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1. Introduction

As Run II of the LHC at 13 TeV is progressing and statistical uncertainties are decreasing,
precise predictions at higher loop orders involving many scales are needed to push the precision
frontier. An important building block of higher order predictions is the calculation of master inte-
grals, which, however, often cannot be performed analytically with current technology.

An alternative is offered by numerical methods, such as sector decomposition [1–4], which
handles the ε-expansion of dimensionally regulated multi-loop Feynman integrals and their nu-
merical calculation. The public program SECDEC [5–7], whose latest features we shall discuss in
this paper, provides an automated implementation of this algorithm. Other publicly available codes
are sector_decomposition [8] and Fiesta [9–12].

The main part of this paper is structured as follows: We begin with a recap of the sector decom-
position algorithm in Section 2. Section 3 is dedicated to the new features of SECDEC 3.0, with
emphasis on the geometric decomposition strategy and the implementation of complex masses.
Finally we give our conclusion in Section 4.

2. Sector Decomposition

Although the sector decomposition algorithm is applicable to a more general class of paramet-
ric integrals, let us consider as a starting point of our discussion the Feynman parametrization of
an L-loop integral,

I =
(−1)Nν

∏
N
j=1 Γ(ν j)

Γ(Nν −LD/2)
∞∫

0

N

∏
j=1

dx j

x j
xν j

j δ (1−
N

∑
l=1

xl)N
UNν−(L+1)D/2

FNν−LD/2 , (2.1)

where U and F are the graph polynomials, N is a numerator appearing in tensor integrals, and
D = 4−2ε . The parameters ν j denote the propagator exponents and Nν = ∑

N
j=1 ν j.

The basic idea of the algorithm is to split up the integration region into multiple parts with
non-overlapping singularities and perform a change of variables to map to the unit hypercube af-
terwards. There exist several different decomposition algorithms, which will be discussed in more
detail in Section 3.1. As a result the singularities are isolated as factors of the form x−a+bε with
a > 0 so that they can be subtracted systematically. This makes it possible to perform an expansion
in ε . Finally, the coefficients to each order in ε can be calculated numerically.

3. New Features of SecDec-3.0

The latest version of the program SECDEC can be obtained from hepforge on the url:

http://secdec.hepforge.org/

It requires a working version of Perl and Mathematica version 7 or higher, as well as a C++ com-
piler.

Users familiar with earlier versions of the program will notice the improved user interface.
It was designed with mainly two goals in mind: firstly to facilitate interfacing with reduction pro-
grams, e.g. by implementing support of zero and negative propagator exponents ν j, and secondly to
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simplify scans over ranges of kinematical parameters, which can now be done by simply providing
a list of phase space points in the kinem.input file.

On the technical side, the list of available numerical integrators, so far consisting of Cuba [13,
14] and Bases [15], has been extended by Cquad [16] and the NIntegrate routine from Mathemat-
ica. Furthermore the compilation and numerical integration can now be parallelized in a straight-
forward way on a cluster, where the submission systems condor and PBS are supported.

Also the field of possible applications was enlarged: Support for integrals with linear propaga-
tors following the Feynman +iδ prescription has been implemented, as well as support for complex
masses. The latter will be discussed in Section 3.2. In addition, general parametric integrals may
now contain ε-dependent dummy functions.

Another major new feature, which shall be presented in the following, is the implementation
of a geometric decomposition algorithm.

3.1 Geometric Decomposition Algorithm

The heuristic decomposition algorithm implemented in SECDEC suffers from the problem that
in some cases an infinite recursion can occur and no full decomposition is obtained. The algorithms
described in Refs. [8] and [9] are guaranteed to terminate, but generically produce a larger number
of sectors. A different approach based on convex geometry was introduced by Kaneko and Ueda in
Refs. [17,18]. This algorithm is guaranteed to terminate, while also keeping the number of sectors
small.

In addition to the heuristic algorithm, the most recent version of SECDEC implements the
original algorithm of Kaneko and Ueda (G1) and an improved geometric decomposition algorithm
(G2). Here we describe the improved geometric decomposition algorithm G2.

In contrast to other sector decomposition algorithms where a primary sector decomposition is
performed, the Cheng-Wu theorem [19,20] is used to integrate out the Dirac delta in Eq. (2.1). This
amounts to replacing the δ -distribution by δ (1− xN).

In the next step the Newton polytope ∆ of the polynomial U ·F ·N = ∑
m
j=1 c jxv j is calculated,

which is defined as the convex hull of the (N−1)-dimensional exponent vectors v j:

∆ = ConvHull(v1, . . . ,vm). (3.1)

Here the multi-index notation xv j = ∏i x(v j)i
i is used. The polytope ∆ contains all necessary infor-

mation for the sector decomposition. Due to the Minkowski-Weyl theorem there exists a second
representation of the polytope ∆ as an intersection of halfspaces defined by the facet normal vectors
nF [21]:

∆ =
⋂
F

{
x ∈ RN−1 | 〈x,nF〉+aF ≥ 0

}
. (3.2)

In SECDEC the program NORMALIZ 2.10.1 [22, 23] is used to translate between vertex and facet
representations, Eq. (3.1) and Eq. (3.2), respectively.

For each extremal vertex of ∆ indexed by the parameter j, a sector is introduced. The sector
is bounded by the facet vectors nF incident to the vertex j. In order to map the integration region
back to the unit hypercube, the local change of variables

xi = ∏
F∈S j

y〈ei,nF 〉
F (3.3)
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is performed in sector j. The vectors ei denote the orthonormal basis of RN−1, the set S j contains
the facets incident to the vertex j. In cases where the set S j contains more than N− 1 elements,
an additional triangulation of the sector is needed. In SECDEC the triangulation algorithm imple-
mented in NORMALIZ is used for this purpose.

