The DAMIC dark matter experiment

J.R.T. de Mello Netoa on behalf of the DAMIC Collaboration

A. Aguilar-Arevaloa, D. Amideib, X. Bertouc, D. Boleb, M. Butnerd, i, G. Cancelod, A. Castañeda Vázqueza, A.E. Chavarriaa, S. Dixone, J.C. D’Olivoa, J. Estradad, G. Fernandez Moronid, K.P. Hernández Torresa, F. Izraelevitchd, A. Kavnerb, B. Kilminsterk, I. Lawsonb, J. Liaoc, M. Lópeza, J. Molinai, G. Moreno-Granadosa, J. Penaa, P. Priviteraa, Y. Sarkisa, V. Scarpined, T. Schwarzb, M. Sofo Haroc, J. Tiffenbergd, D. Torres Machadoj, F. Trillauda, X. Youj and J. Zhoue

a Universidad Nacional Autónoma de México, México D.F., México
b University of Michigan, Department of Physics, Ann Arbor, MI, United States
c Centro Atómico Bariloche - Instituto Balseiro, CNEA/CONICET, Argentina
d Fermi National Accelerator Laboratory, Batavia, IL, United States
e Kavli Institute for Cosmological Physics and The Enrico Fermi Institute, The University of Chicago, Chicago, IL, United States
f Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
g Universitàt Zürich Physik Institut, Zurich, Switzerland
h SNOLAB, Lively, ON, Canada
i Facultad de Ingeniería - Universidad Nacional de Asunción, Paraguay
j Northern Illinois University, DeKalb, IL, United States

E-mail: jtmn@if.ufrj.br

The DAMIC (Dark Matter in CCDs) experiment uses high resistivity, scientific grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedentedly low energy threshold of a few tens of eV that make it possible to detect silicon recoils resulting from interactions of low mass WIMPs. In addition the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have demonstrated the potential of this technology, motivating the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. In this contribution, the mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds will be discussed, as well as physics results after one year of data taking.

The 34th International Cosmic Ray Conference, 30 July-6 August, 2015, The Hague, The Netherlands

*Speaker.
1. Introduction

A well established body of evidence from astrophysics and cosmology supports the existence of cold dark matter as the major component of the material content of the universe. The leading candidate for this dark matter is a hypothetical weakly interacting massive particle (WIMP) [1, 2]. WIMPs could produce keV-energy nuclear recoils when scattering elastically off target nuclei in the detector. Minimal supersymmetric extensions to the standard model favor particles above 50 GeV/c2, while other models relating dark matter with the baryon asymmetry prefer masses around 5 GeV/c2 [3, 4, 5]. Several experiments have reported statistically significant evidence of WIMPs scattering on light nuclear targets [6, 7].

The DAMIC (Dark Matter in CCDs) experiment uses the bulk silicon of scientific-grade charge-coupled devices (CCDs) as the target for coherent WIMP-nucleus elastic scattering. Due to the low readout noise of the CCDs and the relatively low mass of the silicon nucleus, CCDs are ideal instruments for the identification of the nuclear recoils with keV-scale energies and lower from WIMPs with masses < 10 GeV/c2.

The first DAMIC measurements were performed in a shallow underground site at Fermilab using several 1-gram CCD detectors developed for the Dark Energy Survey (DES) camera (DECam) [8]. With 21g-days DAMIC produced the best upper limits on the cross-section for WIMPs below 4 GeV/c2 [9]. DAMIC is now located in SNOLAB laboratory 2 km below the surface in the Vale Creighton Mine near Sudbury, Ontario, Canada.

2. The DAMIC detectors

The DAMIC CCDs feature a three-phase polysilicon gate structure with a buried p-channel. The CCDs are typically 8 or 16 Mpxels, with pixel size of 15 μm \times 15 μm, with a total surface area of tens of cm2. The CCDs are 675 μm thick, for a mass up to 5.2 g. A high-resistivity (10-20 kΩcm) n-type silicon allows for a low donor density in the substrate ($\sim 10^{11}$ cm$^{-3}$), which leads to fully depleted operation at low values of the applied bias voltage (\sim40 V for a 675 μm-thick CCD). Fig. 1 shows a cross-sectional diagram of a CCD pixel, together with a sketch depicting the WIMP detection principle. The substrate voltage also controls the level of lateral diffusion of the charge carriers as they drift the thickness of the CCD. The lateral spread (width) of the charge recorded on the CCD x-y plane may be used to reconstruct the z-coordinate of a point-like interaction [10].

