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especially outline some major open questions, such as the possible causes of the steep CR spectra
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1. Introduction

The quest for the sources of cosmic rays (CRs) has involved several generations of observers
and theorists for more than a century. The 34th International Cosmic Ray Conference held in The
Hague, in which about 1,300 contributions were presented, is just the most recent milestone in such
a quest. Unraveling the physical mechanisms responsible for the acceleration of the fastest massive
particles in the universe has traditionally moved along three paths: direct detection of CR fluxes at
Earth, also by means of balloons, spacecraft, and satellites; observation of non-thermal emission
from astrophysical objects; and theoretical interpretation of such a wealth of data.

In the last few decades, state-of-the-art X-ray and γ-ray telescopes have opened new windows
on the non-thermal universe, providing us unprecedented high-resolution images and spectra of CR
candidate sources, joining the radio telescopes that already in the ’50s have revealed the presence of
relativistic electrons in Galactic objects such as supernova remnants (SNRs). At the same time, the
advent of modern supercomputers has allowed numerical plasma simulations to become prominent
tools for studying the complex interplay between energetic particles and electromagnetic fields,
which is at the basis of acceleration in collisionless plasmas. I briefly summarize the current status
of the direct detection of CRs with energies . 108 GeV, which are likely accelerated in our Galaxy,
and critically review the long-standing idea that diffusive shock acceleration in SNR blast waves is
the mechanism responsible for their acceleration (SNR paradigm, §2.1). The most recent findings
obtained with kinetic simulations of non-relativistic shock waves are outlined in §3, along with
their connection to the non-thermal phenomenology of SNRs, especially γ-ray observations (§4).
Finally, in §5 I discuss the bridge between the non-thermal SNR phenomenology and the CR fluxes
measured at Earth, and in particular the current uncertainties in the escape of accelerated particles
from their sources and in the self-confinement of energetic particles.

2. The (almost) universal spectrum of cosmic rays

The CR spectrum measured at Earth spans more than ten orders of magnitude in energy, from
fractions of GeV up to about 1011GeV, with the remarkable regularity of a power-law with spec-
tral index ∼ 3. Below a few tens of GeV the CR spectrum is modulated by the solar wind, which
has a screening effect on Galactic CRs. Yet, the Voyager I spacecraft, which in 2013 became the
first man-made object that has left the heliosphere, has directly measured the pristine interstellar
CR spectrum of electrons, H, and He [1, 2]. Once combined with the local spectra measured by
PAMELA and AMS-02, this additional information will allow to better understand solar modula-
tion, and in turn the spectrum of low-energy Galactic CRs1.

At Eknee ≈ 5× 106 GeV (the knee), the all-particle CR spectrum steepens from about E−2.65

to E−3.1 and its chemical composition becomes increasingly heavy up to ∼ 108 GeV. This suggests
a homogenous class of sources in which CR are accelerated via a rigidity-dependent mechanism
up to Z Eknee, where Z is the nuclear charge, with the change in slope due to the convolution
of Z-dependent cutoffs of different species (see, e.g., [4, 5, 6, 7]). Recently, PAMELA [8] and
AMS-02 [9] revealed an additional feature in the H and He spectra, i.e., a quite abrupt flattening
of about 0.14 (AMS-02) and 0.22 (PAMELA) in spectral slope around 200 GeV/nucleon. Above

1An indirect measurement comes from the γ−ray emission from molecular clouds (MCs) in the Gould Belt [3].
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300 GeV/nucleon these slopes are consistent with the results of previous experiments, also for heav-
ier nuclei (e.g., CREAM [10, 11], TRACER [12], BESS [13], and ATIC-2 [14]). The very presence
of such a spectral break suggests a first-order correction to the “universal” CR slope, either at the
acceleration or at the transport stage. Also, the H spectrum is steeper by about 0.1 in spectral slope
with respect to He and heavier elements (e.g., [11]), which means that the dependence of acceler-
ation and propagation on rigidity only may be questioned at this level of accuracy. The reader can
refer to [15] for a thorough discussion of such “anomalies”, as well as for the implications of the
peculiar spectra of positrons and antiprotons measured by PAMELA and AMS-02.

The last few years have reserved some surprises also for what concerns the nature of the knee,
which is usually interpreted as due to the intrinsic maximum rigidity that particles can achieve in
their sources (another possibility being that Eknee is determined by the deterioration of Galactic
confinement, e.g., [16]). The ARGO–YBJ experiment has measured the chemical composition of
CRs between∼ 30TeV and∼ 3 PeV [17], finding that the light (H+He) component shows a gradual
change of slope above 700 TeV, a factor of ∼ 30 below the proton knee reported by KASCADE-
Grande [18], while confirming the canonical value for the all-particle knee of ∼ 5×106 GeV.

Such deviations from straight power-laws and rigidity scalings are clear examples that CR
physics has entered its precision era, in which a simple, global (and hopefully elegant) paradigm
for the origin and the transport of energetic particles needs to be complemented with first-order
corrections to account for a richer phenomenology.

In the quest for the actual CR sources, the Hillas criterion ([19], though see [20] for an earlier
formulation) can rule out objects that lack the minimum magnetic field strength and system size
necessary to accelerate particles up to a given energy. CRs with rigidities & 108 GV have a gyro-
radius rL ' E/(Z× 106 GeV)(B/µG)−1 pc that exceeds the size of the Galactic disk, which sug-
gests their sources to be extra-galactic objects, such as active galactic nuclei [21, 22], γ-ray bursts
[23, 24], and newly-born millisecond pulsars [25, 26]. Addressing the nature of the transition from
Galactic to extra-galactic CRs is beyond the scope of this review, but it is indeed important to check
whether CRs can be accelerated at least up to Eknee in Galactic accelerators.

2.1 The SNR paradigm

Energetics. SN explosions were associated to CR acceleration for the first time by Baade and
Zwicky in 1934 [27]. Their energetic argument is still valid today, even if in their pioneering paper
they argued for an extra-galactic origin of all the CRs. Assuming a rate of RSN ≈ 1− 3 per cen-
tury, Galactic SN explosions can account for the luminosity of CRs below the knee if about 5–15%
of the ejecta kinetic energy is channeled into accelerated particles (see, e.g., [28]). However, the
appeal of SNe as CR sources is not merely limited to an energetic argument, since in principle also
stellar winds may provide an adequate energy reservoir (see [29] for a recent review).

