comprises processes with two objects in the final state only. The most prominent example being the

NNLO calculation for the tt̄ production process at hadron colliders, where two coloured and mas-

sive final state fermions are present [3,4]. Finally, an important milestone has been recently reached

when a first calculation at the next-to-next-to-next-to-leading order (N3LO) in perturbative QCD

for the Higgs production in gluon fusion in the large top-mass limit has been completed [5]. Since

for each order one needs to include more Feynman diagrams both with one particle more in the final

state and with one loop more in the intermediate state, a formal order-by-order perturbative calcu-

lation is limited to a few orders only. Alternatively, to improve the theoretical accuracy one can

use parton shower (PS) programs. Parton shower algorithms approximate higher-order corrections

by including the leading soft and collinear contributions to all orders. These programs are not able

to correctly estimate the radiation of hard jets. They can, however, generate arbitrarily many jets

in the final states. In order to improve the simulation of hard jets production in the parton shower,

approaches were developed to match parton showers with fixed order NLO calculations [6, 7] and

to merge matched calculations for different jet multiplicities both at LO and NLO [8–12]. Finally,

those methods have already started to be applied to the NNLO calculations. Formally, however,

in parton showers that are currently being use by experimental collaborations the resummation of

soft and collinear contributions is only certified to Leading Logarithmic (LL) accuracy. In practice,

many of the NLL contributions are already included, either by the angular ordering of the parton

shower or by an optimal scale choice for αs. Thus, yet another progress on the front of theoretical

predictions for the LHC can be accomplished by improving the parton shower itself. This can be

done through an inclusion of color and spin correlations in subsequent parton shower emissions.
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An impact of the colour suppressed terms in parton shower simulations, for the final state parton

shower, have already been studied in [13]. First results for the e+e− → 2 j production at LEP en-

ergy have shown that standard LEP-observables, e.g. event shapes and jet rates, are only slightly

affected. However, for tailored observables, i.e. observables that are sensitive to soft (wide an-

gle) splitting, deviations as large as 20% have been observed. The first step in the direction of the

complete algorithm, which consistently takes into account both spin and color correlations in the

parton emissions for the collision of hadrons, has been done by Nagy and Soper [14, 15]. A large

part of their idea has been implemented in the DEDUCTOR program [16]. Even though the exact

colour and spin correlations are not yet included in the software, it can already provide results with

an extension of the leading colour approximation, which has been implemented instead.

In this proceedings we shall briefly summarise the concept behind the Nagy-Soper parton

shower. In the next step we shall outline a matching procedure between the Nagy-Soper parton

shower and a fixed order calculation at NLO [17]. To this end, we use the MC@NLO approach [6].

When matching NLO calculations with parton shower programs, one needs to avoid the double

counting of emissions, which on the one hand can be generated with a jet from the matrix element

and on the other hand can appear as a jet from the parton shower. The MC@NLO method removes

double counting contributions by expanding the parton shower to first order in αs and compensating

for the terms, which are already present at fixed order. Finally, a few results for the pp → tt̄ j

production process, which involves non-trivial colour exchange, massive partons and requires cuts

already at the Born level, will be shown.

2. Nagy-Soper parton shower

In case of a generic process a+ b → m the expectation value for a completely inclusive ob-

servable F in the Nagy-Soper formalism can be written as follows

σ [F] =∑
m

1

m!

∫

[d{p, f}m]〈M ({p, f}m)|F({p, f}m) |M ({p, f}m)〉
fa(ηa,µ

2
F ) fb(ηb,µ

2
F)

4nc(a)nc(b)×flux
, (2.1)

where the sum runs over all final state multiplicities. Here, [d{p, f}m] is the sum of all m-particle

phase space measures for different flavour sequences { f}m. The factor 1/m! is necessary to account

for identical contributions. The parton density functions evaluated at the momentum fraction η and

factorization scale µ2
F are denoted by fa/b(η ,µ2

F). The factor 4 in the denominator comes from

averaging over initial state spins and nc(i) is the colour factor. The quantity

ρ({p, f}m)∼ |M ({p, f}m)〉 〈M ({p, f}m)| , (2.2)

is the quantum density ρ and a matrix element M can be viewed as a vector |M ({p, f}m)〉 in

colour ⊗ spin space and can be resolved into basis vectors |{s}m〉 and |{c}m〉 with complex expan-

sion coefficients M ({p, f ,s,c}m)

|M ({p, f}m)〉= ∑
{s}m

∑
{c}m

M ({p, f ,s,c}m) |{s}m〉⊗ |{c}m〉= ∑
{s,c}m

M ({p, f ,s,c}m) |{s,c}m〉 .

