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We investigate character of correlations between the rigidity spectrum exponent  of the 

11-year variations of the Galactic Cosmic Ray (GCR) intensity and the exponent  of the 

Power Spectral Density (PSD) of the Interplanetary Magnetic Field (IMF) turbulence in 

period 1968-2012 using data of the IMF and carefully selected neutron monitors. A new 

two–dimensional (2–D) time dependent model describing long-period variations of the 

GCR intensity has been developed. New approximations for the changes of the magnitude 

B of the IMF, the tilt angle  of the Heliospheric Neutral Sheet (HNS) and drift effects of 

the GCR particles have been included into the model. Generally, both  and  can be 

accepted as the essential proxies to study GCR propagation near earth orbit in heliosphere 

for the rigidity range of GCR particles to which neutron monitors and ground muon 

telescopes respond. We show that ~ 18 months is an effective delay time between the 

expected intensity caused by the combined influence of the changes of the parameters 

implemented in the time-dependent 2D model and the GCR intensity measured by 

neutron monitors during the 21 cycle of solar activity. 
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1. Introduction 

Generally, to model a propagation of the GCR in the heliosphere is rather complicated problem. 

Difficulties are related to an accurate implementation of the temporal changes of parameters 

(among them obtained from direct measurements) into the transport equation that determines fun-

damental processes in the heliosphere and causes a modulation of GCR. An additional difficulty 

is related with the selection of the length of the modelling time interval, due to the existence of a 

varying delay time τ between the changes of the GCR intensity, on the one hand, and various 

parameters characterizing electro-magnetic conditions in the heliosphere, on the other.  

 
 

Figure 1. Temporal changes of the monthly smoothed SSN – sunspot number (top panel), I(CR) 

intensity observed by the Moscow NM (middle panel) and rigidity exponent  of the GCR 

intensity variations (bottom panel) for the period of 1968–2012. 
 

We present in figure 1 the temporal changes of the monthly smoothed sunspot number SSN (top 

panel), the GCR intensity I(CR) observed by the Moscow neutron monitor (middle panel), and 

the exponent of the rigidity spectrum of the GCR intensity variations [1] for the period of 1968–

2012 (bottom panel).  
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In table 1 we present the  correlation coefficients corresponding to the delay times for 

the pair of I(CR) and SSN and for the pair of I(CR) and the exponent . The SSN is a relative 

index describing the level of solar activity, but it is not in a straight line usable as a quantitative 

parameter to implement it in the transport equation of the GCR propagation. However, bearing in 

mind that the magnitude B of the IMF is proportional to the SSN and an inverse relationship 

between I(CR) and B (“CR-B”) is valid everywhere inside the termination shock [2], one can 

make use of correlation between the parameter SSN and I(CR) as an indication of the GCR mod-

ulation. For the two positive (A>0) polarity periods 1968-1976 and 1990-2002, delay time is 2 

months and zero, respectively. Delay time between SSN and I(CR) for periods 1977–1987 (in-

cluding A>0 (4 years) and A<0 (7 years)) is 10 months and 14 months for the negative (A<0) 

polarity periods 2003-2012. Hence, there is a tendency of the clear polarity dependence of delay 

times for various 11–year cycles of solar activity. However, we think that this problem needs a 

more careful study. Delay times between I(CR) and exponent for all 11–year cycles of solar 

activity is near zero; that was expected, as far expresses the rigidity dependence of the ampli-

tudes of the long-period variations found directly from neutron monitors data for given period of 

consideration.  
 

 
 

Table 1. Correlation coefficients r and delay time  (in months) between the parameter SSN and 

I(CR) and between the changes of I(CR) and parameter for period 1968 to 2012. 
 

Thus, it must be noted that a caution about an existence of difficulties related to the selection of a 

length of the modelling time interval because of dynamical changes of delay time , e.g., between 

SSN and I(CR) is not groundless; to model the GCR propagation for any time interval needs a 

careful preliminary study of the dynamical changes of delay time for the chosen time interval, 

and what is an extremely important, in model should be implemented different parameters with 

corresponding different delay time  

Our aim in this paper is: (1) to construct time dependent 2–D model of the 11–year variations of 

the GCR intensity and algorithm solved by difference scheme method in C# programming 

language, (2) to consider 11–year variation of the GCR intensity during the period 1976–1987 by 

the monthly smoothed data of the Moscow NM, in such way there are excluded fluctuations of 

the GCR intensity shorter than one month, (3) to implement in the Parker’s transport equation the 

parameters characterizing temporal changes (for the case of constant solar wind velocity U=400 

km/s) of the magnitude B of the IMF, tilt angle  of the HNS and changes of drift effect of the 

GCR particles. 

We assume that drift effects have a maximum value normalized to 100% in the minimum epoch 

of solar activity (drift dominated epoch), and 20% in the maximum epoch (almost diffusion 

dominated period), and (4) we also implement in the model changes of the exponent  (for the 

first time) of the rigidity R spectrum of the long-period variations of the GCR intensity. 