Universal power-law spectra. Despite the spread in the environmental parameters intrinsic in any
class of astrophysical objects, the regularity of the CR spectrum below the knee requires an ac-
celeration mechanism returning a universal power-law spectrum, and that such a power-law nature
must be preserved by propagation in the Galaxy. The spectral features outlined above may either
arise from the “imperfections” of such universal models or reflect the diverse taxonomy of CR
sources. First-order Fermi acceleration [30] applied to SNR blast waves has what it takes to be
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such a universal mechanism, as it has been put forward independently by several scientists in the
late ’70s [31, 32, 33, 34]. In such a diffusive shock acceleration (DSA), particles with gyroradii
larger than the shock thickness can be repeatedly scattered back and forth across the shock, gaining
energy as if they were squeezed between converging walls. Since both the energy gain per cycle
and the probability of being advected away from the acceleration region are controlled by the shock
hydrodynamics only, accelerated particles develop power-law distributions whose spectral index α

is fully determined by the downstream/upstream density compression ratio, r. For monoatomic
gas with adiabatic index γ = 5/3 and strong shocks with sonic Mach number Ms = vsh/cs � 1,
where vsh and cs are the shock velocity and the speed of sound, the compression ratio r→ 4 and
the differential momentum spectrum of accelerated particles reads

N(p) = 4π p2 f (p); f (p) ∝ p−
3r

r−1 ∝ p−4. (2.1)

The energy spectrum in turn is N(E)dE = 4π p2 f (p)d p: if particles are relativistic (E ∝ p), then
N(E) ∝ E−2, while for non-relativistic particles (E ∝ p2 → dE/d p ∝ p) one gets N(E) ∝ E−1.5.
Since SNR shocks have Ms� 1, they are expected to accelerate CRs with spectra N(E) ∝ E−2.

Diffusive transport in the Milky Way. The CR Galactic residence time can be estimated thanks
to radioactive clocks such as 10Be (only available to relatively low energies) and to the ratios of
secondary to primary species such as B/C, Li/C, (Sc+V)/Fe, which return the grammage traversed
by primary CRs in the Galaxy. All of these measurements suggest that CRs with ∼ 10 GeV spend
∼ 108 yr in the Galaxy before escaping, significantly longer that the ballistic propagation time. If
CRs are produced in the disk and diffusively escape at some distance H (∼ a few kpc) in the halo,
the Galactic residence time is τgal(E)≈H2/Dgal(E), where Dgal(E) is the diffusion coefficient that
parametrizes CR transport in the Galaxy, assumed homogeneous and isotropic.

The energy dependence of such primary/secondary ratios scales as τgal ∝ E−δ and is cru-
cial for connecting the spectra injected at sources (Ns ∝ E−α ) with those measured at Earth,
(∝ E−2.65 below the knee [35, 9]). The equilibrium CR spectrum can in fact be written as Ngal(E) ∝

Ns(E)RSNτgal(E), which imposes δ +α ≈ 2.65. Since δ is inferred to be ≈ 0.3− 0.6 [35], one
finds α ≈ 2.05−2.35, slightly steeper than the DSA prediction for strong shocks. Such a discrep-
ancy will be discussed in §4.3, but it is remarkable how a simple homogenous diffusive model for
CR transport is able to simultaneously reproduce the measured CR secondary/primary ratios, the
diffuse Galactic synchrotron and γ-ray emission (see, e.g., [5, 36, 37, 38, 39, 40]), and (if δ ≈ 0.3)
also the observed anisotropy in the arrival directions of CRs [41].

SNR magnetic fields and the maximum CR energy. Another pillar of the SNR paradigm is the
extent of such a universal power-law. DSA is scale-free, and cannot predict either the minimum or
the maximum energy of the spectrum of the accelerated particles. The minimum energy required
for entering the acceleration process (injection energy) is discussed in §3.1.4, while the maximum
energy attainable during the SNR lifetime depends on how rapidly particles can be scattered across
the shock, which in turn depends on the amplitude and the spectrum of upstream and downstream
magnetic irregularities. In SNRs magnetic fields can be factors of 10− 100 larger than in the
interstellar medium (ISM), as it is inferred from the following observational facts.
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i. Young SNRs show thin non-thermal X-ray rims produced by multi-TeV electrons radiating
in magnetic fields as large as a few hundred µG [42, 43]. Recent measurements in SN1006 [44]
and in Tycho [45] showed that the thickness of the rims is frequency-dependent, which allows to
assess the relative importance of magnetic field damping and radiative losses and to conclude that
magnetic fields are indeed amplified beyond simple compression.

ii. X-ray hotspots in RX J1713.7–3946 show variability on a few year timescale, which may
require localized magnetic fields of . 1 mG [46].

iii. Fitting the SNR synchrotron spectra from radio to X-rays typically reveals electrons to
be fast-cooled above the critical energy at which the loss-time equals the SNR age; in Tycho, for
instance, this corresponds to an average downstream field of ≈ 200 µG [47].

iv. The lack of detection —within Chandra resolution— of X-rays in front of the forward
shock of SN1006 suggests that field amplification must occur in the upstream [48]. Such an evi-
dence challenges the scenarios in which B is amplified only in the downstream region via turbulent
dynamo processes triggered by upstream inhomogeneities (e.g., [49, 50, 51]).

The most intriguing aspect of such a stupendous amplification of the pre-shock magnetic field
is that it is likely due to the plasma instabilities driven by the super-Alfvénic streaming of ac-
celerated particles, in a non-linear chain that transfers energy from the CRs to the magnetic tur-
bulence, and then back to the particles by enhancing their diffusion and favoring rapid energiza-
tion. The typical ISM magnetic fluctuations correspond to a diffusion coefficient of Dgal(E) '
1028[E/(3Z GeV)]δ and would allow to achieve a very low maximum energy Emax . 10GeV at the
end of the Sedov stage [52]; therefore, the ISM magnetic turbulence has way too little power at the
scales resonant with CRs to allow their acceleration up to the knee. Even if ISM magnetic fluctu-
ations were rearranged in such a way that the mean free path for pitch-angle scattering became as
small as the particle gyroradius (Bohm diffusion, i.e., DB ' c/3rL), Emax would still be limited to
. 105GeV [53, 54], a factor of . 50 below the observed knee. If Bohm diffusion were achieved in
the amplified magnetic fields, DSA would allow to reach energies as large as Eknee in young SNRs.