(2.3)

The propagation of the quantum density matrix ρ from some initial shower time, t0, to some final

shower time, tF , is described by the evolution equation. The initial shower time corresponds to

3
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the hard interaction, whereas the final shower time characterises the physical scale at which parton

emissions cannot be described perturbatively. The perturbative evolution is described by a unitary

operator U(tF , t0) that obeys

dU(t, t0)

dt
= [HI(t)−V (t)]U(t, t0) . (2.4)

Here, HI(t) describes resolved emission and V (t) the unresolved/virtual one. The latter can be

further decomposed into a color diagonal, VE(t), and a color off-diagonal part, VS(t), as follows

V (t) = VE(t)+VS(t) . (2.5)

Eq. (2.4) can be solved as

U(t, t0) = N(t, t0)+
∫ t

t0

dτ U(t,τ) [HI(τ)−VS(τ)]N(τ , t0) , (2.6)

where N(t, t0) is the Sudakov form factor (a number) defined as

N(t, t0) = exp

(

−
∫ t

t0

dτ VE(τ)

)

. (2.7)

In case of a non-trivial colour evolution, the exponentiation of a non-diagonal matrix is very dif-

ficult. Thus, only the colour diagonal part, VE(t), is exponentiated, whereas the off-diagonal part,

VS(t), is treated perturbatively in the same way as HI(t). The expectation value of the observable

F , including shower effects, is provided via

σ [F] = (F|ρ(tF)) = (F |U(tF , t0)|ρ(t0)) . (2.8)

The evolution in the shower time is always ordered in some chosen kinematic variable to correctly

resum leading logarithms of infrared sensitive quantities. In the Nagy-Soper parton shower the

following variable has been proposed

Λ2
l =

|(p̂l ± p̂m+1)
2 −m2

l |
2pl ·Q0

Q2
0 , e−t =

Λ2
l

Q2
0

, (2.9)

where p̂l is the emitter momentum after emission, p̂m+1 the emitted parton momentum, pl the

emitter momentum before emission (p2
l = m2

l ) and Q0 is the total final state momentum. The

minus/plus sign between p̂l and p̂m+1 in Eq. (2.9) applies to an initial/final state splitting.

3. Matching Inclusive Processes

There exist several schemes for matching NLO calculations with parton showers, the most pop-

ular being POWHEG and MC@NLO. In order to benefit from the recently implemented subtraction

scheme based on the Nagy-Soper parton shower splitting kernels [18], which is implemented in the

HELAC-DIPOLES framework [19], we chose the MC@NLO formalism. For a generic a+ b → m

process at NLO, one can write the quantum density matrix in a perturbative expansion in αs, ac-

cording to

|ρ) = |ρ (0)
m )

︸ ︷︷ ︸

Born, O(1)

+ |ρ (1)
m )

︸ ︷︷ ︸

Virtual, O(αs)

+ |ρ (0)
m+1)

︸ ︷︷ ︸

Real, O(αs)

+O(α2
s ) , (3.1)
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where the leading order contribution is counted as order 1 in the strong coupling αs. In addition,

|ρ (0)
m ) and |ρ (0)

m+1) are tree level matrix elements, whereas |ρ (1)
m ) is the one-loop amplitude. Based

on this quantum density matrix, the expectation value of the observable F including shower effects

σ [F]PS =(F|U(tF , t0)|ρ) suffers from double counting. This can be seen when the iterative solution

to the evolution equation is expanded to O(αs). Indeed, we obtain

|ρ(tF)) =U(tF , t0)|ρ)≈ |ρ)+
∫ tF

t0

dτ [HI(τ)−V (τ)] |ρ (0)
m )+O(α2

s ) , (3.2)

and |ρ(tF)) contains the first emission contributions twice, once from the real emission quantum

density |ρ (0)
m+1), and once from the parton shower approximation HI(τ)|ρ (0)

m ). The problem of

double counting can be overcome if the density matrix is modified as follows

|ρ̄)≡ |ρ)−
∫ tF

t0

dτ [HI(τ)−V (τ)] |ρ (0)
m )+O(α2

s ) . (3.3)

Considering U(tF , t0)|ρ̄) and expanding the evolution equation up to O(αs) shows that the unde-

sired parton shower contributions are cancelled. Thus, for an infrared safe observable F , we can

write

σ̄ [F] =
1

m!