Compared to the other strategies implemented in SECDEC, strategy G2 is the fastest method
and it usually produces the smallest number of sectors.

As an example we decompose the two-loop vacuum integral with one massive and two mass-
less propagators using strategy G2. After employing the Cheng-Wu theorem to integrate out the
massive Feynman parameter x3, the Feynman integral becomes

I =

m

=−Γ(−1+2ε)
(
m2)1−2ε

∫
∞

0

dx1dx2(
x1

1x0
2 + x1

1x1
2 + x0

1x1
2

)2−ε
. (3.4)

The exponent vectors

v1 =

(
1
0

)
,v2 =

(
1
1

)
,v3 =

(
0
1

)
(3.5)

can be read off from the polynomial in the denominator of Eq. (3.4) and the associated Newton
polytope ∆ is shown in Fig. 1.

1

2

1

0
1

v1

v2v3

n3
n1

n2

Figure 1: Newton polytope ∆ associated to the two loop vacuum integral of Eq. (3.4)

The facet normal vectors

n1 =

(
−1
0

)
n2 =

(
0
−1

)
n3 =

(
1
1

)
a1 = 1 a2 = 1 a3 = −1

(3.6)

together with Eq. (3.2) specify the facet representation of the polytope ∆. The sets S j associated to
the three extremal vertices v1 to v3 are S1 = {3,1}, S2 = {1,2} and S3 = {2,3}. In this case no
additional triangulation is necessary since the size of the sets already equals N−1. The change of
variables defined in Eq. (3.3) can then be written as

x1 = y−1
1 y3,

x2 = y−1
2 y3

(3.7)
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leading to the decomposed form of the vacuum integral

I =−Γ(−1+2ε)
(
m2)1−2ε

∫ 1

0
dy1dy2dy3

y−ε

1 y−ε

2 y−1+ε

3

(y1 + y2 + y3)
2−ε

[δ (1− y2)+δ (1− y3)+δ (1− y1)] ,

(3.8)
where the δ -distributions correspond to the sets S1 to S3.

3.2 Complex Masses

In certain applications, especially in the electroweak context, the width of unstable particles
can be important. A consistent treatment is provided by the complex-mass scheme [24, 25], where
the width Γ is included as a negative imaginary part of the mass via the replacement

m2→ m2
c ≡ m2

(
1− i

Γ

m

)
. (3.9)

The graph polynomial F then has the form

F = F0 +U∑
j

x j
(
m2

j − im jΓ j
)
, (3.10)

i.e. the widths induce a negative imaginary part:

ImF =−U∑
j

x jm jΓ j (3.11)

In general, for zero widths, F will exhibit kinematic-dependent zeros even after sector de-
composition, which can be avoided by a suitable deformation of the integration contour [26–28].
Similarly, a non-zero width can help to avoid these singular regions as well, but one cannot expect
this to lead to a stable numerical integration in all cases. Thus it makes sense to try to combine the
two in a consistent way, which should be possible since both the contour deformation and the com-
plex masses are required to produce only negative imaginary parts in order to fulfill the Feynman
+iδ prescription. For SECDEC-3.0 we have chosen

~z(~x) =~x− i~τ(~x), (3.12a)

τk = λxk(1− xk)
∂ReF

∂xk
, (3.12b)

i.e. to set the widths to zero in the definition of the deformation. For small deformations we then
have

F(~z(~x)) = ReF(~x)+ i ImF(~x)− iλ ∑
k

xk(1− xk)

[(
∂ReF

∂xk

)2

+ i
∂ ReF

∂xk

∂ ImF
∂xk

]

− λ 2

2 ∑
k,l

xk(1− xk)xl(1− xl)
∂ReF

∂xk

∂ReF
∂xl

[
∂ 2 ReF
∂xk∂xl

+ i
∂ 2 ImF
∂xk∂xl

]
+O(λ 3). (3.13)

Up to order λ , the imaginary parts induced by the widths and the contour deformation are both
negative as they should. The term involving ∂ ImF

∂xk
does no harm because it is purely real. At order

λ 2, however, ImF leads to an imaginary part of indefinite sign, which would otherwise have been

5



P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
1
0
6

Calculation of Multi-Loop Integrals with SecDec-3.0 Johannes Schlenk

the case at one order higher in λ . On the other hand, this term is proportional to Γ j
m j

and thus
suppressed since the widths should be small compared to the corresponding masses. Therefore we
conclude that for a sufficiently small value of λ , one can consistently combine complex masses and
contour deformation.

The support for complex masses is included in SECDEC from version 3.0.8 and can be enabled
by setting complexmasses=1 in the param.input file. It may be used with and without
contour deformation. If complex masses are switched on, the kinem.input file expects two
numbers for each mass parameter:

· · · Rem2
c,1 Imm2

c,1 Rem2
c,2 Imm2

c,2 · · ·

As an example the calculation of a one-loop pentagon with complex masses can be found in the
loop/demos/11_complexmass folder.

4. Conclusions

The new version 3.0 of the program SECDEC comes with an improved user interface and opens
up several new possibilities: Two geometric decomposition strategies, which are guaranteed to stop,
have been implemented, as well as support for linear propagators, complex masses, ε-dependent
dummy functions, and new integration routines. Furthermore, the more flexible definition of inte-
grals facilitates the link to reduction programs. There is an option to scan over phase-space points,
and the new cluster mode makes it easier to perform calculations on modern super computers.

With these features, SECDEC is now ready for the application to phenomenologically relevant
processes and has the potential to become an important building block in a future automated two-
loop setup.
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