2.2 What is missing in the standard SNR paradigm?

As presented in the previous section, the SNR paradigm seems to check most, if not all, of
the requirements to be the ultimate theory for Galactic CR acceleration. In reality, it encompasses
several theoretical assumptions, which have accompanied the model since its very original for-
mulation, that have never been corroborated by first-principles calculations and/or by unequivocal
observational signatures. Some of the questions crucial to the problem are:

• Can DSA be as efficient as 10–20%? What regulates such an efficiency?

• What determines the fraction of ions and electrons that is injected into DSA?

• How are B fields amplified in SNRs? What controls the saturation of CR-driven instabilities?

• How do CRs diffuse in self-generated fields, both in SNRs and in the Galaxy?

• Is there any observational evidence of DSA in SNRs?

• What determines the CR transport in the Galaxy?
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Figure 1: Time evolution of the post-shock ion energy spectrum for a parallel shock with M = 20, showing a non-
thermal tail that stems out of the thermal distribution for E & 2Esh. In the inset, the momentum spectrum is multiplied
by p4 to emphasize the agreement with DSA prediction at strong shocks. The downstream temperature is reduced by
∼ 20% with respect to standard jump conditions, because of the energy going into accelerated particles [55].

3. Collisionless Shocks: Kinetic Simulations

To address most of these questions it is necessary to model the non-linear interplay between
energetic particles and the electromagnetic fields, which is very hard to tackle analytically. As-
trophysical plasmas are typically collisionless, i.e., their dynamics is mediated by collective in-
teractions rather than by binary collisions, and can be fruitfully modeled ab initio by iteratively
moving particles on a grid according to the Lorentz force and self-consistently adjusting the elec-
tromagnetic fields. In order to mitigate the high computational cost of such particle-in-cells (PIC)
simulations, one may revert to the hybrid approach, in which electrons are considered as a mass-
less neutralizing fluid [56], and still model shock formation, ion acceleration, and plasma insta-
bilities self-consistently. Hybrid simulations have been extensively used for heliospheric shocks2

(e.g., [58, 59]), but their application to astrophysical shocks has been quite limited. SNR shocks
are characterized by large sonic and Alfvénic (MA ≡ vsh/vA, with vA = B0/

√
4πmn the Alfvén

velocity) Mach numbers, which makes it computationally challenging to capture the diffusion
length of accelerated ions D/vsh ≈ v/vshrL � MAc/ωp while resolving the ion skin depth c/ωp

(ωp =
√

4πne2/m is the ion plasma frequency and n,e, and m the ion density, charge, and mass).
Yet, very recently, a comprehensive analysis of ion acceleration has been performed via large

2D/3D hybrid simulations of strong shocks [55, 60, 61]. Particularly promising is also the coupling
of the hybrid technique with a MHD description of the background plasma [62]. The progress in
modeling non-relativistic shocks via first-principles simulations is finally attested by the first PIC
simulations showing simultaneous acceleration of both ions and electrons [63, 64].

3.1 Hybrid simulations: Ion acceleration

Large 2D and 3D hybrid simulations have been performed with the Newtonian code dHybrid
[65] where the shock is set up as outlined in [55]. Lengths are measured in units of c/ωp, velocities
normalized to the Alfvén speed vA, and energies to Esh ≡ mv2

s/2, where vs is the velocity of the
upstream fluid in the downstream frame. The shock strength is expressed by the Alfvénic Mach
number MA, assumed to be comparable with Ms (both are indicated by M if not otherwise specified).

2To give an idea, time and length scales accessible to hybrid simulations on modern supercomputers are comparable
with the physical scales of the Earth’s bow shock [57].
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Figure 2: Left Panel: Fraction ξcr of the downstream energy density in non-thermal particles as a function
of shock inclinations and Mach numbers, M. The largest acceleration efficiency (ξcr & 10%) is achieved for
strong, parallel shocks, and drops for ϑ & 45◦, regardless of M. Right Panel: Post-shock particle spectra for
M = 50 and different shock obliquities, as in the legend. The black dashed line represents the downstream
Maxwellian. Note how the non-thermal power-law tail develops only at low-inclination shocks [55].

The shock inclination is defined by the angle ϑ between the shock normal and the background
magnetic field B0; therefore, ϑ = 0◦(90◦) for a parallel (perpendicular) shock.

3.1.1 Ab-initio DSA

The kinetic simulations presented in refs. [55, 60, 61] have been able, for the first time, to
demonstrate that DSA acceleration at non-relativistic strong shocks can indeed be efficient. Figure
1 shows the ion spectrum in the downstream of a parallel shock with M = 20 [55]; such a spec-
trum develops a non-thermal tail whose extent (corresponding to the maximum energy achieved
by accelerated ions) increases with time and whose slope agrees perfectly with the DSA predic-
tion (Eq. 2.1). In this case, a fraction of ξcr ≈ 15% of the shock kinetic energy is converted into
energetic ions, and the post-shock temperature is accordingly reduced with respect to Rankine–
Hugoniot jump conditions. Such a modification is an exquisite manifestation of the back-reaction
of efficient CR acceleration and is usually accounted for in models of non-linear DSA (NLDSA,
see [66, 67] for reviews, and [68] for a comparison of different approaches to the problem).

The left panel of Figure 2 shows ξcr as a function of shock strength and inclination. The
acceleration efficiency can be as high as & 15% at strong, quasi-parallel shocks, and drops for
ϑ & 45◦, independently of the shock Mach number. The right panel of Figure 2, instead, shows the
ion spectra for shocks with M = 50 and different inclinations; the DSA non-thermal tail vanishes for
quasi-perpendicular shocks, where ions gain a factor of few in energy, at most. Also 3D simulations
show the same dependence of the acceleration efficiency on ϑ [55].

