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the rotation curve of the Galaxy and an exhaustive array of observation-based baryonic models
setting the contribution of stellar bulge, stellar disc and gas to the total gravitational potential. The
discrepancy between these two components is then quantified to derive the latest constraints on
the dark matter distribution and on modified Newtonian dynamics. We shall end with an overview
of future directions to improve our mapping of the dark matter distribution in the Milky Way.
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1. Preamble

It is almost one hundred years since the presence of an invisible component of matter across the
cosmos has first been suggested. The earliest remarks on the dynamical contribution of an invisible
component date back to the seminal works of Kapteyn [1] and Oort [2] in the 1920s, shortly before
Zwicky [3] postulated the existence of large amounts of dark matter to explain the dynamics of the
Coma cluster of galaxies. The history of dark matter in individual galaxies started soon afterwards,
in 1939, when Babcock [4] measured the Doppler shift of emission and absorption lines in the
gas of our closest spiral galaxy, Andromeda. Throughout the following decades, several studies
(e.g. [5]) confirmed the fast rotation of Andromeda and indicated an almost flat rotation curve.
This same behaviour was then observed in numerous other spiral galaxies throughout the 1970s
and 1980s, lending support to the dark matter paradigm. Curiously, the case of our Galaxy, a spiral
itself, is much more complicated. While many external galaxies happen to lie towards particularly
convenient lines of sight with particularly convenient inclination angles, in the Milky Way there
is not much we can do: our inside position makes it extremely hard to measure accurate distances
and velocities. Therefore, determining the rotation curve of our Galaxy remains a challenging
enterprise still today. Current and forthcoming astronomical surveys, however, hold the promise of
staggering improvements in the field over the coming years.

Here we give a synopsis of the ongoing efforts in determining the dark matter distribution
across the Milky Way. We start with a brief tour of the Galaxy in Sec. 2, separated into the different
baryonic components and the total mass distribution. Sec. 3 is instead devoted to the determination
of the dark matter content, including a description of the so-called local and global methods as
well as their strengths and pitfalls. We then summarise the latest developments based on our recent
works [6, 7, 8, 9] in Sec. 4, before finalising in Sec. 5 with an outlook on the future prospects in
the field. These proceedings are intended as a synopsis only, not as a comprehensive review, for
which we refer the interested reader to the list of references, in particular to the books [10, 11] and
the recent review [12].

2. Tour of the Galaxy

The Milky Way is a complex, gravitationally-bound system of stars, gas and dark matter. In
the very centre of the Galaxy sits a supermassive black hole with a mass 4.4×106 M�, as inferred
from the orbits of tens of S-stars in the inner 0.01pc [13, 14]. The gravitational influence of the
supermassive black hole dominates the central pc, but becomes negligible in the regions we are
interested in, namely above 1kpc off the Galactic centre, so we shall neglect it in the following.
For our purposes here, there are three main baryonic components of the Galaxy: stellar bulge,
dominating the innermost 2−3kpc with its barred shape and total mass of order 1010 M�; stellar
disc, often split in thin and thick populations with a fast decaying radial profile and total mass
around (2−5)×1010 M�; and gas, comprising about 5×109 M� of molecular, atomic and ionised
hydrogen (and heavier elements). The stellar disc and the gas have a marked spiral structure with
four main arms (see Ref. [15] and references therein), where the Sun lies in between the Perseus
and Sagittarius arms, in a local armlet, at a distance to the Galactic centre R0 = 7.5 − 8.5kpc
[13, 16, 17, 18]. The local standard of rest (LSR) moves around the Galactic centre at the so-called
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model specification data Ref.

bulge

1 exponential E2 optical [26]
2 gaussian G2 optical [26]
3 gaussian plus nucleus infrared [27]
4 truncated power law infrared [28]
5 power law plus long bar optical | infrared [29]
6 truncated power law optical | infrared [30]
7 double ellipsoid infrared [31]

disc

1 thin plus thick optical [32]
2 thin plus thick optical [33]
3 thin plus thick plus halo optical [34]
4 thin plus thick plus halo optical [35]
5 single maximal disc optical [36]

gas
1 H2, HI, HII optical | microwave | radio [37]
2 H2, HI, HII optical | microwave | radio [38]

Table 1: Details of the baryonic models used to set the stellar bulge, stellar disc and gas in our Galaxy. Table
adapted from Ref. [7]; please refer to Refs. [6, 7] for a full description of each model.

