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1. Introduction

With LHC delivering collisions at the highest energy achieved so far, 13 TeV, experiments are
providing measurements of physical observables with an unprecedented precision. In order to keep
up with the increasing experimental accuracy as more data is collected, more precise theoretical
predictions and higher loop calculations are required [1].

With the better understanding of the reduction of one-loop amplitudes to a set of Master Inte-
grals (MI) based on unitarity methods [2, 3] and at the integrand level via the OPP method [4, 5],
one-loop calculations have been fully automated in many numerical tools [6, 7]. In the recent years,
a lot of progress has been made towards the extension of these reduction methods to the two-loop
order at the integral [8, 9]as well as the integrand [10, 11, 12, 13] level. The master equation at the
integrand level can be given schematically as follows [13]

N (l1, l2;{pi})
D1D2 . . .Dn

=
min(n,8)

∑
m=1

∑
Sm;n

∆i1i2...im (l1, l2;{pi})
Di1Di2 . . .Dim

. (1.1)

where an arbitrary contribution to the two-loop amplitude (left), can be reduced to a sum of terms
(right) of all partitions Sm;n, with up to eight denominators; l1, l2 are the loop momenta, Di are
the inverse scalar Feynman propagators, N (l1, l2;{pi}) is a general numerator polynomial and
∆i1i2...im (l1, l2;{pi}) are the residues of multivariate polynomial division. In addition R2 terms [5]
have to be studied at two loops in order to achieve a complete framework. Moreover, two remarks
are in order here. The first is that the basis of two-loop integrals does not include only scalar
integrals. It includes integrals that also have irreducible scalar products (ISP) as numerators (to
some power) that cannot be rewritten as existing denominators of the integral. In the one-loop
case these ISP are always spurious and integrate to zero, but for higher loops this does no longer
hold. The second remark is that if one is interested in constructing an integral basis, the set of
integrals that ends up with is not necessarily a minimal one: the integrals are not by default Master
Integrals. At two or more loops one can find them by using integration-by-parts (IBP) identities
[14, 15, 16, 17, 18].

Contrary to the MI at one-loop, which have been known for a long time already [19], a com-
plete library of MI at two-loops is still missing. At the moment this seems to be the main obstacle
to obtain a fully automated NNLO calculation framework similar to the one-loop case, that will
satisfy the anticipated precision requirements at the LHC [20].

2. The Simplified Differential Equations Approach

In the last fifteen years, the calculation of virtual corrections has been revolutionized with the
advent of automated reduction techniques to MI [15, 14, 16, 21] and the development of systematic
solutions of differential equations [22, 23, 24, 25] satisfied by MI or the evaluation of their Mellin-
Barnes representations [26, 27]. The differential equations approach (DE) has proven to be very
powerful in a large number of computations, including two-loop four-point functions with massless
and massive internal propagators. Within this framework, DE for the MI are derived, in terms of
kinematical invariants. Assume that one is interested in calculating an l−loop Feynman integral
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with external momenta {p j} and internal propagators that are massless. Any l−loop Feynman
integral can be then written as

Ga1···an({p j},ε) =
∫ ( l

∏
r=1

ddkr

iπd/2

)
1

Da1
1 · · ·Dan

n
, Di = (ci jk j +di j p j)

2 , d = 4−2ε (2.1)

with matrices {ci j} and {di j} determined by the topology and the momentum flow of the graph,
and the denominators are defined in such a way that all scalar product invariants can be written
as a linear combination of them. The exponents ai are integers and may be negative in order to
accommodate irreducible numerators. Any integral Ga1···an can be written as a linear combination
of a finite subset of such integrals, called Master Integrals, with coefficients depending on the
independent scalar products, si j = pi · p j, and space-time dimension d, by the use of integration
by parts identities [15, 14]. In the traditional DE method, the MI ~GMI({si j},ε), are differentiated
with respect to pi · ∂

∂ p j
, and the resulting integrals are reduced by IBP to give a linear system of

DE for ~GMI({si j},ε) [22, 28]. The invariants, si j, are then parametrised in terms of dimensionless
variables, defined on a case by case basis, so that the resulting DE can be solved in terms of
Goncharov Polylogarithms (GPs) [29, 30].The GPs are defined recursively as follows

G (an, . . . ,a1,x) =
x∫

0

dt
1

t−an
G (an−1, . . . ,a1, t) (2.2)

with the special cases, G (x) = 1 and G (

n︷ ︸︸ ︷
0, . . . ,0,x) = 1

n! logn (x). Usually boundary terms corre-
sponding to the appropriate limits of the chosen parameters have to be calculated using for instance
expansion by regions techniques [31, 32].

