
P
o
S
(
I
C
R
C
2
0
1
5
)
1
0
3
8

Combination of shower-front sampling and imaging
in the Tunka Advanced International Gamma-ray and
Cosmic ray Astrophysics (TAIGA) project

Maike Kunnas∗a, I. Astapov j, N. Barbashina j, S. Beregnevc, A. Bogdanovg, D.
Bogorodskiid , V. Boreykob, M. Brücknere, N. Budnevd , A. Chiavassah, O. Chvalaevd ,
A. Dyachokd , S. Epimakhova, T. Ereminc, A. Gafarovd , N. Gorbunovb, V. Grebenyukb,
O. Gressd , T. Gressd , A. Grinyukb, O. Grishind , D. Hornsa, A. Ivanovad , N. Karpovc,
N. Kalmykovc, Y. Kazarinad , V. Kinding, N. Kirichkovd , S. Kiryuhind , R. Kokouling, K.
Kompanietsg, E. Konstantinovd , A. Korobchenkod , E. Korostelevac, V. Kozhinc, L.
Kuzmichevc, V. Lenokd , B. Lubsandorzhievk, N. Lubsandorzhievc, R. Mirgazovd , R.
Mirzoyani,d , R. Monkhoevd , Mügere f , R. Nachtigalla, A. Pakhorukovd , M. Panasyukc,
L. Pankovd , A. Perevalovd , A. Petrukhing, V. Platonovd , V. Poleschukd , M. Popescul,
E. Popovac, A. Porelli f , S. Porokhovoyb, E. Postnikovc V. Prosinc, V. Ptuskin j, V.
Romanovb, G.I. Rubtsovk, E. Rybovd , V. Samoligad , P. Satunink, A. Saunkind , V.
Savinovd , Yu. Semeneyd , B. Shaibonov(junior)k, A. Silaevc, A. Silaev (junior)c, A.
Skurikhinc, M. Sluneckab, C. Spiering f , L. Sveshnikovac, V. Tabolenkod , A.
Tkachenkob, L. Tkachevb, M. Tluczykonta, A. Veslopopovd , E. Veslopopovad , D.
Voronovd , R. Wischnewski f , I. Yashing, K. Yuring, A. Zagorodnikovd , V. Zirakashvili j,
V. Zurbanovd

a Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
b Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia
c Skobeltsyn institute for Nuclear Physics, Lomonosov Moscow State University, 1 Leninskie gory,
119991 Moscow, Russia

d Institute of Applied Physics, Irkutsk State University, Irkutsk, Russia
e Institute for Computer Science, Humboldt-University Berlin, Rudower Chaussee 25, 12489
Berlin, Germany

f DESY, Platanenallee 6, 15738 Zeuthen, Germany
g MEPhI (Moscow Engineering Physics Insitute), National Research Nuclear University,
Moscow, Russia

h Dipartimento di Fisica Generale Universiteta di Torino and INFN, Torino, Italy
i Werner Heisenberg Institut, Föhringer Ring 6, 80805, München, Germany
j IZMIRAN, Troitsk, Moscow Region, Russia
k Institute for Nuclear Research of the Russian Academy of Sciences 60th October Anniversary
st., 7a, 117312, Moscow, Russia

l Institute of Space Science, Bucharest, Romania
E-mail: maike.kunnas@desy.de

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:maike.kunnas@desy.de


P
o
S
(
I
C
R
C
2
0
1
5
)
1
0
3
8

For observation of extensive air showers (EAS) from gamma rays and cosmic rays, Cherenkov
light sampling arrays (non-imaging technique or timing-arrays) provide good core position, en-
ergy, and angular resolution similar to imaging telescopes (IACTs) and yield good sensitivity at
the highest energies due to the potentially large collection area. However, the gamma-hadron
separation power of this method limits the sensitivity at the energy threshold.
In matters of gamma hadron separation and reconstruction, imaging air Cherenkov telescopes are
the instrument of choice, but a stereoscopic view of a shower is needed for accurate geometri-
cal reconstruction. This makes it costly to achieve sufficiently large effective areas needed for
sensitive observations at and above 100 TeV.
A combination of these experimental approaches, using the respective strength of both techniques
and compensating their weaknesses, could optimise the sensitivity.
The TAIGA project will for the first time combine a non-imaging array with small (O (10 m2)
mirror) imaging telescopes. Here, we present the first hybrid simulations combining imaging and
non-imaging detectors. These simulations are used to explore and optimise the hybrid reconstruc-
tion technique and its sensitivity.
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1. Introduction

Timing arrays like the Hundred*i Square kilometer Cosmic Origin Explorer (HiSCORE)[1]
observe the ultra high energy gamma ray and cosmic ray sky by sampling the Cherenkov light
of extensive air showers. This technique gives very good reconstruction of core position (∼20 m),
energy (∼ 15%), and incidence angle (∼0.1◦)[5] with comparably inexpensive hardware. Since the
low fluxes of cosmic rays and gamma rays at and above 100 TeV require huge effective areas (10
km2 and more) and thus make it necessary to instrument large areas, this seems like a promosong
way to proceed. The weakness of the timing arrays however is that the gamma-hadron separation
power limits the sensitivity, especially at threshold energies (∼10 TeV).

