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The great challenge in constraining scenarios for solar energetic particle (SEP) acceleration is due to the

fact that the signatures of acceleration itself are heavily modified by transport within interplanetary space.

During transport, SEPs are subject to pitch angle scattering by the turbulent magnetic field, adiabatic focus-

ing, or reflecting magnetic structures. Ground Level Enhancements (GLEs) provide an ideal way to study

acceleration with minimal transport. In this work, we present a unique high-energy SEP observation from

PAMELA of the 2012 May 17 GLE and interpret the observed pitch angle distributions as a result of local

scattering (1 AU) by the Earth’s magnetosheath.
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PAMELA observations of the 2012 May 17 SEP M. Martucci

Figure 1: Neutron Monitor percentage flux as a function of pitch angle, averaged between 0158 and 0220
UT.

1. Introduction

The Sun could accelerate particles at low altitudes through magnetic reconnection or higher in
the corona through coronal mass ejection-driven (CME) shocks, but the scenario is still uncertain.
This uncertainty exists at the very lowest energies of Solar Energetic Particles (SEPs) observed
in situ and also persists through Ground Level Enhancements (GLEs). Moreover, besides con-
founding the study of particle acceleration, the physics of energetic particle transport within the
heliosphere is its own topic of study. The highest energy SEPs (observed in GLEs) provide an
idealized case study in that the effects of transport are often minimal, even if the mechanisms of
transport at lower energies is still poorly understood. The unique observations from the Payload
for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, provide
an essential link between the highest-energy GLEs and the low-energy direct observations within
the inner heliosphere.

2. The 2012 May 17th GLE

PAMELA observed the first GLE of solar cycle 24 (the number 71 overall), that took place
on May 17th of 2012. Significant count rates (≥15% over background) were first registered by
the Apatity neutron monitor (NM) at 0150 UT [Papaioannou 2014]. NMs at Oulu and Maw-
son also registered the event with signals ∼15% over the background [Adriani 2015]. All three
NMs had viewing angles close to the interplanetary magnetic field (IMF) direction [Mishev 2013,
Papaioannou 2014]. The South Pole and Polar Bare NMs also registered a prompt signal despite
having viewing directions far from the IMF, as well as ICETop [Kuwabara 2013]. This prompt
signal was followed by a broader one, registered in all of the above NMs but also in other stations
even if at a few-percent level. This is shown in Fig 1.
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Figure 2: Onset time as a function of the velocity dispersion for the May 17th event, obtained by combining
data sets from various instruments. The horizontal marks indicate the onset of the flare, CME-driven shock,
type-II radio emission and hard X-ray component.

The GLE was associated with an M5.1 flare in active region AR 11476 located on the western
limb of the Sun (N07W88). SOHO/LASCO measured an associated fast CME with a maximum
speed of 1997 km [Gopalswamy 2013]. Type II radio emission was also reported by Solar Geo-
physical Data at 0131 UT which means that a shock took place. The computed injection time (de-
layed by eight minutes from the formation of the shock, 0131 UT) at the Sun using NM data, plus
WIND He data and an upper limit from PAMELA was found to be 0139 ± 1 UT [Thakur 2012],
like it can be seen in Fig 2.

The presence of accelerated high-energy ions at the Sun is inferred by the >100 MeV γ-
ray emission [Ajello 2014]. However, even at GLE energies (>1 GeV), an evolving pitch angle
distribution results from transport effects that are complex and which complicate the interpretation
of the data [Adriani 2015]. GLEs often consist of a fast onset (and anisotropic) associated with
a beam of field-aligned particles, which has been interpreted as a result of magnetic focusing.
As the event progresses and the particle diffuse inside the heliosphere, the distribution becomes
isotropic due to a process of scattering. This isotropic component is a result of scattering off a
magnetic structure beyond Earth, or maybe to a magnetic bottleneck [Bieber 2002]. The shape
and morphology of GLEs is usually determined through modelling of the response of the network
of NMs located at differing regions of the planet. While there has been success in modelling
some features of the incoming GLE beam, this method depends on the NM yield function and the
assumption of vertical asymptotic directions. Moreover, their count rate is linked to the particle
intensity integrated over a wide solid angle and with energies above a fixed geomagnetic cutoff
[Adriani 2015]. For this reason, to fully understand the anisotropy evolution, measurements over
a broad range in energy are required, and also the ability to determine directly the pitch angle at
energies above 1 GeV, corresponding to the energy range of high-latitude NMs.

3



P
o
S
(
I
C
R
C
2
0
1
5
)
3
0
8

PAMELA observations of the 2012 May 17 SEP M. Martucci

Figure 3: Asymptotic directions determined during the first polar pass that registered the event. Also shown
are the asymptotic directions of the NM that registered the primary GLE beam. OU, AP, SP, and MA stand
for Oulu, Apatity, South Pole, and Mawson NMs, respectively.