SDE approach [33] is an attempt not only to simplify, but also to systematize, as much as
possible, the derivation of the appropriate system of DE satisfied by the MI. To this end the external
incoming momenta are parametrized linearly in terms of x as pi(x) = pi +(1−x)qi, where the qi’s
are a linear combination of the momenta {pi} such that ∑i qi = 0. If p2

i = 0, the parameter x
captures the off-shell-ness of the external legs. The class of Feynman integrals in (2.1) are now
dependent on x through the external momenta:

Ga1···an({si j},ε;x) =
∫ ( l

∏
r=1

ddkr

iπd/2

)
1

Da1
1 · · ·Dan

n
, Di = (ci jk j +di j p j(x))

2 . (2.3)

By introducing the dimensionless parameter x, the vector of MI ~GMI({si j},ε;x), which now de-
pends on x, satisfies

∂

∂x
~GMI({si j},ε;x) = H({si j},ε;x)~GMI({si j},ε;x) (2.4)

a system of differential equations in one independent variable. Experience up to now shows that
this simple parametrization can be used universally to deal with up to six kinematical scales in-
volved [33, 34, 35]. The expected benefit is that the integration of the DE naturally captures the
expressibility of MI in terms of GPs and more importantly makes the problem independent on the
number of kinematical scales (independent invariants) involved. Note that as x→ 1, the original
configuration of the loop integrals (2.1) is reproduced, which eventually corresponds to a simpler
one with one scale less.
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Figure 1: The one-loop pentagon graph with one off-shell leg, G11111. The labels refer to the denominators
in Eq.(3.1).

3. Master Integrals calculations

The SDE approach has been proven useful in calculations of MI at one and two loops.

3.1 One-loop pentagon at O(ε)

The one-loop pentagon presented in Fig.1 is given by

G11111 =
∫ ddk

iπd/2

1

(−k2)
(
−(k+ x p1)

2
)(
−(k+ xp12)

2
)(
−(k+ p123)

2
)(
−(k+ p1234)

2
)
(3.1)

with p2
i = 0, i = 1, . . . ,4, the obvious notation pi... j = pi + . . .+ p j and p2

1234 = (−p5)
2 = 0. The

DE for the 5-point MI involves the following set of MI: four four-point G11110, G11101, G11011,
G10111, one three-point, G10110 and three two-point MI, G00110, G10010, G10100. The two-point MI
are known in a closed form in ε . All boundary conditions have been calculated by the DE, as
described in [33]. The result for the one-mass pentagon up to order ε , is given by

G11111(x) =
cΓ

x2s23s34s45

(
1− 1

r1

)(
1− 1

r2

)(
1− x

r1

)−1−ε(
1− x

r2

)−1−ε 1

∑
i=−2

ε
i fi (3.2)

where the quantities r1, r2, cΓ and fi can be found in [33]. Taking the limit x→ 1 from the previous
expression, we get the result for the on-shell pentagon up to order ε , that is given by

G11111(1) =
cΓ

s12s23s34s45s51

1

∑
i=−2

ε
i f ′i (3.3)

where again the f ′i can be found in [33].

3.2 Full set of massless double-box MI with two off-shell legs

There are in total six families of MI whose members with the maximum amount of denomi-
nators are graphically shown in Fig.2 and Fig.3. Three of these, Fig.2, contain only planar MI and
will therefore be referred to as the planar families. They will be denoted by P12,P13 and P23 [36]
and contain 31, 29 and 28 MI respectively. The other three families, shown in Fig.3, contain planar
MI with up to 6 denominators as well as non-planar MI with 6 and 7 denominators and will be
referred to as the non-planar families of MI. These non-planar families will be denoted by N12,N13
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xp1

xp2

−p123

p123 − xp12

xp2 xp1

p123 − xp12 −p123

xp1

xp2p123 − xp12

−p123

Figure 2: The parametrization of external momenta for the three planar double boxes of the families P12

(left), P13 (middle) and P23 (right) contributing to pair production at the LHC. All external momenta are
incoming.

xp1

xp2

−p123

p123 − xp12

xp2 xp1

p123 − xp12 −p123

xp1

xp2

−p123

p123 − xp12

Figure 3: The parametrization of external momenta for the three non-planar double boxes of the families
N12 (left), N13 (middle) and N34 (right) contributing to pair production at the LHC. All external momenta are
incoming.

and N34 [37] and contain 35, 43 and 51 MI respectively. We have used both FIRE [38] and Reduze
2 [39] to perform the IBP reduction to the MI.