Imaging air Cherenkov telescopes, however, achieve a good separation even at the threshold.
With two or more telescopes observing the same shower simultaneously, reconstruction of direction
and energy are possible as well, but the accuracy deteriorates severely if only one image of a shower
is recorded. This sets a limit to the maximum spacing of the telescopes of about 300 m, making
very large areas costly.

In the combination of both techniques, the timing array provides the information about shower
core position and incidence angle, and the IACT images are used for the identification of the pri-
mary particle. This removes the need for IACT stereoscopy and increases the spacing (e.g. 600 m),
reducing the number of telescopes needed by a factor of four.

As a part of the TAIGA project, the HiSCORE timing array (in deployment) will be combined
with small (∼10 m2) IACTs (currently in development). HiSCORE stations consist of four large
(8”) photomultiplier tubes (PMTs), collecting light using Winston cones to sample the shower light
front. 28 stations with a spacing of 100 m - 150 m covering about 0.25 km2 have so far been
deployed in the Tunka valley, Russia (51◦ 48’ 35” N, 103◦ 04’ 02” E, 675 m a.s.l.), with the option
of increasing the area up to 3 km2.

The IACTs will be of the Davies-Cotton design with a dish diameter of 4.30 m consisting of
30 circular glass mirror facets with 60 cm diameter each and a focal length of 4.75 m. The camera
consists of 540 PMT pixels with a diameter of the field of view (FoV) of 0.38◦ per pixel and 10◦

total.

2. Simulation of IACT

The Monte Carlo (MC) simulation of the detector performance is done in three steps. First,
the shower development is simulated with the CORSIKA-6990[2] code, including the package for
EAS Cherenkov light data (IACT option, hadronic interaction models QGSJET [3] and Gheisha
[4]). We consider nine telescopes on a regular 3x3 grid with 600 m spacing.

Then, each run is processed independently with the HiSCORE and IACT response simulation
algorithms.

The HiSCORE response is done by the sim_score[1] code, a custom simulation software based
on the IACT package, to determine the resolution for core position, incidence angle, and recon-
structed energy. The detection probability for each CORSIKA-generated Cherenkov photon bunch
is calculated and applied. For each photon recorded with the detector the response of the electronics
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Figure 1: IACT PSF for angles of 0-5◦ from the optical axis in 1D projection and in colour scale. Red lines
indicate each spot’s projected 86% range. Perfectly aligned mirrors are assumed. The finger-like structures
are an effect of the outermost mirror segments.

(with NSB noise and afterpulsing) is done. The simulation lastly performs the same reconstruction
routine that is used on the real shower data.

The simulation software for the IACTs is based upon sim_telarray[7]. In sim_telarray, a full
raytracing of the Cherenkov photons through the telescopes’ optics is performed. Then the elec-
tronics response with NSB and electronic noise is generated. Here, all telescope details are included
into the simulation, e.g. mirror dish shape, mirror reflectivity and (mis-)alignment, camera size,
shadowing by masts and camera, camera PMT efficiency, and the properties of the electronic parts.

sim_telarray also performs image cleaning and the calculation of the Hillas parameters and, if
more than one telescope triggered, stereoscopic reconstruction of direction, incidence angle, and
energy.

3. Preliminary Results

3.1 IACT Point Spread Function

Before a combination is possible, one first needs to evaluate if the intended telescope design
is adequate. For this, the sim_telarray-given raytracing routine was used to give an estimate on the
telescope’s point spread function (PSF). The PSF describes how much the image of an infinitly far
away point source is widened by the mirror optics.

The Davies-Cotton mirror dish of the TAIGA IACTs is composed of spherical mirror tiles
smaller than the overall dish size (60 cm ø on a 4.75 m ø dish). The tesselation ratio α describes
the relation between the diameters of the individual mirror tile (dtile) and the main dish (Ddish) :

α =
dtile

Ddish
(3.1)

The relative size of the individual mirror tiles is important, with larger tiles the abberation
effects due to their spherical nature increase. TAIGA’s IACTs are designed with a tesselation ratio
of 0.13.

Figure 1 shows the minimal spread of a point source at different off-axis angles. It can be seen
that the PSF is still significantly smaller than a single camera pixel even at an off-axis angle of 5◦

at the assumption of perfect mirror alignment.
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Figure 2: Comparison between analytical and simulated predictions for the PSF for F/D = 1.1. Red: Ana-
lytical prediction [8] for a tesselation ratio of 0.03, Green: Prediction by sim_telarray simulation (α = 0.13).
The difference in the steepness of the curve is caused by the difference in tesselation ratio. The bigger mirror
tiles on the TAIGA IACTs causes the PSF to start larger, but increase less with increasing offset angle.

The impact of the tesselation ratio can be seen in figure 2. While our PSF at small angles is not
as good as expected from the analytical predictions by Schliesser and Mirzoyan[8], their assumed
tesselation ratio is 0.03, meaning much smaller mirrors. Smaller mirrors mean less abberation
effects from the rims of the tiles, the overall shape gets closer to the shape of the main dish.