∫

[dΦm](F|U(tF , t0)|Φm)

[

(Φm|ρ (0)
m )+ (Φm|ρ (1)

m )+
∫ tF

t0

dτ(Φm|V (τ)|ρ (0)
m )

]

+
1

(m+1)!

∫

[dΦm+1](F |U(tF , t0)|Φm+1)

[

(Φm+1|ρ (0)
m+1)−

∫ tF

t0

dτ(Φm+1|HI(τ)|ρ (0)
m )

]

,

(3.4)

where Φλ = {p, f ,s′,c′,s,c}λ and λ can be either m or m+1. The parton shower splitting kernels

are used to provide subtraction terms for the infrared singularities

∫ ∞

t0

dτ HI(τ) = ∑
l

Sl

∫ ∞

0
dτ δ (τ − tl)Θ(τ − t0) = ∑

l

SlΘ(tl − t0) , (3.5)

∫ ∞

t0

dτ V (τ) = ∑
l

∫

dΓl SlΘ(tl − t0)≡ I(t0)+K(t0) , (3.6)

where the sum runs over all external legs and Sl is the total splitting kernel for a given external

leg l. The parameter tl is the shower time and Θ(tl − t0) represents the ordering of the emissions.

The phase space integration of the additional parton is denoted by dΓl . The decomposition of the

integrated V (τ) into two operators I(t0) and K(t0) is arbitrary. However, we choose I(t0) to match

the divergencies of the virtual amplitude. In addition, the limit tF → ∞ has been taken. This is a

source of a mismatch between the fixed order and the shower calculation, however, it is numerically

small due to the exponential damping by the Sudakov form factor. The total cross section, which

includes parton shower evolution amounts to

σ̄ [F]PS =
1

m!

∫

[dΦm](F |U(tF , t0)|Φm)(Φm|S)+
1

(m+1)!

∫

[dΦm+1](F|U(tF , t0)|Φm+1)(Φm+1|H) ,

(3.7)

5
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where the following shorthands has been defined

(Φm|S)≡ (Φm|ρ (0)
m )+ (Φm|ρ (1)

m )+ (Φm|[I(t0)+K(t0)+P]|ρ (0)
m ) , (3.8)

(Φm+1|H)≡ (Φm+1|ρ (0)
m+1)−∑

l

(Φm+1|Sl|ρ (0)
m )Θ(tl − t0) . (3.9)

The whole procedure is divided into two steps. First the samples according to Eq. (3.8) and (3.9)

are generated and afterwards U(tF , t0) is applied.

4. Matching Exclusive Processes

For processes with massless partons already at leading order, the matching prescription as

described in the previous section must be slightly modified by the inclusion of generation cuts. The

following replacements

(Φm|S)→ (Φm|S)FI({p̂, f̂}m) , (4.1)

(Φm+1|H)→ (Φm+1|H)FI({p, f}m+1) , (4.2)

can be made, where FI({p, f}λ ) is a jet function applied during the generation of events, on the

momenta and flavours of Φλ . However, when the parton shower is applied to these ensembles we

can easily see that double counting is still there. Indeed, after expanding the evolution operator we

obtain

σ̄ [F]PS ≈ 1

m!

∫

[dΦm](F |Φm)(Φm|
[

|ρ (0)
m )+ |ρ (1)

m )+P|ρ (0)
m )

]

FI({p̂, f̂ }m)

+
1

(m+1)!

∫

[dΦm+1](F|Φm+1)(Φm+1|ρ (0)
m+1)FI({p, f}m+1)

+

∫
[dΦm]

m!

[dΦm+1]

(m+1)!