For instance the integrals in the family P12 are given by

GP12
a1···a9

(x,s,ε) := e2γE ε

∫ ddk1

iπd/2

ddk2

iπd/2

1

k2a1
1 (k1 + xp1)2a2(k1 + xp12)2a3(k1 + p123)2a4

× 1

k2a5
2 (k2− xp1)2a6(k2− xp12)2a7(k2− p123)2a8(k1 + k2)2a9

, (3.4)

where the letters appearing as weights in GPs are given by

I(P12) =

{
0,1,

q
s12

,
s12

q
,

q
q− s23

,1− s23

q
,1+

s23

s12
,

s12

s12 + s23

}
with s12 := p2

12,s23 := p2
23,q := p2

123, p2
i = 0. Details of the calculations as well as the results in

terms of GPs for all families can be found in [34].
In order to compute the MI in arbitrary kinematics, especially in the physical region, the GPs

have to be properly analytically continued. In general all variables, including the momenta invari-
ants si j (s12, s23 and q in the present study) and the parameter x, would acquire an infinitesimal
imaginary part, si j → si j + iδsi j η , x→ x+ iδxη , with η → 0. The parameters δsi j and δx are de-
termined as follows: the first class of constraints on the above-mentioned parameters originates
form the input data to the DE, namely the one-scale master integrals that need to be properly de-
fined in each kinematical region. The second class of constraints results from the second graph
polynomial [40], F , which after expressed in terms of si j and x, should acquire a definite-negative
imaginary part in the limit η → 0. Combining these two classes of constraints on the parameters
δsi j and δx, the imaginary part of all the GPs involved is fixed and we have checked that the result
for the MI is identical in the limit η → 0 and moreover agrees with the one obtained by other
calculations. We have performed several numerical checks of all our calculations. The numerical
results have been compared with those provided by the numerical code SecDec [41, 42, 43] in the

5
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Figure 4: The three planar pentaboxes of the families P1 (left), P2 (middle) and P3 (right) with one external
massive leg.

Figure 5: The five non-planar families with one external massive leg.

Euclidean region and with analytic results presented in [36, 37] for the physical region. In all cases
we find perfect agreement and reference numerical results can be found in the ancillary files in
[34].

3.3 Massless pentabox MI with up to one off-shell leg

For the massless pentabox MI with one off-shell leg, there are in total three families of planar
MI whose members with the maximum amount of denominators, namely eight, are graphically
shown in Fig.4. Similarly, there are five non-planar families of MI as given in Fig.5. We have
checked that the other five-point integrals with one massive external leg are reducible to MI in one
of these eight MI families. The two-loop planar and non-planar diagrams have not been calculated
yet; in [35] we have recently completed the calculation of the P1 family (Fig.4). In fact by taking the
limit x→ 1 all planar graphs for massless on-shell external momenta have been derived as well 1.
We have used the c++ implementation of the program FIRE [45] to perform the IBP reduction to
the set of MI in P1.

For the family of integrals P1 the external momenta are parametrized in x as shown in Fig.6.
The parametrization is chosen such that the double box MI with two massive external legs that is
contained in the family P1 has exactly the same parametrization as that one chosen in [34], i.e. two
massless external momenta xp1 and xp2 and two massive external momenta p123−xp12 and−p123.
The MI in the family P1 are therefore a function of a parameter x and the following five invariants:
s12 := p2

12,s23 := p2
23,s34 := p2

34,s45 := p2
45 = p2

123,s51 := p2
15 = p2

234, p2
i = 0, where the notation

pi··· j = pi + · · ·+ p j is used and p5 := −p1234. As the parameter x→ 1, the external momentum
q3 := p123− xp12 becomes massless, such that our parametrization also captures the on-shell case.

The resulting differential equation in matrix form can be written as

∂xG = M
({

si j
}
,ε,x

)
G (3.5)

1Results related to massless planar pentabox appear also recently in [44].