local circular velocity v0 = 210−250km/s [19, 20, 21, 22, 23, 18], with the Sun leading the LSR
by (U,V,W )� = (10− 11, 5− 26, 7− 9)km/s [24, 25, 23, 18]. The three baryonic components
described above are supposed to be embedded in a dark matter halo, likely extending hundreds
of kpc but whose properties are not well constrained at present. To sum up, the total gravitational
potential of our Galaxy receives contributions from the baryons (bulge, disc, gas) and dark matter
separately:

φtot = φbulge+φdisc+φgas+φdm . (2.1)

The key challenge is then to constrain the different terms in this equation. Photometric data trace
the individual baryonic components φbulge, φdisc, φgas, while kinematic data trace the total grav-
itational potential φtot. The dark matter contribution follows from the comparison of these two
inputs.

2.1 Baryonic components (photometry)

Photometric data play a crucial role in tracing and discerning the different baryonic compo-
nents. In the following we go through the specifics of each component and divide the discussion
into morphology and normalisation. Tab. 1 (adapted from Ref. [7]) summarises the different bary-
onic models used for the morphology of each component.

Stellar bulge The morphology of the bulge has been extensively mapped with the help of optical
and infrared surveys (such as COBE/DIRBE, OGLE and 2MASS), revealing an elongated triaxial
structure, known as the bar, with near end at positive Galactic longitudes. The inclination of the
bar with respect to the Galactic centre line of sight has not been precisely measured and angles
reported in the literature [26, 27, 28, 29, 30, 31] vary between 10◦ and 45◦. Similarly, the spatial
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distribution has been fitted with several variants of exponential, gaussian and power law profiles
(cf. Tab. 1). Regarding the normalisation of the bulge, one possibility is to use the measurement of
the microlensing optical depth towards the central Galactic region [39, 40, 41]. This procedure is
particularly convenient in deriving model-independent constraints since the optical depth does not
depend on the individual masses of the lenses but only on their mass density along the line of sight
[42, 43, 44].

Stellar disc(s) Optical photometric surveys, most prominently SDSS, have been instrumental in
pinpointing the structure of the stellar disc. Based on these data, several works in the literature
[32, 33, 34, 35] describe the morphology of the disc with a double exponential profile [10] and
two components, a thin population (of scale height ∼ 0.25kpc) and a thick population (of scale
height ∼ 0.75kpc). There are also works implementing a single effective component [36]. The
normalisation of the disc, in particular the local total stellar surface density, can be pinned down
with star censuses [45, 46] or dynamically with a Jeans analysis of the kinematics of specific tracer
stars [36].

Gas The gas in our Galaxy is mainly composed of molecular, atomic and ionised hydrogen (H2,
HI and HII, respectively). Each component is probed with different observations: CO lines for
molecular gas; 21cm line for atomic gas; Hα line and dispersion measures of pulsars for ionised
gas. The observations show a very patchy morphology in the very inner 10pc of the Galaxy [47]
and a disc-like structure otherwise, including features such as a central molecular zone and a holed
disc in the inner 2kpc [48]. The distribution at larger scales has been compiled in Refs. [37, 38].
Overall, the gas content is dominated by H2 in the inner Galaxy and HI in the outer Galaxy. The
main normalisation uncertainties of the gas component arise from the poorly constrained CO-to-H2

factor [37, 49] for H2 and from a factor ∼ 2 discrepancy between different 21cm line surveys in
the inner 15kpc for HI [50].

2.2 Total gravitational potential (kinematics)

There are numerous kinematic observables used to track down the total mass distribution
across the Galaxy. Some include timing arguments in the Local Group [51] or the kinematics of
Milky Way satellites [52]. Here we shall focus instead on rotation curve tracers and star population
tracers.

Rotation curve tracers These include mainly young objects or regions that track the Galactic
rotation. While in external galaxies the only tracer available to us is the gas, in the case of our
Galaxy we can also resolve stars and star-forming regions and use those as kinematic tracers.
Today, despite the challenges posed by our position inside the Galaxy, the rotation curve can be
precisely measured from about 1 to 30 kpc off the Galactic centre using gas [53, 54, 55, 56, 57,
58, 59, 60, 61, 53, 62, 63, 64], stars [65, 66, 67, 68, 69, 70] and masers in star forming regions
[18, 71, 72, 73, 74]. A new, up-to-date compilation of tracers has been presented in Ref. [6].