3.1.2 Magnetic Field Amplification

Since the initial formulation of the DSA theory, particle acceleration has been predicted to be
associated with plasma instabilities [33], in particular with the generation of magnetic turbulence at
scales comparable to the gyroradii of the accelerated particles (resonant streaming instability, see
[69, 33]). More recently, Bell pointed out that non-resonant, short-wavelength modes may grow
faster than resonant ones (non-resonant hybrid, NRH, instability [70]). On top of these instabilities,
which excite modes parallel to the background magnetic field, some transverse and filamentary
modes are expected to grow, too (e.g., [71, 72, 73]).

Figure 3 shows the structure of a parallel shock with M = 30, with the upstream (downstream)
to the right (left). In the shock precursor, a cloud of non-thermal particles drives a current able to
amplify the initial magnetic field by a factor of a few, also leading to the formation of underdense
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Figure 3: Output of a 2D hybrid simulation of a parallel shock with M = 30. Left panels: density; total magnetic field
strength; ion x− px phase space. Right panels: components of the magnetic field (Bx, By, Bz). Such a rich structure is
entirely generated by instabilities driven by accelerated ions diffusing in the upstream (to the right in the figures) [72].

cavities filled with energetic particles and surrounded by dense filaments with strong magnetic
fields (see also [71]). The typical size of the cavities is comparable with the gyroradius of the
highest-energy particles (a few hundred ion skin depths for the simulation in Figure 3).

The propagation of the shock through such an inhomogeneous medium leads to the forma-
tion of turbulent structures (via the Richtmyer–Meshkov instability), in which magnetic fields are
stirred, stretched, and further amplified. In this case, amplification via turbulent dynamo (e.g.,
[49, 50, 74]) may become important even in the absence of large pre-existing density fluctuations.

Magnetic field generation depends on the presence of diffuse ions, hence it is more prominent
at quasi-parallel shocks. Simulations show that the maximum amplification achieved in the fore-
shock scales as δB/B0 ∝

√
M and ranges from factors of a few for M . 5 to factors of & 7 for

M & 50 ([60], fig. 5). For M & 20 the NRH instability grows significantly faster than the resonant
one [71, 75, 76], exciting distinctive right-handed modes with wavelength much smaller than the
gyroradius r∗L of the CRs driving the current. Then, in the non-linear stage, an inverse cascade in
k−space progressively channels magnetic energy into modes with increasingly small wavenumber
k. The NRH instability eventually saturates when the maximally-growing mode is kmax ≈ 1/r∗L,
which effectively scatters the current ions. This is the very reason why the resonant instability sat-
urates already when δB/B0 ∼ 1 [77] while the non-resonant one can grow up to non-linear levels
before the driving current is disrupted. For M . 10, δB/B0 . 1 and both wave polarizations are
observed, consistently with the prediction of quasi-linear theory [78]. The reader can refer to [60]
for a more detailed discussion of the wave spectra and the saturation of the two instabilities.

3.1.3 Particle Diffusion

CRs are scattered in pitch angle by waves with resonant wavenumbers k(p) ∼ 1/rL(p); in
the regime of small deflections this process can be described by a diffusion coefficient. The most
popular choice is to assume the Bohm limit, which is obtained (in the quasi-linear limit δB/B0 .
1) for an Alfvénic turbulence generated via resonant streaming instability by a CR distribution
∝ p−4 [33]. Bohm diffusion is often heuristically extrapolated into the regime of strong field
amplification, but such a prescription used to lack a solid justification.

Global hybrid simulations allow to reconstruct CR diffusion in different regions of the shock,
either by using an analytical procedure based on the extent of the CR distribution in the upstream
or by tracking individual particles [61]. The two methods return consistent results, as shown in the
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Figure 4: Left panel: Diffusion coefficient, normalized to Bohm, immediately in front of the shock for hybrid simu-
lations of shocks with M = 20,80. Right panel: Time evolution of the maximum ion energy for parallel shocks with
M = 20,60, compared with the DSA prediction (dashed lines) [61].

left panel of Figure 4 (see [61] for more details). When magnetic field amplification occurs in the
quasi-linear regime (M . 20), particle scattering is well described by the diffusion coefficient self-
generated via resonant instability [33, 79], where the scattering rate depends on the magnetic power
in resonant waves. For stronger shocks, instead, D(E) is roughly proportional to the Bohm coeffi-
cient and its overall normalization depends on the level of magnetic field amplification δB/B0 & 1
(see also [80]). Such a scaling is determined by the fact that far upstream the spectrum of the
excited magnetic turbulence ([60], figs. 6 and 7) peaks at relatively large wavelengths, comparable
with the gyroradius of the highest-energy ions.

The effective scattering rate is also imprinted in the time evolution of Emax. The right panel of
Figure 4 shows such an evolution, which is linear with time with a slope inversely proportional to
the measured diffusion coefficient (dashed lines), as expected for DSA (e.g., [81, 53, 82]).

3.1.4 A theory of ion injection

Explaining the correlation between ion acceleration and shock obliquity requires understand-
ing the conditions necessary for thermal particles to be injected into DSA. High-resolution hybrid
simulations show that all the ions that eventually achieve large energies are reflected by the shock
potential barrier at their first shock encounter [83]. The sharp shock transition (few ion skin depths)
is associated with compression and pressure increase (overshoot), and with a cross-shock electric
potential that generates an upstream-directed electric field. At quasi-parallel shocks, the coherent
reflection of impinging ions induces a shock reformation about one gyroradius upstream of the
shock (e.g., [84, 85, 83]); because of such a reformation, the height of the barrier fluctuates on a
Larmor timescale (∼ π/ωc), which sets the period for ion injection.

At any shock reformation cycle, about 25% of the incoming ions are reflected, but not all of
them enter DSA. Ions impinging on the shock may turn into: i) thermal ions, which encounter a
“low” barrier too weak to reflect them and immediately cross downstream; ii) supra-thermal ions,
which are initially reflected by a “high” barrier, but are advected downstream during their first few
gyrations around the shock, achieving a maximum energy E . Einj ≈ 10Esh via shock drift acceler-
ation (SDA, e.g., [86, 85]); iii) non-thermal ions, which are reflected, energized via several cycles
of SDA, and eventually achieve an energy E & Einj that allows them to escape upstream. Only non-
thermal ions are really injected into the DSA process, since they must rely on diffusion —possibly
on self-generated turbulence— to get back to the shock. The existence of supra-thermal ions at
quasi-perpendicular shocks, which in simulations do not show DSA tails (Figure 2), demonstrates
that reflection is necessary but not sufficient condition for DSA injection.

