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Nonlinear guiding center (NLGC) theory has been used to explain the asymptotic perpendicular

diffusion coefficient κ⊥ of energetic charged particles in a turbulent magnetic field, which can

be applied to better understand cosmic ray transport. Here we re-derive NLGC, replacing the

assumption of diffusive decorrelation with random ballistic decorrelation (RBD), which yields an

explicit formula for κ⊥. We note that scattering processes can cause a reversal of the guiding

center motion along the field line, i.e., “backtracking,” leading to partial cancellation of contribu-

tions to κ⊥, especially for low-wavenumber components of the magnetic turbulence. We therefore

include a heuristic backtracking correction (BC) that can be used in combination with RBD. In

comparison with computer simulation results for various cases and two different magnetic field

models (2D+slab and noisy RMHD), NLGC with RBD and BC provides a substantially improved

characterization of the perpendicular diffusion coefficient for a fluctuation amplitude less than or

equal to the large-scale magnetic field.
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1. Introduction

While charged particles subject to a magnetic field in a tenuous plasma will mainly gyrate

along that field, magnetic turbulence can cause particles to also spread in the directions perpendic-

ular to the large-scale field. Such perpendicular transport involves an interesting interplay between

the transport along field lines, the random walk of magnetic field lines perpendicular to the large-

scale field direction, and true cross-field transport in which the particle guiding center eventually

separates from its original field line.

The classic FLRW theory [11], in which particles follow magnetic field lines with a fixed

pitch angle, directly related the perpendicular diffusion coefficient κ⊥ to the field line diffusion

coefficient D. Meanwhile another viewpoint in terms of scattering led to a relation between κ⊥
and the parallel diffusion coefficient κ‖ [1, 10]. Nonlinear guiding center (NLGC) theory [14]

successfully accounts for both factors, allowing the guiding center motion to decorrelate due to

both parallel (pitch angle) scattering and the random walk of the guiding magnetic field line, for

transverse magnetic fluctuations with a general power spectrum. This theory has provided a much

closer match to observations [3] and computer simulation results for κ⊥ (see also [15, 19]), and its

framework has attracted theoretical interest and inspired numerous related theories, e.g., [12, 17,

18, 25, 27, 28].

In the present work, we consider an alternate interpretation of NLGC that replaces the diffu-

sive decorrelation (DD) of guiding center trajectories with random ballistic decorrelation (RBD),

for the purpose of calculating the Lagrangian magnetic correlation function. This approach was

introduced for calculating the field line diffusion coefficient and led to some substantial improve-

ments in the match with direct simulation results [9]. It is analogous to concepts in random walk

theory in which the mean free path is determined by the extent of ballistic motion between scat-

tering events. We consider that decorrelation of the particle velocity takes place over a distance

scale for which the parallel motion is approximately constant and the field lines are approximately

straight, so the guiding center motion can be treated as ballistic in random directions determined

by the distribution of magnetic field directions (Figure 1). To test this version of the theory, we

have previously performed computer simulations of particle trajectories in the 2D+slab model of

magnetic turbulence [22], and in this work we also report simulations in the noisy RMHD model

as defined by [20]. We demonstrate that the RBD approach, together with a backtracking cor-

rection, leads to a substantial improvement in the match with direct computer simulations of the

perpendicular diffusion of energetic charged particles.

2. Random ballistic interpretation of nonlinear guiding center theory

Here we outline the random ballistic interpretation of NLGC theory, which was more derived

in more detail by [22]. We consider the diffusion of particles perpendicular to a mean field B0ẑ,

subject to transverse, axisymmetric fluctuations bx and by. As in the original derivation of NLGC,

we use

κxx =
a2v2

3B2
0

∫ ∞

0
e−t/τ〈bx(0,0)bx[x(t), t]〉dt, (2.1)
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Figure 1: Illustration of the random ballistic inter-

pretation of nonlinear guiding center (NLGC) the-

ory. The diffusion coefficient κ⊥ of energetic charged

particle motion (red line) perpendicular to the large-

scale magnetic field is related to the decorrelation (i.e.,

change in direction) of a perpendicular component of

the guiding center velocity (GC; blue line), which

roughly follows a local magnetic field line (black

line). Over the relevant distance scale, the guiding

center motion can be approximated as ballistic (i.e.,

with constant velocity) along random directions dis-

tributed like the magnetic field directions. Such ran-

dom ballistic decorrelation (RBD) is determined using

the framework of NLGC theory, including the effects

of the field line random walk and the parallel scatter-

ing of particle trajectories.

