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Ultra-relativistic magnetic monopoles, possibly a relic of phase transitions in the early universe,
would deposit an amount of energy comparable to UHECRs in their passage through the at-
mosphere, producing highly distinctive air shower profiles. We have performed a search for
ultra-relativistic magnetic monopoles in the sample of air showers with profiles measured by the
fluorescence detector of the Pierre Auger Observatory. No candidate was found to satisfy our se-
lection criteria and we establish upper limits on the flux of ultra-relativistic magnetic monopoles
- the first from an UHECR detector - improving over previous results by up to an order of magni-
tude.
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1. Introduction

In 1931, Dirac showed that the existence of magnetic monopoles would explain the quanti-
zation of the electric charge from the relation between the unit of electric charge e and the unit
of magnetic charge gM = Ne/2α [1], where α is the fine-structure constant and N is an integer.
In addition, it would bring Maxwell’s equations to a complete symmetry. Within the framework
of Grand Unified Theories (GUT), supermassive magnetic monopoles (M ≈ 1026 eV/c2) may be
produced in the early Universe as intrinsically stable topological defects at the phase transition
corresponding to the spontaneous symmetry breaking of the unified fundamental interactions [2].
Lower mass monopoles may come from later phase transitions at lower energy scales. These par-
ticles may be present in the Universe today as a relic of these transitions. Experimental searches
for magnetic monopoles are based on their velocity-dependent interactions with matter, with a
wide range of velocities allowed for GUT monopoles. Supermassive GUT magnetic monopoles
should be gravitationally bound to the Galaxy (or to the Sun and Earth) with non-relativistic virial
velocities [2]. Lighter magnetic monopoles can reach relativistic velocities through acceleration
in coherent domains of the galactic and intergalactic magnetic fields, as well as in the vicinity of
astrophysical objects (e.g. neutron stars) [3]. Kinetic energies of the order of 1025 eV have been
predicted [4], which result in ultra-relativistic velocities for intermediate mass monopoles (IMMs,
M ∼ 1011 −1020 eV/c2).

There is a long history of experimental searches for magnetic monopoles with a variety of
experiments such as MACRO [5], Amanda [6], Baikal [7], SLIM [8], RICE [9], ANITA [10]
and IceCube [11]. The strongest upper limit on the flux of non-relativistic magnetic monopoles
(β = v/c < 0.5) comes from the MACRO experiment at ≈ 1.5 · 10−16 (cm2 sr s)−1 (90% C.L.)
[5]. At relativistic velocities (β ≈ 0.9), the IceCube Observatory has placed the best limit at 10−19

(cm2 sr s)−1 [11]. The best limit on the flux of ultra-relativistic IMM (Lorentz factor γ ≥ 1010) is
reported by the ANITA-II experiment at 10−19 (cm2 sr s)−1 [10].

The Pierre Auger Observatory is the largest detector to observe ultra-high energy cosmic rays
currently in operation [12] located in the southern hemisphere in central Argentina, just north
east of the town of Malargüe (69◦W, 35◦S, 1400 m a.s.l.), and covers a ground area of 3,000
km2. The Pierre Auger Observatory consists of a surface detector array (SD) of 1660 individual
water-Cherenkov surface detectors [13] overlooked by a fluorescence detector (FD) of 24 individ-
ual fluorescence telescopes grouped in units of 6 at four locations [14]. Since the FD steadily
observes UHECRs using a huge target volume in the atmosphere with high precision measure-
ments, it would be a suitable detector to search for signals generated from ultra-relativistic IMMs.
Therefore, we search for ultra-relativistic IMMs with data collected by the FD between 01.12.2004
and 31.12.2012.