By generalizing the formalism of ref. [87], it is also possible to calculate the minimum energy
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Figure 5: Left Panel: Trajectories of test-particles impinging at random times on a periodically-reforming
shock with M = 10 and ϑ ' 45◦±2◦ [83]; for each ion, t = 0 corresponds to the first shock encounter. Ions
may either not reflect (“Advected ions”), or experience SDA before ending up downstream (“SDA ions”), or
escape upstream after a few reflections (“Injected ions”). Right Panel: Post-shock ion spectrum for a parallel
shock with M = 10, as obtained in simulations and compared with the minimal model outlined in ref. [83].

Einj needed to escape upstream of a shock with a given inclination. The main results are (see §3
of [83] for more details): i) cold ions can be directly injected only if ϑ . 30◦; ii) ion injection
for ϑ & 30◦ requires SDA pre-energization. The number of cycles needed to achieve Einj(ϑ)

increases with ϑ and, since gyrating ions have a finite probability to encounter the barrier in the
low state and be advected downstream, the fraction of ions that can perform an increasingly large
number of cycles is exponentially suppressed; iii) for inclinations 30◦ . ϑ . 55◦, N ≈ 2−3 SDA
cycles are needed to reach Einj ≈ 10Esh and ∼ 0.25N ∼ 1% of the incoming particles is injected.
Above ϑ ∼ 60◦, N & 4, and the fraction of ions that escape upstream goes to zero quite rapidly.
DSA-efficient shocks always converge to a configuration where an effective inclination ϑ ≈ 45◦

is achieved because of the non-linear field amplification in the precursor [60]. These findings can
be encapsulated in a minimal model for ion injection [83], which accounts for shock reformation
and reflection at the shock barrier, and reproduces the fraction of ions in the supra-thermal and
non-thermal distributions, as well as their phase-space distribution (see Figure 5).

3.2 PIC simulations: Electron acceleration

The injection of electrons into DSA has traditionally been an outstanding problem since they
have smaller gyroradii compared to ions and the electrostatic barrier crucial for ion reflection is in-
stead pernicious to electrons. Despite several different mechanisms have been proposed to address
these issues (e.g., [88, 89, 90]), a comprehensive theory of electron injection is still missing.

Only the computationally-expensive PIC approach can study electron acceleration ab initio.
This year the first (1D) simulations of non-relativistic shocks that show simultaneous acceleration
of both electrons and ions appeared in the literature [63, 64]; in particular, ref. [63] shows that at
quasi-parallel shocks both species develop the DSA power-law tail ∝ p−4, allowing the first self-
consistent measurement of the electron/proton ratio in accelerated particles. The reported value of
Kep ≈ 10−3 is not too different from those inferred from multi-wavelength observations of young
SNRs and in Galactic CRs. Figure 6 shows ion and electron phase-space and spectra, as well as
density and self-generated magnetic field profiles for a shock with vsh = 0.1c, M = 20, and ϑ = 30◦.

Electron acceleration feeds on the NRH modes excited by energetic ions, which increases the
effective inclination of B at the shock and induce electron reflection because of magnetic mirror-
ing3. Non-resonant modes have the right polarization to effectively scatter electrons, too. Prelim-

3Ions do not conserve their magnetic moment since the shock is reforming on their Larmor time scale (§3.1.4).
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Figure 6: Left Panel: Proton (a) and electron (b) x− px phase space distributions, density profile (c), and transverse
component of B (d) for a shock with vsh = 0.1c, ϑ = 30◦, and mp/me = 100. Energetic protons and electrons diffuse
ahead of the shock, amplifying the upstream magnetic field. Right Panel: Evolution of the downstream momentum
distributions for (a) protons and (b) electrons. The dashed lines correspond to thermal distributions [63].

inary results [Caprioli et al., in prog.] show that the electrons energized in the shock foot (e.g.,
[91, 92, 63]) can achieve velocities large enough to be injected even for ϑ & 45◦, despite ions can
not. Electron reflection and a hint of a Fermi-like process at oblique shocks has been reported also
for the weak shocks (MA�Ms & 1) typical of galaxy clusters [93, 94].

3.3 Comparisons with observations

A natural question is whether such findings have any observational counterpart in SNRs or in
other non-relativistic shocks with known geometry. The typical coherence length of the Galactic
magnetic field is of order of 10–50 pc, comparable with the radius of most SNRs, with two notable
exceptions: SN1006, which lies significantly above the Galactic plane, where the field coherence
length should be the larger than in the disk, and G1.9+0.3, the youngest (and likely smallest)
SNR in the Milky Way [96]. These SNRs show a bilateral symmetry, found also in some older
SNRs, that may correlate with the geometry of the background magnetic field (e.g., [97]). Recent
observations of SN1006 (Figure 7) show that the radio emission from the synchrotron-bright polar
caps has a low degree of polarization, implying the presence of a strong and turbulent magnetic
field; such regions are also inferred to be those parallel to the large scale B0

4 [95], in qualitative
agreement with the trend of magnetic field amplification seen in simulations [55, 60]. Finally, the
Tycho’s “stripes” [98] and the bright knots observed in RX J1713.7–3946 may be signatures of the
filamentation instability operating in the localized regions where the shock is parallel [72].

On a much larger scale, the weak shocks in galaxy cluster can also be used to probe the
conditions conducive to electron and ion acceleration (e.g., [99, 100] and the review [101]). The
prominent radio emission of giant halos requires in some cases large electron acceleration efficien-
cies of ξe ' Kepξcr & 1%; also the non-detection of γ–rays with Fermi-LAT favors values of Kep

significantly larger than those inferred in SNRs. The high degree of polarization of very extended
(∼Mpc) shocks (e.g., [102, 103]) suggests either a mostly-perpendicular shock geometry or that the
radio emission is dominated by the oblique regions of the shock, where ion injection is disfavored.

4Starlight polarization in the direction of SN1006 is consistent with this picture, too [B. Draine, priv. comm.]
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– 24 –

Fig. 4.— Fractional polarization p of SN 1006 at 1.4 GHz. The resolution is 10 arcsecs. The

color scale is shown at the right. Only pixels where p was at least twice its error were kept.