where κxx is the particle diffusion coefficient in the perpendicular direction x, a2 = 1/3, v is the

particle speed, and τ is the mean free time of parallel (pitch-angle) scattering. We then make use

of Corrsin’s independence hypothesis [7] to relate the Lagrangian correlation 〈bx(0,0)bx[x(t), t]〉
to the Eulerian correlation function Rxx and the probability of displacement x at time t, so that

κxx =
a2v2

3B2
0

∫ ∞

0
e−t/τ

∫

Rxx(x, t)P(x|t)dxdt. (2.2)

Following [14], we use the Fourier transform of the correlation function Rxx(x, t) as the power

spectrum Sxx(k, t) = Sxx(k)e−γ(k)t and assume independent, Gaussian guiding center displacement

probability distributions. For RBD we use a variance σ2
i = 〈ṽ2

i 〉t2, for mean square guiding center

velocity components as follows:

〈ṽ2
x〉 = 〈ṽ2

y〉 ≈
a2

B2
0

〈v2
z〉〈b2

x〉=
a2v2

6

b2

B2
0

(2.3)

〈ṽ2
z〉 =

v2

3

(

1−a2 b2

B2
0

)

. (2.4)

This yields

κxx =
a2v2

3B2
0

∫

Sxx(k)T(k)dk, (2.5)

where the mean free time T (k) is given by

T (k) =

∫ ∞

0
exp

[

− t

τ
− γ(k)t − 1

2
∑

i

k2
i 〈ṽ2

i 〉t2

]

dt. (2.6)

Performing the t-integration and using 1/τ = v/λ‖ = v2/(3κzz), we obtain

T (k) =

√

π

2

eα2

erfc(α)
√

∑i k
2
i 〈ṽ2

i 〉
(2.7)

3
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and

κxx =
a2v2

3B2
0

√

π

2

∫

Sxx(k)
√

∑i k2
i 〈ṽ2

i 〉
eα2

erfc(α)dk, (RBD) (2.8)

where

α ≡ v2/(3κzz)+ γ(k)
√

2∑i k
2
i 〈ṽ2

i 〉
. (2.9)

Note that the original DD interpretation of [14] used the formula for asymptotic diffusion with

κxx in the displacement distribution, yielding an implicit equation for κxx. In contrast, the RBD

theory uses a predetermined random ballistic formula for the displacement distribution and yields

an explicit formula for κxx, as in analogous theories for the field line diffusion coefficient [9]. For

numerical evaluation, NLGC-type theories based on DD typically require an iterative solution,

whereas NLGC/RBD can be evaluated without iteration.

As explained by [22], backtracking played a major role in the original NLGC/DD theory [14],

with diffusive decorrelation (DD), but is not present in the RBD calculation, which is based on

ballistic guiding center trajectories.

Therefore, we introduce a heuristic backtracking correction (BC) for RBD, multiplying T (k)

by e−α2

, which simplifies Equation (2.7) to yield

κxx =
a2v2

3B2
0

√

π

2

∫

Sxx(k)
√

∑i k
2
i 〈ṽ2

i 〉
erfc





v2/(3κzz)+ γ(k)
√

2∑i k
2
i 〈ṽ2

i 〉



dk. (RBD/BC) (2.10)

Note also that in Eq. (2.6), for a given k, there is a time t when the linear and quadratic terms are

equal, i.e., the field line random walk becomes important. At that time we have t/τ ∼ α2, and

substitution into the parallel velocity correlation term e−t/τ suggests the use of e−α2

to account for

backtracking effects.

We evaluate this theory of perpendicular diffusion for two models of transverse magnetic tur-

bulence: the 2D+slab model and the noisy RMHD model. In the 2D+slab model, the power spec-

trum is a sum of a two-dimensional (2D) power spectrum, depending only on kx and ky, and a slab

power spectrum depending only on kz. The latter represents parallel Alfvénic fluctuations and the

former idealizes the quasi-2D structures, including “flux tubes,” that can develop from interactions

of such waves; see [6, 23, 30] and references therein. The two-component model was motivated

by observations of interplanetary magnetic fluctuations, indicating quasi-slab and quasi-2D compo-

nents [13, 31], which can be modeled using a ratio of slab:2D fluctuation energies of approximately

20:80 [4, 5]. This model has provided a useful description of the parallel transport of particles in

the inner heliosphere [4], and was used by most studies that implemented or tested NLGC theory.