2. Air Shower Simulations for the IMM Search

Electromagnetic interactions of magnetic monopoles have been extensively investigated [15].
The electromagnetic energy loss of a magnetic monopole in air is shown in Figure 1(a) as a func-
tion of its Lorentz factor. Collisional energy loss of a magnetic monopole is the dominant con-
tribution for γ ≤ 104. At higher Lorentz factors, pair production and photonuclear interactions
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Figure 1: (a) Energy loss of a magnetic monopole in air as a function of its Lorentz factor γ . (b) Longitudinal
profile of the energy deposited by an ultra-relativistic IMM of Emon = 1025 eV, γ = 1011 and zenith angle of
70◦ (red solid line). The profile of an UHECR proton shower of energy 1020 eV is shown as a black solid
line.

become the main cause of energy loss. Bremsstrahlung is highly suppressed by the large monopole
mass. An ultra-relativistic IMM would deposit a large amount of energy in its passage through the
Earth’s atmosphere, comparable to that of an UHECR. For example, an IMM with γ = 1011 loses
≈ 400 PeV/(g/cm2) (cf. Figure 1(a)), which sums up to ≈ 1020.5 eV when integrated over an atmo-
spheric depth of ≈ 1000 g/cm2. This energy will be dissipated by the IMM through production of
secondary showers along its path.

The longitudinal profile of the energy deposited by an ultra-relativistic IMM of Emon = 1025 eV,
γ = 1011 and zenith angle of 70◦ is shown in Figure 1(b). When compared with a standard UHECR
proton shower of energy 1020 eV (black solid line in Figure 1(b)), the IMM shower presents a much
larger energy deposit and deeper development, due to the superposition of many showers uniformly
produced by the IMM along its path in the atmosphere. This distinctive feature will be used in our
analysis, which is based on the shower development measured by the FD and SD events.

Monte Carlo samples of ultra-relativistic IMM were simulated for Lorentz factors in the range
γ = 108 − 1012 at a fixed monopole energy Emon of 1025 eV. While we used a fixed Emon in the
simulations, the results can be readily applied to a much larger range of monopole energies, since
in the ultra-relativistic regime of this search the monopole energy loss does not depend on Emon but
rather on γ . To estimate the background from UHECRs, we simulated proton showers with energy
Ep between 1018 eV and 1021 eV by three different models, QGSJetII-04, Sibyll 2.1 and Epos-LHC.
We used three different models to account for uncertainties in the hadronic interactions. Events
were simulated according to an E−1

p energy spectrum, to ensure sufficient Monte Carlo statistics
at the highest energy, and then appropriately weighted to reproduce the energy spectrum measured
by the Pierre Auger Observatory [16]. For both the IMM and UHECR simulations, we used the
CORSIKA package [17] to generate an isotropic distribution of showers above the horizon, and the
Auger Offline software [18] to produce the corresponding FD and SD events.
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Event selection criteria # events (%)
Reconstructed events 376084 —
Zenith angle < 60◦ 360159 95.8
Distance from nearest SD<1500 m 359467 99.8
Number of FD pixels > 5 321293 89.4
Slant depth interval > 200 g/cm2 205165 63.9
Gaps in profile < 20% 199625 97.3
profile fit χ2/ndf < 2.5 197293 98.8
dE/dX |Xup > 3.0 PeV/(g/cm2) 6812 3.5
Xmax > Xup 352 5.2
Xup > 1080 g/cm2 or dE/dX |Xup > 150 PeV/(g/cm2) 0 0.0

Table 1: Event selection criteria and unblinded result. The number of events passing each selection criteria
is reported, together with the corresponding fraction.

3. Event Selection

Before shower selection, only time periods with a good status of FD telescopes and a high
quality calibration of the gains of PMTs are selected using information in Auger databases. Ad-
ditional cuts are applied to assure good atmospheric conditions due to aerosols and clouds. A
further set of selection criteria was applied to ensure good quality showers as summarized in Ta-
ble 1. Those criteria for IMM selection were established from Monte Carlo simulations described
in Section 2.

The important parameters for the IMM search are the slant depth at the upper field-of-view
boundary, Xup, and the energy deposited at Xup, dE/dX |Xup. The requirement dE/dX |Xup >3.0
PeV/(g/cm2) is equivalent to an energy threshold of ≈ 1018.5 eV, where the SD is fully efficient.
When Xmax > Xup is required, the number of proton backgrounds is drastically reduced and become
constrained in a much smaller region, as shown in Figure 2(a). On the other hand, the reconstructed
Xmax will always be outside the FD field of view for ultra-relativistic IMM showers, independently
of the shower’s Xup. This is apparent in Figure 2(b), where the correlation of dE/dX |Xup with Xup

is shown for ultra-relativistic IMM simulated events. The background from UHECRs is almost
eliminated by excluding an appropriate region of the (Xup, dE/dX |Xup) plane. We optimized the
selection to achieve less than 0.1 background events expected in the data set of this search. The
final requirement, Xup > 1080 g/cm2 or dE/dX |Xup > 150 PeV/(g/cm2), is shown in Figure 2 as a
dashed box, and results in an expected background of 0.07 events in the search period data set.