SN 1006: a parallel accelerator
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Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.
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Figure 7: The top left panel shows the thermal (red) and non-thermal (light blue) X-ray emission from SN1006,
while the bottom left panel shows the corresponding degree of polarization in the radio band, as in the legend [95]; the
arrow shows the fiducial direction of the background Galactic magnetic field B0. Right panels show the self-generated
magnetic fields for shocks of different inclinations, obtained in the hybrid simulations in ref. [60]. The quasi-parallel
regions show little polarization and enhanced synchrotron emissivity, consistent with simulation outputs.

Finally, at the terrestrial bow shock, accelerated (diffuse) ions are only detected in the quasi-
parallel regions, while energetic electrons are observed upstream also for more oblique geometries
(e.g., [104] and refs. therein). Such a transition from an ion- to electron-foreshock modulated by
the shock inclination is consistent with kinetic simulations without pre-existing turbulence (§3.1.2).

4. Gamma-ray observations of SNRs

γ-ray observations of SNRs have been performed both via imaging atmospheric Cherenkov
telescopes (IACTs, such as HESS, MAGIC, and VERITAS) in the TeV energy range and via satel-
lites (Fermi and AGILE) in the GeV band; also water Cherenkov observatories (such as HAWC)
can probe multi-TeV γ−rays, but they have not reported any SNR detection so far. For recent
reviews on γ-ray astronomy, including SNR observations, see refs. [105, 106, 107]

4.1 Hunt for hadronic PeVatrons

γ-ray emission may be either leptonic (relativistic bremsstrahlung and inverse-Compton scat-
tering, IC) or hadronic (π0 decay). SNR spectra typically exhibit cutoffs around Eγ,cut ≈ 10
TeV, which implies the presence either of protons with Emax,p ∼ 7Eγ,cut, or of electrons with
Emax,e ∼ 10TeV

√
Eγ,cut/TeV in the case of IC of CMB photons in the Thompson regime; if

Emax,e & 150 TeV, the onset of the Klein–Nishina regime enforces Eγ,cut . Emax,e. Any Galactic
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accelerator able to produce hadrons5 above a few PeV (PeVatron) should also emit γ–rays above
a few hundred TeV. At the time of writing, no PeVatron has been associated with Galactic SNRs,
even if few objects show no clear evidence of a high-energy cutoff, such as HESS J1641–463 [108].

Nevertheless, such a lack of detection is not inconsistent with the SNR paradigm. For decades
the maximum CR energy has been thought to be achieved at the end of the ejecta-dominated stage,
just before the shock slows down because of the inertia of the swept-up material (e.g., [53, 82]).
Now that the crucial role of the NRH instability has been attested, the most refined models for the
evolution of Emax find that multi-PeV energies can only be achieved in powerful SNe (& 1051 erg)
exploding in dense pre-SN winds and that SNRs might act as PeVatrons only for . 50− 100 yr
[109, 110]. Historical SNRs such as Cas A, Tycho, and SN1006 are no longer expected to be
PeVatrons; G1.9+0.3 is only ∼ 120 yr old, but its line of sight is too close to the Galactic center for
optimal γ-ray measurements. Even with more optimistic scalings of Emax with time, the number of
young Galactic SNRs that fall within the sensitivity of present γ-ray telescopes is consistent with
no detections [111]. It is indeed possible that the Milky Way already hosts (or will host) a very
young SNR that may be detectable in the next few years, especially thanks to CTA.

4.2 Hadronic or leptonic?

Radio observations unequivocally attest to the presence of relativistic electrons in SNRs. The
direct evidence of hadronic acceleration, instead, may be revealed by γ-rays produced via the decay
of neutral pions originated in nuclear collisions between CRs and the thermal plasma (e.g., [112]).
For a parent particle spectrum of E−α , bremsstrahlung and pion decay return photon energy spectra
of νF(ν) ∝ ν2−α , while IC returns a flatter spectrum of νF(ν) ∝ ν(α−1)/2. For the fiducial DSA
index of α = 2 and for Kep . 10−3, IC and pion decay provide a comparable flux in the TeV
range, assuming standard ISM density and photon background (e.g., [113]), while the GeV flux is
typically dominated by pion decay; bremsstrahlung may be important only if Kep� 10−3. IACTs
almost invaribaly measure photons produced by particles close to the cutoff, which makes it very
difficult to disentangle the nature of the emission process. In the few cases in which both GeV and
TeV data are available for a remnant, instead, it may be possible to assess the leptonic/hadronic
origin of the emission by fitting the multi-wavelength SNR emission from radio to TeV γ–rays.

The overall spectral slope from GeV to TeV energies is by itself an indicator of the nature of
the emission: spectra ∝ E−2 or steeper should be produced by pion decay, since leptonic processes
would require either a very large Kep (for bremsstrahlung) or a very steep electron spectra (for IC),
inconsistent with radio observations (e.g., [114]). On the other hand, SNRs exhibiting hard γ-ray
spectra (e.g., RX J1713.7–3946, RCW 86, Vela Jr., SN1006) are more naturally explained in the
leptonic scenario (e.g., [115, 116, 117, 118]). A natural caveat comes from the finite resolution of
γ-ray instruments, which often cannot resolve shock inhomogeneities or even the presence of MCs,
which may allow for a much more complicated phenomenology (e.g., [119, 120]).

The spectra of two middle-age SNRs (W44 and IC443) show the characteristic low-energy
cutoff below the π0 mass, which can be considered the smoking gun for the hadronic nature of the
emission [121, 122]. Yet, the question remains whether such CRs have been freshly accelerated, or
are diffuse CRs merely re-energized by the recent shock passage, as also suggested but the spectral
slope quite similar to that of diffuse CRs.

5Pulsar wind nebulae do show acceleration of electrons and positrons up to PeV energies.
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The best evidence for local CR acceleration in SNRs comes from the multi-wavelength emis-
sion of single SNRs. Tycho (SN1572) is arguably the best candidate for such an analysis: is the
remnant of a type-Ia SN, so that age, explosion energy, and ejecta mass are well constrained; its
light echo has been measured, which returns a distance of ∼ 3 kpc; and its morphology is quite
spherically symmetric and well resolved in the radio and X-rays. The groups that have investigated
its morphology and multi-wavelength emission by means of the most refined theoretical models all
concluded that it must be an hadronic accelerator, with an efficiency of ∼ 15% [47, 123, 119].