Star population tracers In a galaxy like our own, star encounters are relatively rare and stars
feel on average the smooth gravitational potential of the whole system. We can therefore treat a
given set of stars as a collisionless gas and apply the collisionless Boltzmann equation. The first
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momentum of the Boltzmann equation gives the Jeans equations, which relate the total gravitational
potential to the density distribution and velocity dispersions of a given population of selected stars.
Star populations are thus invaluable kinematic tracers and have in fact been used to pinpoint the
total gravitational potential in the outer halo [75, 76, 77, 78], across the disc [36, 79] and above and
below the Galactic plane [80, 81, 82, 83, 84].

3. Dark matter content

As highlighted in Sec. 2, kinematic data fix the total gravitational potential whereas photomet-
ric data set the individual baryonic components; the comparison between the two can then be used
to infer the dark matter distribution across the Milky Way. There are two classes of methods de-
signed to perform this comparison: local methods, which use observations from one specific patch
of the sky to derive the dark matter content therein, and global methods, which use data from dif-
ferent regions to infer the dark matter content elsewhere. An excellent example of the performance
of local and global methods is the measurement of the local dark matter density, see Ref. [12] for
an extensive review. Here we give a brief overview of the strengths and pitfalls of each method in
measuring the local dark matter density, and their complementarity.

3.1 Local methods

Local methods couple the Jeans and Poisson equations, thereby relating the total mass density
in the solar neighbourhood with the kinematics of a given nearby population of stars. The simplest
configuration is the so-called Oort limit [85, 10], in which the mixed radial-vertical term in the
Jeans equation is neglected and, assuming a flat rotation curve, the total mass density can be writ-
ten in terms of a double derivative of the velocity dispersion of the stars in the vertical direction.
This simple scheme has been extended over the years to include various corrections with simula-
tions often used as a test bed. A critical step in constraining the dark matter density in the solar
neighbourhood is to account for the local dynamical contribution of baryons, which is not precisely
known. This, together with other complexities of the method, induces substantial uncertainties pre-
cluding a very precise measurement of the local dark matter density, at least with current data.
Several works in the literature implement local methods with different approaches, assumptions
and data, see e.g. Refs. [86, 87, 88, 89, 12]. The main advantage of this technique is to provide a
truly local measurement of the dark matter density in the solar neighbourhood without assuming
a global mass model for the whole Galaxy. The most important pitfalls include the difficulty of
constructing a clean sample of tracers and of treating kinematically inhomogeneous populations,
and the significant uncertainties pertaining the contribution of baryons (most notably, gas) in the
solar neighbourhood. For a critical discussion of these pitfalls, see Ref. [90].

3.2 Global methods

Global methods are based instead on the mass modelling of the Milky Way as a whole. Typi-
cally, mass models for the baryonic components (in particular, stellar bulge and stellar disc) and for
the dark matter halo are assigned with a number of free parameters that are then fitted to kinematic
data across the Galaxy. The data available are rather broad, ranging from terminal velocities of the
gas to the measurement of the Oort constants and the kinematics of stellar objects at large distances
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from the Galactic centre. This extensive fitting procedure fixes several quantities such as the local
dark matter density to a rather good precision, often around 10% or better. The literature of global
methods is rather rich, see e.g. Refs. [91, 92, 93, 94, 95, 44, 96, 97, 98]. The major advantage of this
technique is perhaps the wealth of available data, which are invaluable in reconstructing the over-
all structure of our Galaxy. The fundamental drawback of global measurements of the local dark
matter density is that they are particularly prone to systematics associated, for instance, to baryonic
modelling (see e.g. Ref. [7]) or to the shape of the dark matter halo (see e.g. Refs. [99, 100]).

Generically, the upshot is that local methods are usually less precise but more robust than
global methods are, and both bring complementary input regarding the dark matter distribution
in the Milky Way. This is rather evident in the case of the local dark matter density: since local
methods probe the solar neighbourhood itself and global methods probe a usually spherical shell
around the Galactic centre, the comparison between both determinations can be used as a diagnostic
test on the shape of the dark matter halo, in particular whether this is oblate or prolate (see Ref. [12]
for a discussion). Given the sizeable uncertainties at present, the outcome of such comparison
remains inconclusive.