3. PAMELA observations

Details of the instrument structure, performance, particle selection, and selection efficiencies
can be found in [Adriani 2013]. PAMELA measures the incident trajectory of the detected par-
tiycles employing a combination of trajectory reconstruction with the silicon tracking system and
particle tracing techniques. Its field of view is narrow (∼20◦). Because it is a moving platform,
it sweeps through pitch angle space allowing one to construct a pitch angle distribution of the
SEPs. For this study, we employed the particle tracing techniques of [Smart 2000] to determine
the asymptotic direction for each incident particle with respect to the IMF. An explanation of our
tracing techniques, which is based on an internal field model IGRF-2011 [Finlay 2010] and on an
external field model TS-07 [Tsyganenko 2007] can be found in [Bruno 2014]. Solar wind and IMF
parameters were obtained from the high-resolution Omniweb database (omniweb.gsfc.nasa.gov).
While NMs measure the particle intensity for a given pitch angle (above the local cutoff rigidity),
PAMELA is a moving observatory with a sensitivity to both energy and a pitch angle that depends
on spacecraft location [Adriani 2015].

4. Results

Fig 3 shows the computed asymptotic vertical direction for PAMELA during the polar pass
that first registered the 2012 May 17 event. Colour coding reflects the particle rigidity ranging from
0.4 to 2.4 GV. The grey solid curve shows the spacecraft trajectory for periods when PAMELA is
at geomagnetic locations where the Störmer vertical cutoff is lower than 390 MV (Störmer 1950;
Smart et al. 1965). The direction of the IMF obtained from the Omniweb database is shown as the
black cross. Contours of constant pitch angle relative to the direction of the IMF are also shown.

As noted above, PAMELA is sensitive to a small range in pitch angle distribution that varies
along the orbit and samples its distribution distribution from 0◦ to about 140◦ during the 20 minute
polar pass. Fig 4 (top panel) shows the particle intensity (corrected for background) in two rigidity
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Figure 4: (top) Flux of SEPs registered by PAMELA in two different rigidity ranges. (bottom) Mean pitch
angle distribution as a function of time during the polar pass under study. The dashed line represents the
90◦ pitch angle, while the shaded grey area represents the time during which PAMELA is above 90◦ of pitch
angle. GCR background (calculated two days before the event itself) is indicated as a dashed line. The
curves through the data are meant to guide the eye.

ranges observed by PAMELA. On the other hand, in the bottom panel, the pitch-angle distribution
for which PAMELA is sensitive as a function of time is depicted.

The intensity was computed as a function of pitch angle and rigidity by correcting registered
proton counts for the instrument efficiencies, livetime, and gathering power of the instrument at
each orbital position, taking into account the anisotropic flux exposition and the change in look
directions [Bruno 2014]. The background intensity (black dashed curve), due to galactic cosmic
rays (GCRs), was estimated using data registered two days prior to the event. Within a given pitch
angle distribution, the GCR background is isotropic, as expected. Comparing this top panel with
the bottom panel, we can see how the proton fluxes varied as a function of pitch angle (and thus
time). During times when PAMELA is sensitive to pitch angles <90◦, we observe an increase in
the flux of 0.55-0.76 GV particles. Furthermore, when PAMELA is beyond 90◦ (shaded region),
we see the 0.55-0.76 GV particle return to the background, reflecting the passage of PAMELA
into and out of a low-energy component confined to the forward pitch-angle hemisphere. At high
rigidities (>1 GV) the flux is constant for pitch angles greater than 40◦, and increases markedly
at small angles (note the logarithmic scale). PAMELA observed the event ∼10 minutes after the
Apatity onset (0150 UT) and continued to observe the event during the rising phase of the prompt
emission as viewed by Apatity, Oulu, Mawson, and south pole. The dependence on pitch angle for
three different energy regimes is shown in Fig 5.

PAMELA observes two populations simultaneously with very different pitch angle distribu-
tions. We see a low-energy component (0.39-1.07 GV) confined to pitch angles <90◦ and a high-
energy component (1.50-2.09 GV) that is beamed with pitch angles <30◦, consistent with NM
observations (Fig 5. The component with intermediate energies (1.07-1.50 GV) suggests a transi-
tion between the low and high energies, exhibiting a peak at small pitch angles and a cutoff at 90◦.
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Figure 5: PAMELA’s pitch angle distribution (background subtracted) in 3 rigidity ranges. The curves
through the data are meant to guide the eye.

At rigidities >1 GV, corresponding to NM data, the particles are mostly field aligned. Assuming
symmetry about the IMF, this would suggest a beam full width of ∼40-60◦. Given the nature of the
PAMELA observations, it is difficult to understand if or how these populations evolve during the
∼20 minutes polar pass, however, it is striking that two distinct populations are present simultane-
ously relatively soon after the onset of the event as registered by the NMs. A complete discussion
on this topic can be found in [Adriani 2015].