3.2 Gamma-Hadron-Separation using Shower Width

The main point of the combination between IACT and timing array is to improve the array’s
gamma-hadron separation power at its sensitivity threshold, e.g. about 10-50 TeV[6]. First, we
evaluate how powerful the IACTs are on their own.

The Hillas parameter used for separation is the width of the image, i.e. the second moment of
the amplitude distribution after image cleaning. A shower’s width is mainly dependant on image
size (= overall camera PMT amplitude), impact parameter (= distance between observing telescope
and shower core) and nature of the primary. In the combined approach, energy, impact parameter,
and direction are measured by the timing array, so the analysis of the IACT images can focus solely
on determining if it was a gamma or a hadronic event.

Due to the higher numbers of hadronic interactions in the early stage of a shower, hadron
induced showers show a broader width distribution than gamma- or electron-induced showers (see
fig.3). A cut on the width can seperate gamma from hadron events. The parameter Q shows the
quality of such a cut:

Q =
εγ√
εp

(3.2)
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Figure 3: Raw width distribution for showers from the zenith in the energy range of 10-50 TeV. Red:
Gammas, Green: Protons. Left: Differential distribution. The proton distribution is broader than the gamma
distribution and has a bigger mean, but the two peaks still overlap much. Right: Cumulative distribution and
quality factor Q for the width cut. If a cut is made on the raw data, the maximum quality factor does not
reach 1.6.

Figure 4: Hybrid scaled width (HSCW) distribution for showers from the zenith in the energy range of
10-50 TeV. Red: Gammas, Green: Protons. Left: Differential distribution. Compared to the unscaled plot,
the gamma and the proton distribution have moved apart significantly. Right: Cumulative distribution and
quality factor Q for the width cut. If a cut is made on the HSCW, the maximum quality factor is almost 2.

with

εi =
ni(w < wcut)

ni
, εi ∈ (γ, p) (3.3)

Natively, the two distributions overlap strongly due to the varying core distances, and a cut on
the raw width would yield max. Q = 1.4, which is not satisfying. To counter this, the measured
widths are rescaled to the expected values of gamma showers, which makes the distributions move
apart significantly. For this purpose a lookup-table is generated from MC simulation with the
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dimensions image size after tail cuts (∝ total image amplitude), impact parameter, zenith angle, and
expected width. The individual shower image widths are then divided by their respective lookup
table entry, yielding an overall distribution as seen in fig.4. In the actual experiment, this will be
the part where the combination takes place: To find the right lookup-table entry for a measured
shower, the sampling array is used to find the shower’s core distance and zenith angle. The scaled
value is called the Hybrid Scaled Width (HSCW):

HSCW =
wtel

wγ

MC(darray,sizetel)
(3.4)

Cutting on the HSCW instead of on the raw width increases the quality factor of our IACTs
from about 1.6 to almost 2, which is better than the separation the HiSCORE array could achieve
on its own at these energies. Using the timing array technique alone yields a Q∼ 1 at the threshold
and only starts to approach 2 at hundred TeV.[5][6]

For a first estimate on combined reconstruction quality (results shown in fig.4), the true core
position is randomised with the HiSCORE core position resolution (toy MC). This randomised
postition is then used to find the correct lookup-table entry for scaling, emulating a reconstruction
by HiSCORE without actually simulating the showers in sim_score to save computing time.

This lowers the reconstruction quality only marginally as compared to using the ’true’ (MC)
core position, even though the core resolution for HiSCORE is strongly energy-dependent near the
threshold.

4. Conclusion and Outlook

The combined reconstruction of HiSCORE and IACTs is of course not restricted to using
the core position for a lookup-table. The direction information of the IACTs will be taken into a
weighted average with the information that HiSCORE gets from a shower, and the arrival time of
the Cherenkov light at a telescope can also be evaluated just like the arrival time on a HiSCORE
station. Also, the HiSCORE approach on gamma-hadron information by shower-front profiling
will be combined with the image reconstruction. This will probably increase the Q-factor at low
energies.

If a shower’s impact parameter towards a telescope is too big, the images get truncated at the
camera edge which leads to miscalculation of shower axis and width. Typically, these images are
discarded by cuts on the Hillas parameter ’distance’, but especially for a widely-spaced array like
the TAIGA IACTs this case is very common. However, the time gradient inside the shower image
can be used to determine the direction of the shower, and the direction of the shower combined
with the energy from the array makes it possible to estimate how much of the image has been cut
off and how much the true width should be. This could make it possible to discard less events.

The TAIGA system will be the first to combine the strengths of IACT telescopes and Cherenkov
timing arrays. The optical quality of the simulated IACT design meets our specifications and the
combination between the HiSCORE array and IACTs results in improved gamma-hadron separa-
tion and a maximisation of the effective area.

Simulation and reconstruction will be combined to maximise the separation quality and min-
imise the direction reconstruction uncertainties.
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