6
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xp1

xp2

−p1234

p123 − xp12

p4

Figure 6: The parametrization of external momenta in terms of x for the planar pentabox of the family P1.
All external momenta are incoming.

where G stands for the array of the 74 MI involved in the family P1. The twenty letters li involved,
are given in [35]. Although the DE can be solved starting from , e.g. (3.5), and the result can be
expressed as a sum of GPs with argument x and weights given by the letters li, it is more elegant
and easy-to-solve to derive a Fuchsian system of equations [46], where only single poles in the
variable x will appear. A series of transformation described in [35], brings the system into the form

∂xG =

(
ε

19

∑
i=1

Mi

(x− li)

)
G (3.6)

where the residue matrices Mi are independent of x and ε . The result can be straightforwardly
given as

G = ε
−2b(−2)

0 + ε
−1
(
∑GaMab(−2)

0 +b(−1)
0

)
+
(
∑GabMaMbb(−2)

0 +∑GaMab(−1)
0 +b(0)

0

)
(3.7)

+ ε

(
∑GabcMaMbMcb(−2)

0 +∑GabMaMbb(−1)
0 +∑GaMab(0)

0 +b(1)
0

)
+ ε

2
(
∑GabcdMaMbMcMdb(−2)

0 +∑GabcMaMbMcb(−1)
0 +∑GabMaMbb(0)

0 +∑GaMab(1)
0 +b(2)

0

)
with the arrays b(k)

0 , k=−2, ...,2 representing the x-independent boundary terms in the limit x= 0 at order εk.
The expression is in terms of Goncharov polylogarithms, Gab... = G (la, lb, . . . ;x). Details on the calculation
of boundary terms and of the x→ 1 limit can be found in [35]2.

The solution for all 74 MI contains O(3,000) GPs which is roughly six times more than the corre-
sponding double-box with two off-shell legs planar MI. We have performed several numerical checks of all
our calculations. The numerical results, also included in the ancillary files [47], have been performed with
the GiNaC library [48] and compared with those provided by the numerical code SecDec [41, 42, 43, 49]
in the Euclidean region for all MI and in the physical region whenever possible (due to CPU time limi-
tations in using SecDec) and found perfect agreement. For the physical region we are using the analytic
continuation as described in the previous section as well as in [34]. At the present stage we are not setting a
fully-fledged numerical implementation, which will be done when all families will be computed. Our expe-
rience with double-box computations show that using for instance HyperInt [50] to bring all GPs in their
range of convergence, before evaluating them numerically by GiNaC, increases efficiency by two orders
of magnitude. Moreover expressing GPs in terms of classical polylogarithms and Li2,2, could also reduce
substantially the CPU time [51]. Based on the above we estimate that a target of O

(
102−103) milliseconds

can be achieved.

4. Outlook

We have demonstrated that based on the Simplified Differential Equations approach [33] Master Inte-
grals, including massless double-box with two off-shell legs and pentabox with up to one off-shell leg, can

2See also talk by C. Wever.
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be expressed in terms of Goncharov polylogarithms. The complexity of the resulting expressions is certainly
promising that the project of computing all MI relevant to massless QCD, namely all eight-denominator MI
with arbitrary configuration of the external momenta, is feasible. Having such a complete library of two-loop
MI, the analog of A0,B0,C0,D0 scalar integrals at one loop, the reduction of an arbitrary two-loop amplitude
à la OPP can pave the road for a NNLO automation in the near future.

As experience shows, there are several issues that will need to attract our attention in order to accom-
plish our goal. First of all in order to systematize the whole procedure of reducing an arbitrary Feynman
Integral in terms of MI in an efficient way, a deepening of our current understanding of IBP identities [52, 53]
is necessary [54]. Secondly, further standardising the procedure to obtain a canonical form of DE [55], which
drastically simplifies the expression of MI in terms of GPs, is certainly a very desirable feature. Thirdly, the
inclusion of MI with massive internal propagators, at a first stage with one mass scale corresponding to
the heavy top quark, will provide the complete basis for NNLO QCD automated computations. Moreover,
the calculation of boundary terms for the DE can benefit from further developments and exploitations of
expansion-by-regions techniques, in conjunction with Mellin-Barnes representation of the resulting inte-
grals. Finally, on the numerical side, a more efficient 3 computation of polylogarithms is also necessary.
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