For the case of 2D+slab fluctuations, the expression for κ⊥ splits into two terms using Sslab
xx

and S2D
xx . However, [24] has proposed that the direct contribution of slab fluctuations to the per-

pendicular transport should be subdiffusive, and that the Sslab
xx term should not be included in the

equation of κ⊥. (Note that slab fluctuations can still play a role as a key determinant of λ‖ and κzz,

which enters into the 2D contribution.) We refer to this proposal as the Shalchi slab hypothesis

(SSH). We employ this in the present work, and for Equation (2.10) we use only the S2D
xx term.

Because ∇×b2D ≡ 0, the components b2D
x and b2D

y are related through a potential function a(x,y)

4
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by b2D = ∇× [a(x,y)ẑ], which implies that Sxx(kx,ky) = k2
yA(k⊥) and Syy(kx,ky) = k2

xA(k⊥), where

A is the power spectrum of a(x,y), which by axisymmetry is a function only of k⊥ ≡
√

k2
x +k2

y .

The other model we consider, noisy reduced magnetohydrodynamics (noisy RMHD), is a

synthetic model introduced by [20] in which the power spectrum is specified by an analytic function

in order to approximate the form of transverse RMHD fluctuations, as generalized to allow a general

Kubo number, R = (b/B0)(`c/`⊥), where b is the rms magnetic fluctuation, and `c and `⊥ are

correlation scales parallel and perpendicular to the mean field, respectively. Now the statistically

homogeneous fluctuating field is given by

b(x,y, z) = ∇⊥× [a(x,y, z)ẑ], (2.11)

where the subscript “⊥” indicates a projection perpendicular to the mean field in which only x- and

y-components are included. In terms of wave vectors k, we can write

b(k) = ik⊥× [a(k)ẑ], (2.12)

and we specify the potential function in k-space by

a(k) ∝

{

a2D(k⊥)eiϕ(k) for |kz| ≤ K

0 for |kz| > K,
(2.13)

where ϕ(k) is a random phase and K = π/(2`c). In terms of power spectra this model gives [21]

Sxx(k) =

{

k2
y A(k⊥)/(2K) for |kz| ≤ K

0 for |kz| > K

Syy(k) =

{

k2
x A(k⊥)/(2K) for |kz| ≤ K

0 for |kz| > K,
(2.14)

where A is the 2D power spectrum of a2D. This “boxcar” dependence on kz has previously been

used to characterize the results of RMHD simulations [16]. For both models we set A(k⊥) to yield

Kolmogorov scaling at high k⊥.

3. Comparison between theory and simulation results

We have also performed direct computer simulations to trace particle orbits in 2D+slab and

noisy RMHD turbulence. While the simulations inevitably involve some discretization and statis-

tical errors, they do avoid key assumptions of the analytic work, and thus provide an independent

check of their validity. We first generated the magnetic fluctuations on a regular grid in Fourier

space, b(k), with an amplitude corresponding to the desired power spectrum and a random com-

plex phase. Then inverse Fourier transforms were used to generate b(x). We used a version of the

Streamline code [8] to perform the particle tracing subject to B = B0ẑ +b(x).

The computer simulations for the 2D+slab field were performed using the methods, power

spectra, and parameter values described by [19]. In particular, distances are in units of λ = 0.02

AU, the slab and 2D turbulence bendover scale, and velocities are in units of the speed of light

5
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Figure 2: Asymptotic perpendicular diffusion coeffi-

cient κ⊥ of 100 MeV protons in 2D+slab turbulence

with a slab fraction fs = 0.2 as a function of the mag-

netic fluctuation amplitude b/B0. Using the NLGC

framework, random ballistic decorrelation with back-

tracking correction (RBD/BC; thick line) provides a

closer match with computer simulation results (solid

circles) than the original DD theory (long-dashed line)

and uncorrected RBD (short-dashed line). In the

present work we also employ the Shalchi slab hypoth-

esis [24].