∫ tF

t0

dτ (F|Φm+1)(Φm+1|HI(τ)|Φm)

× (Φm|ρ (0)
m )

[

FI({p̂, f̂ }m)−FI({p, f}m+1)
]

+O(α2
s ) ,

(4.3)

where the I(t0)+K(t0) contribution of (Φm|S) has been cancelled by the linear expansion of the Su-

dakov form factor. This mismatch is cured by enforcing the subtraction terms to fulfill FI({p̂, f̂ }m),

i.e. by modifying the real subtracted cross section according to

(Φm+1|H)−→ (Φm+1|H̃)≡ (Φm+1|ρ (0)
m+1)−∑

l

(Φm+1|Sl|ρ (0)
m )Θ(tl −t0)FI(Ql({p, f}m+1)) , (4.4)

where we make use of the inverse momentum mapping Ql and obtain

FI(Ql({p, f}m+1)) = FI({p̂, f̂}m) . (4.5)

6



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
1
0
0

NLO calculations matched with the Nagy-Soper parton shower Malgorzata Worek

This modification allows us to introduce restrictions on the functional form of FI . Expanding the

shower evolution yields

σ̄ [F]PS ≈ 1

m!

∫

[dΦm](F |Φm)(Φm|
[

|ρ (0)
m )+ |ρ (1)

m )+P|ρ (0)
m )

]

FI({p̂, f̂ }m)

+
1

(m+1)!

∫

[dΦm+1](F|Φm+1)(Φm+1|ρ (0)
m+1)FI({p, f}m+1)

+
∫

[dΦm]

m!

[dΦm+1]

(m+1)!

∫ tF

t0

dτ (F|Φm+1)(Φm+1|HI(τ)|Φm)

× (Φm|ρ (0)
m )

[

1−FI({p, f}m+1)
]

FI({p̂, f̂ }m)+O(α2
s ) .

(4.6)

The double counting is removed from Eq. (4.6), when the following condition is true

[

1−FI({p, f}m+1)
]

F({p, f}m+1) = 0 . (4.7)

We have used here the fact that (F|Φm+1)∼ F({p, f}m+1). This can be achieved when

FI({p, f}m+1) = 1 , for F({p, f}m+1) 6= 0 . (4.8)

The interpretation of the last equation is straightforward. Generation cuts (FI({p, f}m+1)) need to

be more inclusive than the cuts on the final observable (F({p, f}m+1)). Let us note here, that the

MC@NLO matching formalism in combination with the Nagy-Soper parton shower introduces the

intrinsic uncertainties. Let us name just the most important ones here. The Nagy-Soper parton

shower treats bottom and charm quarks as massive. On the other hand in the NLO calculation

we treat them as massless. Thus during the matching procedure masses for the relevant quarks

are introduced by the on-shell projection. In addition, PDFs are evolved differently in the NLO

calculation and in the shower. In the former case, NLO PDFs are used, whereas in the latter PDFs

are evolved using Nagy-Soper splitting kernels. The evolution is, however, of higher order and the

NLO accuracy is maintained if the evolutions share a common point e.g. at the low scale. Finally,

the choice of the initial parton shower time t0 in the parton evolution is arbitrary. We only require

that NLO prediction is recovered for hard emissions. Thus, different choices of t0 that fulfil this

condition are possible. In consequence, the t0 quantity should be varied to study the uncertainty of

NLO+PS matching.

5. Implementation

The matching scheme has been implemented within the HELAC-NLO framework [1]. We have

used it in conjunction with the Nagy-Soper parton shower present in DEDUCTOR version 1.0.0 [16].

Since DEDUCTOR uses spin averaged splitting functions, we only provide unpolarized event sam-

ples for showering. We supply only leading colour events even though DEDUCTOR works with

the LC+ approximation, which comprises a full color description for collinear and soft-collinear

limits and the LC one for pure soft limits. The HELAC-NLO Monte Carlo program generates an

event sample ready for showering with DEDUCTOR. We produce events subprocess by subpro-

cess. First, we use HELAC-1LOOP [20] to obtain a set of unweighted leading order events with

7
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the virtual contributions. This set of weighted events is subsequently reweighted using HELAC-

DIPOLES in order to include the parton shower virtual operator, which corresponds to taking into

account the integrated subtraction terms. The real radiation events are generated separately with

HELAC-DIPOLES. The program has been extended to provide unweighted events with positive and

negative weights, which is possible, because both the real radiation and the respective subtraction

weights correspond to the same phase space point. For each accepted event, we choose the most

probable diagonal colour flow configuration. The generated events are stored in a Les Houches

file and transferred to DEDUCTOR, which requires an on-shell projection for charm and bottom

quarks and a translation of the color flow language from the LHE file to internal representation in

DEDUCTOR in terms of color strings.