The number of Fermi detection of TeV-emitting SNRs is steadly increasing [114, 124, 125];
therefore, it is tempting to work out a population synthesis. Older SNRs tend to show spectra
∝ E−2.5 or steeper (e.g., IC443, W44, W28, W51, etc.) and are almost invariably associated with
MCs, while younger remnants may show either rather steep (e.g., Tycho and Cas A) or flat spectra
(e.g., RX J1713.7–3946, RCW 86, Vela Jr., and SN1006). Such a trend may either reflect the
time evolution of Kep and/or ξcr or just be driven by the environment: the same SNR, with the
same content of relativistic electrons and ions, may look more “hadronic” in the presence of dense
gas reservoirs (e.g., warm phase ISM, MCs) or more “leptonic” in the presence of an intense IC
background (e.g., infra-red and optical photons in star-forming regions).

It is plausible that old SNRs can be detected in the γ-rays only if there is a large reservoir of
targets, while the dominant emission mechanism in young SNRs may depend on their circumstellar
medium, which for core-collapse SNe is a complex mixture of underdense bubbles and dense MCs.
The cases of Tycho and SN1006 are paradigmatic: they both have a type-Ia progenitor and are just
at the beginning of the Sedov stage, but SN1006 looks more leptonic because it is expanding in a
much more rarefied medium (about 0.05 vs 1 protons cm−3). IC would likely dominate over π0

decay also in Tycho if the upstream density were smaller by a factor of ∼20 ([47], fig. 11).

4.3 The origin of steep spectra

γ-ray spectra steeper than E−2 may be good indicators of hadronic emission, but are also ad
odds with the prediction of standard DSA for strong shocks, and even more inconsistent with the
flattening expected when CR acceleration is efficient [66, 67]. The NLDSA theory includes the
backreaction of CRs (and amplified magnetic fields [126, 127]) on the shock dynamics, predicting
for large ξcr concave CR spectra as flat as E−1.5 at the highest energies. A simple way of thinking to
this effect is considering Eq. 2.1 with the compression ratio r' 7 established by the CR relativistic
fluid with adiabatic index 4/3 (e.g., [128, 129, 130]). A few possible solutions have been put
forward to solve this apparent discrepancy between standard DSA and observations.

Magnetic feedback. In principle, CRs do not feel the fluid compression ratio, but rather the
compression ratio of the magnetic fluctuations they are coupled with [33]. The velocity of such
fluctuations is of the order of the Alfvén velocity and is typically much smaller than the fluid
velocity in the shock reference frame. In the presence of magnetic field amplification, instead, this
effect may become non-negligible if vA ∝ δB/B0 and induce an effective compression ratio r̃ . r for
the CRs, which in turns leads to steeper spectra (Eq. 2.1) [131, 132, 114]. The non-linear balance
between the flattening induced by efficient CR acceleration and the magnetic feedback (which also
increases with ξcr) is discussed in [133]. For typical SNR parameters, ξcr ∼ 10% and the level of
magnetic field amplification inferred in SNRs generally lead to spectral indexes α ≈ 2.2− 2.3 at
the beginning of the Sedov stage, exactly as required for explaining Tycho’s spectrum [47, 123].
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Even if this mechanism seems to work for phenomenological purposes, the assumed scaling of the
wave phase velocities in the very non-linear regime (δB/B0 & 100) relevant for young SNRs has
not been convincingly proven, yet.

Neutral feedback. Most of the γ-ray–bright SNRs are either associated with dense MCs (e.g.,
[134]) or propagate into partially-ionized media, as revealed by their prominent Hα emission (e.g.,
[135]). The high resolution of optical telescopes often allows to detect both a broad and a narrow
Balmer line, whose widths are determined by the downstream and upstream plasma temperature
when ions and neutrals are coupled via charge exchange. Hα emission is the only way of di-
rectly probing ion temperature in SNRs and measurements have revealed interesting deviations
with respect to the standard predictions of gaseous shocks: sometimes narrow lines are too broad
to be consistent with quasi-neutral gas in the first place (e.g., [136, 137]) and often broad lines
are anomalously-narrow, which initially suggested that a large fraction of shock energy ended up
in CRs rather than in heat [138]. More recently it has been pointed out that such anomalous line
widths may be produced also by the dynamical backreaction of the so-called neutral return flux
induced by the population of hot neutrals produced via charge exchange immediately behind the
shock [139]. Such a neutral return flux leads to the formation of a neutral-induced precursor, in
which the incoming fluid is slowed down and significantly heated up; hence, the shock becomes
much weaker (i.e., with a reduced r) than it would be in an ionized medium and accelerates particles
with steeper spectra, even when the CR backreaction is included [140]. Such a neutral feedback
is expected to be important at SNR shocks when vsh . 3000 km s−1, since for larger velocities
ionization dominates over charge exchange and the neutral return flux vanishes.

Other explanations. It also possible that some of the assumptions of the DSA theory are vi-
olated, especially at quasi-perpendicular shocks and for large shock velocities vsh & 104 km s−1. If
the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged
particles across the average direction of the field may be more complicated than simple pitch-angle
scattering, resulting in anisotropic and/or inhomogeneous CR distributions [141]. Another possible
reason for spectral steepening at quasi-perpendicular shocks is that the magnetic field may effec-
tively sweep CRs through the shock, making their return to the shock for further acceleration less
probable [142]. These scenarios assume that CR injection may happen also at quasi-perpendicular
shocks, which is not granted in the absence of energetic seeds, though (§3.1.4). Finally, it has been
suggested that strong ion-neutral damping may steepen the CR spectrum (typically to E−3) because
of the partial evanescence of Alfvén waves above a critical energy of a few GeV [143].

5. From accelerated particles to cosmic rays

To connect the CR spectra inferred in SNRs and the flux of CRs measured at Earth it is crucial
to understand how accelerated particles are released into the ISM, which may happen either by
escaping from upstream [144] or by joining the Galactic pool when the SNR fades away. Trapped
particles undergo strong adiabatic losses, so that only escaping particles can account for knee-like
energies. The spectrum of escaping particles is in principle different from that responsbile for the
SNR emission, but it may still be a universal power-law ∝ E−2 as a result of the self-similar SNR
evolution in the Sedov stage [145, 132]. The presence of escaping particles is also revealed by the
γ-ray emission from nearby MCs, which in principle contains interesting information about CR
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diffusion close to their sources (e.g., [134, 146, 147]) and about CR propagation in weakly-ionized
environments (e.g., [148] and references therein).