4. Data Analysis and Results

The search for ultra-relativistic IMM was performed following a blind procedure. The se-
lection criteria described in Section 3 were optimized using Monte Carlo simulations and a small
fraction (10%) of the data. Then, the selection was applied to the full sample of data collected
between 01.12.2004 and 31.12.2012. The number of events passing each of the selection criteria is
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Figure 2: (a) Correlation of dE/dX |Xup with Xup for simulated UHECR proton showers passing the quality
selection criteria. The color-coded scale indicates the number of events expected in the search period data set.
Only events outside the dashed box are kept in the final selection for ultra-relativistic IMM. (b) Correlation
of dE/dX |Xup with Xup for simulated ultra-relativistic IMM of energy 1025 eV with Lorentz factor γ = 1011.
The color-coded scale indicates the number of events expected in the search period data set assuming a flux
of 10−20 (cm2 sr s)−1. Only events outside the dashed box are kept in the final selection for ultra-relativistic
IMM.

reported in Table 1. The correlation of dE/dX |Xup with Xup for events passing the shower quality
criteria and Xmax > Xup is shown in Figure 3(a).
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Figure 3: (a) Correlation of dE/dX |Xup with Xup for the data sample passing the shower quality selection
criteria and Xmax > Xup. The color-coded scale indicates the number of events. No event is found outside
the dashed box in the final selection for ultra-relativistic IMM. (b) 90% C.L. upper limits on the flux of
ultra-relativistic IMM: this work (black solid line); Parker bound (blue dashed line) [19]; SLIM (sky blue
dashed line) [8], MACRO (green solid line) [5], IceCube (blue solid line) [11], RICE (pink dotted line) [9]
and ANITA-II (red line) [10]. The MACRO and SLIM limits above γ = 109 were weakened by a factor of
two to account for the IMM attenuation through Earth.

Given the null result of the search, a 90% C.L. upper limit on the flux of ultra-relativistic IMM
was derived. The flux Φ of ultra-relativistic IMM of Lorentz factor γ is given by Φ(γ) = k/E (γ)
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with a value k = 2.44 (the Feldman-Cousins upper limit [20] for zero candidates and zero back-
ground events because the background events are conservatively assumed to be 0 instead of 0.07
expected events described in Section 3). The exposure, E (γ), determined by Time Dependent
Detector Simulation [21], which makes use of slow control information and atmospheric measure-
ments recorded during the data taking with considering the efficiency in IMM detection under the
event selection criteria. The systematic uncertainty of the limit originating from the uncertainty of
the exposure and dE/dX |Xup cut is 21%. The propagation of uncertainties from the event statistics
and systematics would lead to limit that is worse by a factor of 1.05 [22]. Here we follow a con-
servative approach and account for the systematics without propagation. We increase the limit by a
factor f = 1+n×0.21, where n = 1.28 corresponds to 90% C.L. value. The corresponding upper
limits for different Lorentz factors are shown in Figure 3(b), together with results from previous
experiments. Our result represents the best limit on ultra-relativistic IMM for γ ≥ 109, with a factor
of ten improvement with respect to previous experiments for γ ≥ 1010.

5. Conclusions

We have reported an analysis procedure and an event selection to search for signals produced
by ultra-relativistic IMMs with FD of the Pierre Auger Observatory. Using this analysis, there is
no candidate for IMMs signal in the data collected by the FD from 2004 to 2012. Therefore, we
have evaluated a flux limit of Φ90%C.L. ∼ 10−20 (cm2 s sr)−1 for log10(γ)≥ 10 which is a order of
magnitude stronger than all previous published experimental limits.
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