The importance of the latter is demonstrated in [3], [4] and [5], where it is shown that in the case 

of almost constant solar wind velocity, a central role in the formation of the 11–year variation of 

the GCR intensity can be ascribed to the changes of the diffusion coefficient versus the solar 

activity. So, changes of the character of the rigidity dependent diffusion remain an essential source 

of the 11–year variation of the GCR intensity, playing a vital role in the formation of the rigidity 

dependence of the amplitudes of the GCR intensity variations. 
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2 Model of the 11–year variation of GCR: 1976 – 1987 

For a modelling we take the period of 1976–1987 (11–year cycle #21). Cycle #21 was chosen 

because of, (1) almost a symmetric changes of the monthly smooting of the GCR intensity were 

observed for ascending (A>0) and descending (A<0) epochs of the 11–year cycle of solar activity, 

and (2) during the cycle #21 the largest number (~7 events) of clearly expressed step like changes 

of the GCR intensity were observed comparing to any other 11–year cycle during last 50 years. 

These step like changes of the GCR intensity can be related to the Forbush decreases (Fds) [5]. 

However the roles of Merged Interaction Regions (MIRs) and Global Merged Interaction Regions 

(GMIRs) [6] as barriers for the propagation of the GCR particles in the heliosphere cannot be 

excluded [6] and [7]. Moreover in cycle #21 a pure inverse correlation between the temporal 

changes of the rigidity R spectrum exponent  and of the exponent y of the power law spectral 

density of the By component of the IMF turbulence is observed. Our calculations [3] show that the 

turbulence of the IMF have a Gaussian distribution and the GCR particles propagation can be 

considered as  normal diffusion for whole 11-year cycle #21; of course we accept that delay times 

 between changes of the GCR intensity, on the one hand, and various parameters characterizing 

electro-magnetic conditions in the heliosphere remain constant during the solar cycle #21, on the 

other. To model the 11–year variations of GCRs we use Parker’s non–stationary transport equation 

[8] and [9] 

   
R

N
UNKNvU

N S

ijd
ln

)(
3
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  (1) 

where N and R are the omnidirectional distribution function and rigidity of the GCR particles, 

respectively;  –the time, U –the solar wind velocity and dv
 is the drift velocity. We set up the 

dimensionless density 
0N

N
f  , the time 

0

0
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t and the distance 
0


r ; N0 is the density 

in the Local Interstellar Medium (LISM) accepted as 00 4 IN 
, where the intensity I0 in the 

LISM has the form: 
 54.222.18.2

0 18.185.511.21   TTTI
 in [10], [11]; T is kinetic energy 

in GeV ( ]G[938.0]G[938.0 222 eVeVeRT  , e is an elementary electric charges,   

and 0  are the radial distance and size of the modulation region; 0 – is the characteristic time 

corresponding to the changes in the heliosphere for the certain class of the GCR variation; we 

considered in model
19760 

 and 
1987S .The size of the modulation region 0  equals 

100AU, and the solar wind velocity 
1400  skmU  is used throughout the heliosphere. The 

equation (1) for the dimensionless variables f, R and t in the 2–D spherical coordinate system 
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  and the coefficients A1, A2, ..., A7 are functions of the spherical coordinates 

 ,r , the rigidity R of the GCR particles and the time t. The anisotropic diffusion tensor of GCR 
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implement a drift velocity of the GCR particles in the model as, 
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This expression is equivalent to the standard formula for Dv   [13]. The heliospheric magnetic 

field vector 


B  is given as in [14] and [15]: 

   











rr eBHB '21      (3) 

where H is the Heaviside step function changing the sign of the global magnetic field in each 

hemisphere 
'  corresponds to the heliolatitudinal position of the HNS and er is the unite vector 

directed along the component rB
 of the 2D Parker’s field [16]. Parker’s spiral heliospheric 

magnetic field is implemented through the angle  1sinarctan  Ur   in the anisotropic 

diffusion tensor for the GCR particles where   is the angle between magnetic field lines and 

radial direction in the equatorial plane. 

As an ad hoc assumption, a quasi linear theory (QLT) [21] formally arising from hard-sphere 

scattering (or the billiard ball diffusion) is considered as a more reasonable and simple tool for 

describing a propagation of GCR in heliosphere. The QLT is not generally the best approximation 

[17], [18], [19] and [20] for describing a propagation of large energy range of GCR particles, but 

it works well in the energy range to which neutron monitors and muon telescopes respond (for 

rigidities R>(10–15)GV) [22]. So, as an ad hoc assumption we employ the ratios of the 

perpendicular K  and drift dK diffusion coefficients to the parallel | |K  diffusion coefficient 

IIK

K   and 
II

d

K

K
1  for the cosmic ray particles of rigidities R≥ 10GV,  as follows, 

2

1

21
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1
1
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 ,   (4) 

where for rigidities R= 10GV is accepted that 1 =3, i.e. 1.0 

IIK

K
  at the earth orbit. Then, 

changes of 1  is determined by the Parker’s spiral magnetic field in the whole heliosphere. 