Nearly 

rigidity-independent

/(
c

� )

Figure 3: Asymptotic perpendicular diffusion coef-

ficient κ⊥ in 2D+slab turbulence with fs = 0.2 and

b/B0 = 0.5 as a function of the proton gyroradius in

units of the turbulence bendover scale. The simula-

tion values shown here (solid circles) correspond to

proton energies ranging from 0.1 MeV to 50 GeV

for B0 = 5 nT and λ = 0.02 AU. In most cases, the

RBD/BC theory (thick line) provides a better explana-

tion of the computer simulation results (solid circles)

than the original DD theory (dashed line).

c. Simulations were performed over a sufficient time for all κii to approach asymptotic values,

within statistical errors. We assume axisymmetry about the large-scale field direction, so κxx and

κyy should be the same within statistical errors, which we verified in all cases. We report κ⊥ ≡
(κxx +κyy)/2, which can be compared directly with κxx from theories.

Figure 2 shows the dependence of κ⊥ (in units of cλ ) on the overall fluctuation amplitude

b/B0, using fs ≡ b2
slab/(b2

slab + b2
2D) = 0.2. It is apparent that the RBD/BC version (thick lines)

agrees with computer simulation results (solid circles) better and over a wider range of b/B0 values

than either the DD theory (long-dashed lines) or RBD without the backtracking correction (short-

dashed lines), over the range of applicability of RBD (b/B0 ≤ 1/a =
√

3). We have also examined

the dependence on the proton gyroradius (Figure 3), which is related to its energy, for fixed fs = 0.2

and b/B0 = 0.5. The seven simulations were for protons of kinetic energy 0.1, 1, 10, and 100 MeV

as well as 1, 10, and 50 GeV. The RBD results, not shown, nearly match DD at RL/λ < 1, nearly

match RBD/BC at RL/λ > 1, and are intermediate at RL/λ ≈ 1, Overall, the RBD/BC theory again

provides the best explanation of the computer simulation results.

We also show preliminary results for κ⊥ vs. b/B0 in noisy RMHD turbulence. Again, the

RBD/BC theory is in reasonable agreement with computer simulation results. Since this version of

the theory was originally presented as being able to match computer simulation results for 2D+slab

turbulence [22], it is particularly encouraging that the theory is also consistent with direct simula-

tion results for another model of transverse turbulence. Note that perpendicular diffusion in noisy

6
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0.05

0.04

0.03

0.02

0.01

0.00

κ
⊥

1.61.41.21.00.80.60.40.20.0

 b/B
0

 RBD/BC

 Simulation Figure 4: Asymptotic perpendicular diffusion coef-

ficient κ⊥ in noisy RMHD turbulence for charged

particles of v = 0.3042c with a Larmor radius RL

equal to the parallel correlation length `c as a function

of the magnetic fluctuation amplitude b/B0.

RMHD turbulence has also been examined by [26, 29].

4. Discussion

Note that RBD theory does not require a small fluctuation amplitude, and indeed RBD/BC

matches computer simulation results very well for amplitudes up to b/B0 ∼ 1 (Figure 2). The

inapplicability for b/B0 > 1/a =
√

3 [see Eq. (2.4)] indicates room for future improvements to

obtain a truly non-perturbative theory. Note that NLGC itself assumes transverse fluctuations. In

the interplanetary medium of the inner heliosphere, transverse fluctuations account for ∼90 % of

the magnetic fluctuation energy [2], so NLGC is well justified in this case.

The NLGC framework may be less appropriate when RL/λ � 1, because it considers that

guiding center motion tracks the local field line random walk, whereas low-wavelength fluctuations

should have less influence on perpendicular diffusion when they are averaged over such a large

gyroradius. We have searched for and found this effect at the highest proton energy shown in Figure

3, 50 GeV, which corresponds to RL/λ = 11 for our parameter values of B0 = 5 nT, λ ∼ 0.02 AU,

b/B0 = 0.5, and fs = 0.2, which are reasonable for the interplanetary medium near Earth. The

perpendicular diffusion coefficient κ⊥ decreases, while all NLGC theories predict a slight increase.

In any case, the above energies where RL ∼ λ for interplanetary and interstellar propagation are

sufficiently high that NLGC theories remain applicable to a wide range of cosmic ray and energetic

particle transport problems.
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