Long exposures are taken in DAMIC (\sim8 hours) in order to minimize the number of readouts and consequently the number of pixels above a given threshold due to readout noise fluctuations. The CCD dark current due to thermal excitations (< 0.1 e^- pix$^{-1}$ day$^{-1}$ at the operating temperature of \sim140 K) contributes negligibly to the noise. During readout, the charge held at the CCD gates is measured by shifting charge row-by-row and column-by-column via phased potential wells to a low capacitance output gate. The inefficiency of charge transfer from pixel to pixel is as low as 10^{-6}. The readout noise for the charge collected in a pixel is ~ 2 e^- which corresponds to an uncertainty of ~ 7 eV of ionizing energy in Silicon.

Calibrations with a 55Fe source, with fluorescence X-rays from a Kapton target exposed to the 55Fe source and with ^{12}C from 241Am were performed. As shown in fig. 2, the detectors present an excellent linearity and energy resolution (55 eV RMS at 5.9 KeV) for electron-induced ioniza-
The depletion substrate, improved by reducing the substrate thickness and operating the CCD at high substrate bias. PSF measurements show that the PSF is directly proportional to the photogenerated holes are drifted by the electric field. This result is a simplified asymptotic form that is back-illuminated CCD operated at.

The substrate bias also plays a role in the point-spread function of the CCD. For light absorbed near the back surface of the CCD the lateral charge spreading during transit of the photogenerated charges through the substrate bias is used to deplete the substrate.

Fringing occurs when the absorption depth of the incident light exceeds the CCD thickness. Multiple reflections in silicon, the readout noise corresponds to an uncertainty of \(7 \pm 6 \) eV in deposited energy. The effective Fano factor is 0.16, typical for a CCD.

The total charge and shape of each hit is extracted using dedicated image analysis tools. In fig. 3 a sample of tracks recorded during a short exposure at sea level to a \(^{252}\)Cf source is shown. Clusters from different types of particles may be observed. Low energy electrons and nuclear recoils, whose physical track length is \(<15 \mu m\), produce "diffusion limited" clusters, where the charge of the last row horizontally is transferred to a charge-to-voltage amplifier ("output node"). The in-

Figure 1: a) Cross-sectional diagram of a \(15 \mu m \times 15 \mu m\) pixel in a fully depleted, back-illuminated CCD. The thickness of the gate structure and the backside ohmic contact are \(<2\mu m\). The transparent rear window has been eliminated in the DAMIC CCDs. b) Dark matter detection in a CCD. A WIMP scatters with a silicon nucleus in the active region, producing ionization from the nuclear recoil which drifts along the \(z\)-direction and is collected at the CCD gates.

Figure 2: a) Reconstructed energy of an X-ray line compared to is true energy. The labeled \(K_a\) markers are fluorescence lines from elements in the Kapton target and other materials in the CCD setup. The \(^{55}\)Fe and \(^{241}\)Am markers are X-rays emitted by the radioactive sources. Linearity in the measurement of ionization energy is demonstrated from 0.3 keV to 60 keV. b) Variance of the X-ray lines as a function of energy. The effective Fano factor is 0.16, typical for a CCD.

...
For a thick CCD fabricated on high-resistivity silicon the channel potential is to first order independent of the substrate thickness and operating the CCD at high substrate bias. PSF measurements are described in more detail in Section 5.

The depleted substrate, CCD potential wells due to the channel potentials. Improved near-infrared sensitivity when compared to conventional thinned CCD’s. Reduced substrate thickness and operating the CCD at high substrate bias.

Figure 1 shows a cross-sectional diagram of the fully-depleted, back-illuminated CCD. A conventionally-processed, 15 µm-thick) is shown in figure 2 has a two-layer anti-reflection (AR) coating tuned for good red response. It consists of 60 nm of indium tin oxide (ITO) and 100 nm of silicon dioxide (SiO_2).