4. Latest developments

That dark matter dominates the overall mass budget in the Milky Way has been inferred from
kinematic tracers in the outskirts of the Galaxy (e.g. Ref. [76]). However, closer to the centre,
namely inside the solar circle, where baryons give an increasingly important contribution to the
total gravitational potential, dark matter constraints are weaker and often lack the level of accuracy
required today for particle dark matter searches and for interpreting the results of galaxy formation
simulations with the highest resolution. In this context, we have addressed first the presence and
second the distribution of dark matter in the innermost regions of the Galaxy (i.e. inside the solar
circle), making use of an extensive array of observation-based descriptions of the different baryonic
components (cf. Sec. 2.1) and a comprehensive compilation of rotation curve tracers (cf. Sec. 2.2).
Here we give a brief account of our recent work based on Refs. [6, 7, 8, 9], to which the reader is
referred for a detailed discussion.

4.1 Evidence for dark matter

In Ref. [6], we have addressed the very observational evidence for part of the total gravita-
tional potential being generated by a non-visible component. The rationale behind our approach
was to compare the rotation curve of the Galaxy with the contribution due to the observed baryonic
components in order to quantify the discrepancy between the two as a function of the Galacto-
centric radius and to assess the impact of all relevant uncertainties. Fig. 1 shows the key results
of our analysis. In the left panel, the rotation curve (red data points) is compared directly to the
bracketing of the baryonic contribution (grey band). Notice that the baryonic band corresponds to
the convolution of the 70 alternative baryonic models that can be generated with the seven bulges,
five discs and two gas configurations in Tab. 1. The discrepancy between the rotation curve and
the envelope representing the baryonic uncertainty appears already by eye; nonetheless, a thorough
statistical analysis needs to be performed to properly assess the level of discrepancy. The outcome
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Figure 1: Evidence for dark matter. The left panel shows the compilation of rotation curve tracers in red
and the convolution of all baryonic models (together with their 1σ uncertainties) in grey. The right panel
displays the cumulative goodness of fit as a function of Galactocentric radius for each single baryonic model;
the red line corresponds to a 5σ exclusion. The black line in both panels corresponds to a representative
baryonic model. This figure assumes a distance of the Sun to the Galactic centre R0 = 8kpc, a local circular
velocity v0 = 230km/s and the peculiar solar motion of Ref. [25]. Plots taken from Refs. [6, 7]. Please refer
to Ref. [6] for further details.

of such analysis is presented in the right panel of Fig. 1 in terms of the cumulative goodness of fit as
a function of the Galactocentric radius for each of the 70 baryonic models. All baryonic models fail
to fit the observed rotation curve – at more than five sigma – already inside the solar circle. Most of
them actually fall short of matching the total gravitational potential already at Galactocentric radii
of approximately 5kpc. These results have been shown to be robust against an exhaustive set of
uncertainties (including fundamental Galactic parameters, peculiar solar motion, baryonic uncer-
tainties, data selection and systematics, cf. supplementary information in Ref. [6]). It is important
to stress at this point that the dark matter hypothesis has not been introduced at all in this analysis,
and the method described so far simply quantifies the discrepancy between the total and baryonic
gravitational potentials without any theoretical prejudice.

4.2 Dark matter distribution

Given the evidence that the total gravitational potential of the Milky Way cannot be accounted
for by visible matter only, we set out to infer the distribution of dark matter that best accounts for
the missing mass. Two different approaches were adopted for this purpose: profile fitting [7] and
profile reconstruction [8].

Profile fitting First, we performed a simple fit to the kinematic data, in which the dark matter
distribution is described by a spherical profile with a parameteric, pre-assigned functional form.
This sort of global method has been extensively studied in the literature, cf. Sec. 3.2 and references
therein. Our analysis in Ref. [7] (see also Ref. [44] for earlier constraints) focussed on the gener-
alised Navarro-Frenk-White (NFW) and Einasto profiles. The left panel of Fig. 2 reproduces the
results for the generalised NFW profile in terms of the local dark matter density ρ0 and the inner
slope γ for all 70 baryonic models mentioned in Sec. 4.1. It is clear that our ignorance about the
actual baryonic morphology is preventing a more precise determination of the dark matter profile,
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Figure 2: Inferring the dark matter distribution. The left panel shows the 2σ confidence regions for a gen-
eralised NFW profile (with fixed scale radius rs = 20kpc) and each single baryonic model. The confidence
region corresponding to a representative baryonic model is marked in black; for this baryonic model, the
5σ goodness-of-fit region is also shown. The right panel displays a non-parametric reconstruction of the
dark matter profile, obtained without assuming any functional form. The red error bars correspond to the
reconstruction for a representative baryonic model, while the grey band encompasses the reconstruction for
all baryonic models. This figure assumes a distance of the Sun to the Galactic centre R0 = 8kpc, a local
circular velocity v0 = 230km/s and the peculiar solar motion of Ref. [25]. Plots taken from Refs. [7, 8].
Please refer to Refs. [7, 8] for further details.