A parallel diffusion coefficient used in the model is expressed, as:  

      ,,0 tRKtKrKKK II       (5) 

where ,/109.1 219

0 scmK     rrK 501 ; a function K(t) is introduced to make a 

consistent change of the diffusion coefficient IIK
 throughout the 11–year cycle of solar activity. 

The expression   )4exp(3.2 ttK   implemented in equation (1), is presented in figure 2. 

  tRK ,
 contributes to the changes of the parallel diffusion coefficient IIK  due to dependence 

on the GCR particles rigidity R. In the QLT this dependence is expressed as     tRtRK  ,  

which is valid for rigidities R>10 GV [21], [22], [23] and [24]. The analytical expression of the 

 t  (figure 3) implemented in the model is shown in the figure caption. 
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Figure 2. Temporal changes of the normalized 

parallel coefficient K(t) used in modeling.  

Figure 3. Changes in the exponent t in the 

period: 1976–1987 normalized to <0;1>. The 1–

year averages (dashed red line) and the 

trigonometrical approximation (solid blue line) 

are included in the model. 

The neutral sheet drift was taken into account according to the boundary condition method [26].  

The equation (2) was transformed to the algebraic system of equations using the implicit finite 

difference scheme, and then solved by the Gauss–Seidel iteration method (e.g. [26]) using the 

following boundary conditions: 

,1
100


 AUr

f    ,0
0






rr

f
   ,0

0











  

ff
   (6) 

as well as the initial conditions 1100  GVRf  and ),,(),,,(
0 kk

RrftRrf
t

 
  

[26]. We start 

the calculations from the inner radius (r=0) of the spherical system. The solutions for each k-layer 

of rigidity Rk where (Rk=100, 90, 80,….,10 GV) for the stationary case are considered as an initial 

conditions for the non-stationary case for the given rigidity R and at time t=0. 

The results of the numerical solution of equation (2) for rigidity R=10 GV (dashed blue line), 

monthly averaged changes of the GCR intensity (solid red line) observed by the Moscow neutron 

monitor and its second order polynomial approximation (dotted red line) are demonstrated in 

figure 4. Figure 4 shows that the changes of the expected (dashed line) GCR particles density 

precede the smoothed by the second order polynomial approximation (dotted line) of the GCR 

intensity. To make clearer the existence of delay time between them we present in figure 5 the 

results of the numerical solution of equation (2) for rigidity R =10 GV (dashed line) shifted for 

18 months with respect to the second order polynomial approximation (dotted line) of monthly 

averaged changes of the GCR intensity observed by the Moscow neutron monitor. Our analysis 

shows that the delay time is ~18 months [27]. So, ~18 months can be accepted as an effective 

delay time caused by the combined influence of all parameters implemented in the 2D model for 

the period 1977–1987. 
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Figure 4. Changes of the amplitude of the 11–year 

variation of the GCR normalized intensity (red 

solid line) and approximated observed changes of 

the GCR intensity (red dotted line). Model – the 

solution of the equation (1) for the rigidity of 10 

GV (blue dashed line) 

Figure 5 Shifted solution of the equation (1) by 

18 months (dashed green line) with respect to the 

approximated observed changes of the GCR 

intensity (red dotted line). 

Conclusions 

1. A new 2D time dependent model of the 11–year variation was developed. This model imple-

ments the parameters characterizing the temporal changes of the magnitude B of the IMF, tilt 

angle  of the HNS for the period of 1976–1987 of cycle #21 and the changes of drift coeffi-

cient of the GCR particles versus the solar activity. The drift coefficient of the GCR particles 

has a maximum value ~ 100% in the minimum epoch (drift dominated period), and 20% in the 

maximum epoch (almost diffusion dominated period).  

2. In the model temporal changes of the rigidity spectrum exponent , characterizing a rigidity 

dependence of amplitudes of the 11–year variations of the GCR intensity, were implemented 

for the first time. 

3. The temporal changes of the parameters implemented in the 2D model have different delay 

times with respect to the temporal changes of the smoothed experimental data of the GCR 

intensity observed by Moscow neutron monitor. We show that an acceptable compatibility is 

kept for the period of 19761987 (solar cycle #21), when the minimum of the expected tem-

poral changes of the GCR particles density is shifted by 18 months with respect to the mini-

mum of the temporal changes of the smoothed experimental data of the GCR intensity.  

4. We conclude that a delay time ~18 months can be accepted as an effective delay time caused 

by the combined influence of all parameters implemented in the 2D model. Generally, a direct 

implementation of the delay time τ in modeling is an important problem needing additional 

study.  
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