This is because for typical substrate thicknesses and doping densities considered here only a small fraction of the electric field lines from the depleted channel terminate in the fully-depleted substrate. The thickness of the gate structure and the backside ohmic contact are essential for astronomy applications, has been eliminated in the DAMIC CCDs.

Spatial extent of the cluster is dominated by charge diffusion. Higher energy electrons (e), from either Compton scattering or β decay, lead to extended tracks. α particles in the bulk or from the back of the CCD produce large round structures due to the plasma effect [16]. Cosmic muons (μ) pierce through the CCD, leaving a straight track. The orientation of the track is immediately evident from its width, the end-point of the track that is on the back of the CCD is much wider than the end-point at the front due to charge diffusion.

Figure 3: a) 50×50 pixel segment of a DAMIC image exposed to a ^{252}Cf source when the detector was at ground level. Only pixels with deposited energy $>0.1\text{keV}_e$ are colored. b) Event with two nearby clusters detected after illuminating the CCD with a ^{55}Fe source. The 1.7 keV cluster is a photoelectron (pe) from the absorption of a Si fluorescence X-ray, emitted following photoelectric absorption of the incident 5.9 keV Mn K$_\alpha$ X-ray in a nearby site.

3. The DAMIC experiment at SNOLAB

Fig. 4 shows the infrastructure already installed in SNOLAB. A packaged CCD (2k×4k, 8 Mpixel, 500 μm-thick) is shown in fig 4a. The device is epoxied to a high-purity silicon support piece. The Kapton signal flex cable bring the signals from the CCDs up to the vacuum interface board (VIB). The cable is also glued to the silicon support. A copper bar facilitates the handling of the packaged CCD and its insertion into a slot of an electropolished copper box (fig 4b). The box is cooled to \sim140 K inside a copper vacuum vessel ($\sim 10^{-6}$ mbar). An 18 cm-thick lead block hanging from the vessel-flange shields the CCDs from radiation produced by the VIB, also located inside the vessel (fig 4c). The CCDs are connected to the VIB through Kapton flex cables, which run along the side of the lead block. The processed signals then proceed to the data acquisition electronic boards. The vacuum vessel is inserted in a lead castle (fig 4b) with 21 cm thickness to shield the CCDs from ambient γ-rays. The innermost inch of lead comes from an ancient Spanish galleon.
Figure 3: a) A packaged DAMIC CCD. b) The copper box housing the CCDs. c) Components of the DAMIC setup, ready to be inserted in the vacuum vessel. d) The vessel inside the lead castle, during installation of the polyethylene shield.

Figure 4: a) A packaged DAMIC CCD. b) The copper box housing the CCDs. c) Components of the DAMIC setup, ready to be inserted in the vacuum vessel. d) The vessel inside the lead castle, during installation of the polyethylene shield.

and has negligible 210Pb content, strongly suppressing the background from bremsstrahlung γs produced by 210Bi decays in the outer lead shield. A 42 cm-thick polyethylene shielding is used to moderate and absorb environmental neutrons.

4. Measurements of radioactive contamination

The ultimate sensitivity of the experiment is determined by the rate of the radioactive background that mimics the nuclear recoil signal from the WIMPS. The SNOLAB underground laboratory has low intrinsic background due to its 6000 m.w.e. overburden. Dedicated screening and selection of detector shielding materials, as well as radon-suppression methods, are extensively employed to decrease the background from radioactive decays in the surrounding environment. The measurement of the intrinsic contamination of the detector is fundamental. For silicon-based experiments the cosmogenic isotope 32Si, which could be present in the active target, is particularly relevant since its β decay spectrum extends to the lowest energies and may become an irreducible background. The analysis methods used to establish the contamination levels exploit the unique spatial resolution of the CCDs.