especially its slope towards the inner part of the Galaxy. In particular, we find that the local dark
matter density is (slightly) degenerate with the morphology of the stellar disc and the inner slope is
(heavily) degenerate with the morphology of the stellar bulge. Therefore, in the future a more pre-
cise reconstruction of disc and bulge would be extremely valuable in achieving better constraints
on the dark matter distribution in the Milky Way.

Profile reconstruction The previous technique is sound but relies on the assumption of a given
parametric profile: the fitted parameters will be useful only if the original assumption is sufficiently
accurate. Therefore, it is important to reconstruct – with current or upcoming data – the dark matter
profile directly from the data, without any parametric assumption. In Ref. [8], we have adopted
a method to perform such profile reconstruction assuming a spherical dark matter distribution.
Specifically, we have used the magnitude and slope of the residuals between the rotation curve
and the baryonic contribution to reconstruct the dark matter density in the inner 25kpc of the
Milky Way. The results are shown in the right panel of Fig. 2. The dark matter density profile
obtained with this method is not very precise and in fact it is not possible to discriminate between
different profiles with current data. Notice that this is entirely consistent with the evidence for a
dark matter component described in Sec. 4.1 since in that case we used an unbinned analysis to
infer the presence of an additional component but not its magnitude. The large uncertainties in
the profile reconstruction stem from the loss of information introduced by the binning procedure
necessary to estimate the slope of the residuals. Despite this drawback, the profile reconstruction
method constitutes a first step in the effort to extract the dark matter profile directly from rotation
curve data without unnecessary adhoc assumptions, and its relevance at a precision level will grow
as the quality of the available kinematic data improves throughout the decade.
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4.3 Modified Newtonian Dynamics

The setup described in the previous sections can also be used to test and constrain modifica-
tions of gravity in the Milky Way. We have explored this direction in Ref. [9] in the context of
Modified Newtonian Dynamics (MOND). Using two of the most popular interpolating functions
(the so-called “standard” and “simple” functions), we have tested the MOND paradigm with the
rotation curve data for each baryonic model, taking the critical acceleration a0 as a fitting parame-
ter. In the case the standard interpolating function, our findings show that for most baryonic models
MOND can explain the rotation curve of the Milky Way for values of a0 significantly above those
indicated by studies of external spiral galaxies (see e.g. Ref. [101]). This friction is less promi-
nent in the case of the simple interpolating function. While these results do not certainly rule out
MOND, they confirm the existing tension between some MOND variants and observational data at
the galactic scale.

5. Future directions

In this synopsis, we have summarised the considerable progress achieved by the community
in constraining the dark matter density in the Galaxy over the decades and in recent years. A
major conclusion is that – whereas extensive photometric and kinematic data are indeed available
– the ignorance about the actual morphology of the visible component and current observational
uncertainties in determining the Galactic fundamental parameters (i.e. the distance of the Sun to
the Galactic centre and the local circular velocity) still are the dominating sources of uncertainty
in pinpointing the dark matter component across the Milky Way. In the near future, a detailed
determination of the dark matter density profile will depend crucially on our ability to shrink these
two sources of uncertainty. On that respect, a new generation of astronomical surveys is steadily
coming into place: the Gaia satellite [102], launched in December 2013 by ESA and already in
its 5-year science data taking period since July 2014, the ground-based infrared survey APOGEE-
2 (SDSS-IV, 2014–2020) [103] covering both hemispheres, and the ground-based optical surveys
WEAVE [104] (2017–2022) in the northern hemisphere and 4MOST [105] (2018–2023) in the
sourthern hemisphere. These instruments will deliver a comprehensive, exquisite census of stars in
the Galaxy, especially in the solar neighbourhood. The main challenge for the next decade is to use
this batch of data to start a new precision era in mapping dark matter across the Milky Way.

Acknowledgements. M. P. acknowledges the support from Wenner-Gren Stiftelserna in Stock-
holm and F. I. from the Simons Foundation and FAPESP process 2014/22985-1.
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