6. Top quark pair production in association with a jet at NLO+PS

We present now the results for the pp → tt̄ j production at the LHC with
√

s = 8 TeV. We

use stable top quarks and put mt = 173.5 GeV. The charm and bottom quarks are considered to

be massless at fixed order. Results are obtained using the MSTW2008NLO PDF set [21] with five

active flavours and the corresponding two-loop running of the strong coupling. The renormalization

and factorisation scales are set to mt , and the starting shower time to

e−t0 = min
i6= j

{
2pi · p j

µ2
T Q2

0

}

, (6.1)

where pi and p j are external momenta, Q0 is the total final state momentum and µT = 1 for the

central prediction. The anti-kT jet algorithm with the separation parameter R = 1 is used to cluster

partons with pseudorapidity |η |< 5. The resulting jets are ordered according to their pT . We also

require the tagged jets to have transverse momentum of pT > 50 GeV and rapidity in the range of

|y| < 5. Our analysis is restricted to the perturbative parton shower evolution. Decays of unstable

particles, hadronization and multiple interactions are not taken into account. The parton shower

treats the charm and bottom as massive particles, thus, we use mc = 1.4 GeV and mb = 4.75 GeV.

Additionally, the MSTW2008NLO PDF set at µF = 1 GeV is provided as the starting point for the

evolution in DEDUCTOR. We also use the corresponding two-loop running of αs, and restrict the

parton shower to the leading colour approximation. Results presented in the following are accurate

up to O(1/N2
c ).

In Fig. 1 we present the transverse momentum of the tt̄ j1 system together with inclusive jet

cross sections. The variation bands for µR,F and µT have been obtained using the following sets

of three parameter values: µR,F = {mt/2,mt ,2mt} and µT = {1/2, 1, 2}, respectively. The lower

panels display corresponding relative deviations from the central value, separately for µR,F and µT .

We start the discussion with the transverse momentum of the pT (tt̄ j1) system, that is given in the

left panel of Fig. 1. At LO the transverse momentum of this system is zero due to momentum

conservation. When NLO contributions are included, this observable diverges as the transverse

momentum of the entire system goes to zero. Thus, it can only be reliably described by the fixed

order calculation in the high pT region. The situation is changed when the parton shower is in-

cluded. In that case, the low pT behaviour is altered strongly by the Sudakov form factor as can be

seen in Fig. 1. We observe a moderate dependence on µT in the low pT region, up to a factor of

8
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Figure 1: Differential cross section distributions as a function of the transverse momentum of the tt̄ j1

system (left panel) and inclusive jet cross sections (right panel) for pp → tt̄ j +X at the LHC with
√

s = 8

TeV. Results are produced by matching HELAC-NLO predictions to DEDUCTOR. The uncertainty bands

depict scale and initial shower time variation. The lower panels display the corresponding relative deviation

from the central value, separately for µR,F and µT .

1.5 at the lower end of the spectrum. This dependence decreases down to just a few percent around

30 GeV, whereas for moderate values of pT (tt̄ j1) it is at the level of 20%− 45%. The behaviour

is reversed for the renormalization and factorisation scale dependence. Visible deviations from the

central value occur once the matrix element dominates and grow substantially up to almost 80% at

the end of the spectrum.

The inclusive jet cross sections are given in the right panel of Fig. 1. The NLO cross section

with exactly one jet, which is given in the first bin, is rather insensitive to µT , i.e. at the 12% level.

The µT dependence is slightly larger in the second bin, where the two jet cross section, correct

only at the LO level, is stored. Starting from the third bin, cross sections are described via the

shower evolution alone, thus, we observe fairly large variations for both parameters, µT and µR,F .

For example, the scale dependence for the cross section with five jets is found to be around 35%.

7. Summary

To summarise, we have outlined a NLO matching scheme for the Nagy-Soper parton shower.

We based our construction on the original MC@NLO approach. We have presented the general

formulation and a few results for top-quark pair production in association with a jet at the LHC.

All results given here have been obtained using an implementation within the framework of the

public codes HELAC-NLO and DEDUCTOR.
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