The identification of α-induced clusters is the first step in establishing limits on uranium and thorium contamination [15]. Radiogenic αs lose most of their energy by ionization, creating a dense column of electron-hole pairs that satisfy the plasma condition [16]. For interactions deep in the substrate, the charge carriers diffuse laterally and lead to round clusters of hundreds of
micrometers in diameter, whereas α particles that strike the front of the CCD lead to mostly vertical clusters according to a phenomenon known as “blooming” [11]. Simple criteria are sufficient to efficiently select and classify αs. Spectroscopy of plasma αs can be used to establish limits on 210Pb, 238U and 232Th contamination in the bulk of the CCD. In special DAMIC runs, with a dynamic range optimized for α energies, four plasma αs whose energies are consistent with 210Po were observed. One of them cannot be 210Po, as it coincides spatially with two higher energy αs recorded in different CCD exposures, and is therefore likely part of a decay sequence. When interpreting the other three as bulk contamination of 210Po (or 210Pb), an upper limit of < 37 kg\(^{-1}\)d\(^{-1}\) (95% CL) is derived. In the 238U chain, the isotopes 234U, 230Th and 226Ra decay by emission of αs with energies 4.7–4.8 MeV. Since the isotopes’ lifetimes are much longer than the CCD exposure time, their decays are expected to be uncorrelated. No plasma αs were observed in the 4.5–5.0 MeV energy range, and an upper limit on the 238U contamination of < 5 kg\(^{-1}\)d\(^{-1}\) (95% CL) is correspondingly derived (secular equilibrium of the isotopes with 238U was assumed). A similar analysis results in an upper limit of < 15 kg\(^{-1}\)d\(^{-1}\) (95% CL) on 232Th contamination in the CCD bulk [15].

A search for decay sequences of two β tracks was performed to identify radioactive contamination from 32Si and 210Pb and their daughters. 32Si leads to the following decay sequence:

\[
\begin{align*}
32\text{Si} & \rightarrow 32\text{P} + \beta^- \text{ with } \tau_{1/2} = 150\text{y}, \text{ Q value = 227 keV} \\
32\text{P} & \rightarrow 32\text{S} + \beta^- \text{ with } \tau_{1/2} = 14\text{d}, \text{ Q value = 1.71 MeV}
\end{align*}
\]

A total of 13 candidate pairs were observed in the data. With detailed Monte Carlo simulations the overall efficiency for detection of 32Si → 32P decay sequences in the data set was determined to be \(\varepsilon_{32\text{Si}} = 49.2\%\). The number of accidental pairs was also determined with simulations. The decay rate was estimated to be \(80^{+110}_{-65}\) kg\(^{-1}\)d\(^{-1}\) (95% CI) for 32Si in the CCD bulk [15]. With a similar procedure the upper limit on the 210Pb decay rate in the CCD bulk has been deduced as <33 kg\(^{-1}\)d\(^{-1}\) (95% CL).
The DAMIC dark matter experiment

J.R.T. de Mello Neto

5. Dark matter search

The data acquired in 2014 came from two CCDs 500 μm thick and 2.2 g exposed for 36 days and another CCD 675 μm thick and 2.9 g exposed for 7 days. We assumed a local WIMP density of 0.3 GeV/cm3, dispersion velocity for the halo of 220 km/s, earth velocity of 232 km/s and a escape velocity of 544 km/s. The Lindhard model was used to obtain recoil energies as discussed above. The data analysis proceeded with a two-dimensional gaussian fit to each hit in the images. The noise was used to set the signal threshold and simulation was used to estimate the efficiency down to the threshold. Based on this efficiency, the total exposure was calculated as ∼0.3 kg·d. The recoil spectrum was fitted with the described WIMP model and no candidates were found. The resulting 90% CL are show in fig. 6, together with CRESST and CDMSlite results. The DAMIC results constitute the new best limits for dark matter particles of masses below 3 GeV/c2.

6. Conclusions

We have shown that DAMIC is producing high quality science and it is a leading experiment at low WIMP mass. The CCD detectors with their unique imaging capabilities allow us to measure internal contamination of silicon in a unique way. Stringent 95% CL upper limits on the presence of radioactive contaminants in the silicon bulk were placed. The dark matter search will be performed with an upgraded experiment, DAMIC100, a low background detector with 100 g of sensitive mass, consisting of 18 CCDs, each of them with 16 Mpix, 675 μm thickness and 5.5 g. The measured levels of radioactive contamination are already low enough for its successful operation. We are currently testing the new CCDs. The baseline plan is to operate the DAMIC-100 experiment for one year to collect approximately 30 kg-day exposure by the end of 2016.
References