5. Discussion

GLEs typically become isotropic with time; however, this is the first time that a GLE has been
observed, shortly after the onset, where the anisotropic component is accompanied by a broader
enhancement that has presumably undergone significant scattering. We believe that the scattering
responsible for the broader distribution at lower rigidities must take place locally as implied by the
time coincidence of the highly scattered particles and the beamed particles. To better understand
this, we note that the transit time for a zero-pitch-angle proton (which will travel over 1.2 AU) of
rigidity 400 MV is ∼1400 s. For a pitch angle of 60◦ the same proton would take 2800 s. This
should be compared to the transit time for a 1 GV proton with a pitch angle of 20◦ (∼890 s), a
discrepancy of 1910 s. This is a lower limit to the discrepancy since the prevailing solar wind
speed was slower than usual, ∼365 km s−1 (translating to larger path lengths than the nominal
1.2 AU). For both populations to be present at Earth at the same time, they must have had similar
transit times followed by local scattering to explain the presence of large pitch angle particles at
low rigidity. The transit time for our original 400 MV proton at a pitch angle of 20◦ is ∼1490
s-a discrepancy of less than 600 s. This difference for similar pitch angles is reasonable given
the seven minute offset from the GLE onset. However, the low-rigidity particles at much greater
pitch angles are not compatible with these numbers. Thus, these two pitch-angle distributions,
narrow and broad, could not have co-existed at injection. The anisotropic nature of the >1 GV
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Figure 6: Particle transport for the May 17th GLE through the Earth’s magnetosphere. Due to the quasi-
perpendicular nature of the IMF, mirror mode fluctuations are enhanced that redistribute the low-energy
SEPs preferentially. The polar orbit of PAMELA is shown for context.

particles was present for at least 30 minutes, starting from the onset (0150 UT), as registered with
the NM network, through the 1 GV exposure times with PAMELA at 0220 UT. The scattered
component was registered as early as 0157 UT on the leading edge of the well-connected NM signal
representing an extended overlap in time of the two different populations. There are few candidate
volumes or processes that are capable of producing the effect that are local. If we assume that
the field-aligned distribution initially applied to a wide range of rigidities, covering the PAMELA
range, then we must search for local agents that disperse or broaden that distribution preferentially
at lower rigidities while leaving the higher-rigidity particles relatively unaffected. Three choices
emerge as possibilities: (1) upstream turbulence in the solar wind in the form of Alfvén waves, (2)
the intense and chaotic fields in the Earth’s bow shock itself, and (3) the Earth’s magnetosheath. The
upstream rms magnetic field, a measure of the turbulence present, did not exceed 1 nT for several
days after the event while the IMF ranged between 5 and 10 nT1. so the first hypothesis appears to
be not correct. The intense turbulence in the Earth’s bow shock is probably insufficient to produce
the effect given the thinness of the shock, of the order of 20 km [Schwartz 2011]. However, the
magnetosheath possesses an intense magnetic field (≥20 nT) with typically large-amplitude mirror
mode instability fluctuations (≥50%) and is much thicker (several RE [Southwood 1993].

The diagram in Fig 6 schematically shows the orientation of the IMF, the bow shock, mag-
netosphere, the particle asymptotic directions, and the spacecraft trajectory of the PAMELA mea-
surements. The IMF is mostly tangential to the solar wind (By � Bx or B−z) with the high-rigidity
particles entering the magnetosphere on the dawn-side flank. The lowest rigidity particles are de-
tected near local midnight. On the dawn side flank the magnetosheath is much thicker, of the order
of 5 RE or greater. In this sheath the fluctuations are in the form of mirror mode, non-propagating
waves. These convect down the flanks of the magnetosphere as quasi-static large-amplitude struc-
tures with a spatial scale in the plasma rest frame of 1000-2000 km [Gutynska 2008]. Depending

1Farrugia priv. comm.
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on the point of entry into the magnetosheath and the phase of the gyration about the mean field,
equal rigidity, field-aligned particles would take different paths, effectively dispersing in pitch an-
gle when they enter the quieter magnetosphere and the instrument orbit. Pitch angle diffusion, in
the sense of scattering off Alfvén waves, would not be significant and the particles would con-
tinue on a forward path and not be scattered backward unless there was mirroring taking place-not
possible at these rigidities. Smaller gyroradius (lower rigidity) particles would be more affected.
Because the wave amplitude is comparable to the mean field, comparing the mean gyroradius to
the magnetosheath thickness is a useful indicator of the magnitude of the effect one would expect.
For example, a 400 MV proton in the ambient 20 nT field has a gyroradius of ∼12 RE, while a 1.5
GV proton has a gyroradius of ∼40 RE . These are encouraging numbers in that this would imply
significant, but not too intense, dispersion in the 5 RE thick magnetosheath for the 1.5 GV GLE
protons, but much greater dispersion for the lower-rigidity particles.

The distorted orientation of the IMF may be a key factor in the anisotropy effect observed in
the particle intensities because entry into the magnetosphere on the flank significantly increases
the diffusive volume compared to the nominal 45◦ of the Archimedes spiral and because the
quasi-perpendicular nature of the IMF is exactly what is needed to produce large mirror mode
fluctuations. This is the first observation of differential dispersion as particles transit the magne-
tosheath. Low-energy solar energetic protons were registered within the Earth’s magnetosheath
[Debrunner 1984] that qualitatively show similar anisotropies to the high-energy. A complete dis-
cussion on this topic can be found in [Adriani 2015].
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