When such a dual modality of particle release is accounted for, the total CR spectrum should
be a bit steeper than that at the beginning of the Sedov stage [133], consistent with the inferred
values of δ . 0.5 for the energy scaling of the Galactic confinement time. δ ≈ 1/3 is also found to
provide a more universal connection between the injected and the diffuse CR spectra, in the sense
that for δ & 0.5 the intrinsic fluctuations in the distribution of SN explosions may significantly
loosen the constraint α +δ ≈ 2.65 and make the spectrum observed at Earth merely the result of a
random realization [5]. In addition, only relatively small values of δ can account for the low level
(. 1%) of CR anisotropy below the knee [41]. Finally, δ ≈ 1/3 is also consistent with the steep
CR spectra (α ≈ 2.65−δ ≈ 2.3) inferred from γ-ray observations of young SNRs (see §4.3).

5.1 CR self-confinement around sources

The local excess of energetic particles immediately outside the sources should generate gra-
dients in the CR distribution, which are expected to drive plasma instabilities that eventually tend
to self-confine escaping particles. Such a “sphere of influence” (the region where the contribution
by one source dominates over the Galactic CR sea) becomes increasingly large at high energies
because of the steepness of the diffuse spectrum and can be as large as a kpc. The self-generated
diffusion coefficient inferred in SNRs, DB(E) ' 1020EGeV/B100µG, is about seven orders of mag-
nitude smaller than the Galactic one at GeV energies, and none of these diffusion coefficients can
properly parameterize the transport of CRs around their sources. The strong non-linearity of the
problem and the large scales involved make it very hard to address such a problem either analyti-
cally or numerically (see, e.g., [149, 150] for some attempts), especially because the saturation of
the NRH instability in this context has not been assessed self-consistently, yet.

5.2 CR self-confinement in the Galaxy

On larger scales, the CR self-confinement is expected to be important also for determining their
transport in the Milky Way, and in particular the inferred Galactic diffusion coefficient and the level
of anisotropy in their arrival directions. By considering the non-linear resonant coupling between
CRs and the spectrum of the ISM magnetic turbulence it is possible to work out a self-consistent
solution for the CR equilibrium distribution and for the self-generated diffusion coefficient in the
Galaxy [151, 152]. By assuming resonant streaming instability and non-linear Landau damping,
three regimes of CRs diffusion can be individuated: i) for & 200GV CRs diffuse in the pre-existing
waves with a Kolmogorov power spectrum and D ∝ E1/3; ii) below a few GV, CRs efficiently drive
Alfénic modes and are advected with the self-generated waves at v ≈ vA; iii) for intermediate
energies CRs diffuse in the self-generated Alfvénic turbulence and D ∝ E1/2. Such scalings are
remarkably consistent with the “spectral hardening” observed at ∼ 200GeV (see §2).

The coupling of low-energy CRs with the ISM is hence predicted to be strong, which im-
plies that CRs can ablate ionized gas from the Galactic disk (and possibly quasi-neutral material if
charge-exchange is rapid enough) while they escape the Galaxy [153, 154, 155, 156]. Such CR-
driven winds may play a pivotal role in galaxy formation, suppressing star formation and enriching
galactic halos in heavy elements.
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6. Conclusions

After many decades, the SNR paradigm still represents the most plausible explanation for
the origin of Galactic CRs. Thanks to the recent developments of γ-ray astronomy and kinetic
simulations, observers and theorists have unraveled few long-standing issues, finding the direct
evidence of hadronic acceleration in SNRs (§4) and reproducing DSA ab initio (§3.1.1), which
also allowed to build a self-consistent model for ion injection (§3.1.4). Nevertheless, there are still
some tiles that need to be placed in the mosaic of understanding CR acceleration and transport.

The NRH instability is very likely the main channel of magnetic field amplification in SNRs
and has the potential to foster the acceleration of PeV protons in very young sources, but a coherent
description of its non-linear regime has not been put forward, yet. In addition, it is not clear whether
the field configuration at its saturation is conducive to CR spectra steeper than the DSA prediction,
either because of the finite velocity of the effective scattering centers or because of an incomplete
confinement of energetic particles in its filamentary structures.

Despite recent progresses (§5), the CR-driven instabilities and damping mechanisms needed
to describe CR transport around sources and in the Milky Way have not been singled out, yet.
Examples of effects that may play a pivotal role are ion-neutral damping and anisotropic transport,
induced either by the large-scale Galactic magnetic field or by the anisotropic wave damping [157].

The chemical composition of Galactic CRs is significantly much heavier than solar, especially
in the knee region as a consequence of the slightly flatter spectra of species other than H. Such
an enrichment may be due to dust sputtering (e.g., [158]) or might as well be a signature that a
significant fraction of the Galactic CRs is produced in high-metallicity star-forming regions. If this
were the case, a crucial question is whether collective effects (e.g., multiple SN explosions) lead to
phenomena qualitatively different from the linear superposition of “ordinary” SNRs.

PIC simulations have just started unraveling injection, acceleration, and thermalization of elec-
trons at non-relativistic shocks from first principles (§3.2) but covering the multi-dimensional pa-
rameter space relevant for SNR shocks will require much more effort, especially for realistic mass
ratios and 2D/3D setups. Yet, the prospects for studying the physical processes crucial to the elec-
tron dynamics from first principles and extrapolate them to astrophysical scales are strong.

Understanding how SNRs affect their circumstellar medium is of primary importance for as-
sessing the mechanisms that regulate star formation and, in turn galaxy, formation and evolution.
CRs may play a crucial role in transporting and depositing energy and momentum in the ISM,
and possibly also in the intracluster medium in galaxy clusters. Now that the theory of CR ac-
celeration at non-relativistic shocks has finally entered its quantitative age, the time may be ripe
for embedding theoretically and observationally motivated sub-grid models in cosmological and
galactic simulations, whose resolution is rapidly approaching the scales of individual SNRs.
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