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The radio spectra of many shell-type supernova remnants show deviations from those expected
on theoretical grounds. In this paper we determine the effect of stochastic reacceleration on the
spectra of electrons in the GeV band and at lower energies, and we investigate whether reac-
celeration can explain the observed variation in radio spectral indices. We explicitely calculated
the momentum diffusion coefficient for 3 types of turbulence expected downstream of the for-
ward shock: fast-mode waves, small-scale non-resonant modes, and large-scale modes arising
from turbulent dynamo activity. After noting that low-energy particles are efficiently coupled to
the quasi-thermal plasma, a simplified cosmic-ray transport equation can be formulated and is
numerically solved. Only fast-mode waves can provide momentum diffusion fast enough to sig-
nificantly modify the spectra of particles. Using a synchrotron emissivity that accurately reflects
a highly turbulent magnetic field, we calculated the radio spectral index and find that soft spec-
tra with index α ≤ −0.6 can be maintained over more than 2 decades in radio frequency, even
if the electrons experience reacceleration for only one acceleration time. A spectral hardening
is possible but considerably more frequency-dependent. The spectral modification imposed by
stochastic reacceleration downstream of the forward shock depends only weakly on the initial
spectrum provided by, e.g., diffusive shock acceleration at the shock itself.
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1. Introduction

The synchrotron spectra observed from shell-type supernova remnants (SNR) are convention-
ally interpreted as being produced by electrons that have been accelerated at the forward shock and
possibly the reverse shock through a process known as diffusive shock acceleration [1]. Whereas
the electron spectrum at very high energies is shaped by energy losses and the structure of the
cosmic-ray precursor, GeV-band electrons should not be affected by losses and boundary effects.
Their spectrum should reflect the canonical solution N(E) ∝ Es with s = −2 for strong shocks in
monoatomic hydrogen gas. A slight softening of the spectra may arise from cosmic-ray feedback
on the shock structure [2] and a proper motion of the cosmic-ray scattering centers, such that the
compression ratio of the scattering centers is lower than that of the gas.

The GeV-scale spectrum of electrons is probed with measurements of their synchrotron emis-
sion in the radio band [3]. The values of the radio spectral index display a large scatter around a
mean of α ≈−0.5 (Sν ∝ να , with α = (s+1)/2), reaching in some cases α ≈−0.2 or α ≈−0.8,
far beyond the level of systematic uncertainties in the measurements.

Here we re-examine the role of stochastic acceleration in SNR. It has been realized in re-
cent years that non-resonant small-scale instabilities operating upstream in their non-linear phase
impose substantial plasma turbulence that will foster second-order Fermi acceleration [4]. Sec-
ondary instabilities arise, for example by shock rippling, which lead to turbulent magnetic-field
amplification downstream of the shock [5, 6], along with turbulent motions. Both on small and
on large scales we therefore expect some second-order Fermi acceleration to operate behind the
outer shocks of SNRs. Stochastic acceleration may thus act as a secondary re-acceleration process
downstream of SNR shocks that slightly modifies the particle spectrum produced at the shock by
diffusive shock acceleration.

In this paper we estimate the re-acceleration rate for three types of turbulence: fast-mode
waves [7], Bell’s non-resonant instability [8], and large-scale MHD turbulence arising from shock
rippling through dynamo processes [9]. Having established the efficiency, energy dependence, and
spatial decay scale of the momentum diffusion coefficient, we compute its effect on the spectrum of
electrons between the forward shock and the contact discontinuity. We conclude with a discussion
of the expected radio spectra of SNRs.

A full description of the methods and results is published elsewhere [10].

2. The rate of diffusive reacceleration

Before we discuss reacceleration rates in detail, it is important to recall that the downstream
region of the forward shocks of young SNRs is not a low-β environment. The flow is subsonic by
definition, whereas the Alfvén speed increases only with the shock compression.

2.1 Small-scale non-resonant modes

Current-driven instabilities can lead to aperiodic small-scale turbulence [11, 8]. The satura-
tion level of small-scale non-resonant modes is not well known. A significant backreaction is a
reduction in streaming velocity and hence a diminishing of the streaming anisotropy [12]. Another
non-linear side effect is turbulent motion [4].
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The modes have a very low real frequency, at least in the linear stage, and so we can describe
them with reasonable accuracy in the magnetostatic approximation. Using a second-order non-
linear theory of wave-particle interaction for a parametrized spectrum of strong magnetosonic slab
turbulence we can estimate the momentum diffusion coefficient of relativistic particles with small
Larmor radius, rL, [13, 14]. If we equate the available time with the cascading timescale, τd , at the
largest scales [15], we can find the ratio of available time to the acceleration time, p2/Dp, as

τd Dp

p2 '
√

π

3s
Γ
( s

2

)
Γ
( s−1

2

) vA

c

(
rL

rL,max

)s−2 (
δB
B0

)2

Θ(rL,max− rL) . (2.1)

It is typically small, unless vA is very large in the downstream region.

2.2 Large-scale MHD turbulence

The acceleration provided by moving magnetic-field structures is essentially a classical Fermi
process. If scatterers at scale k move with random velocity vk and the frequency of collision with
these structures is ωk, then the momentum diffusion coefficient is determined as [16],

Dp ≈ p2
∫

d lnk ωk

(vk

c

)2
. (2.2)

Turbulence spectra are usually difficult to extract on account of the limited spectral range of MHD
simulations. Simulations suggest that we may treat the turbulence structures as magnetic clouds
of amplitude Bk moving with random velocity vk, where on the largest scales vrms ' vsh/20 [17].
The scattering rate is then determined by the time needed to propagate between clouds, either
ballistically or through diffusion with mean free path, λmfp.

With Kolmogorov scaling the integral 2.2 yields

Dp ≈
2

27π c
p2 v2

rms
λmfp kmin

rL
. (2.3)

If the spatial diffusion follows Bohm scaling (λmfp ≈ rL), then the acceleration time is independent
of momentum. We then find for the acceleration time

τacc '
p2

Dp
≈ (2.5 ·104 yr)

(
0.03c

vsh

)2 (10−16 cm−1

kmin

)
rL

λmfp
. (2.4)

This is much longer than the evolutionary time scales of SNR, unless kmin is very small.

2.3 Fast-mode waves

The fastest waves in the downstream region should be fast-mode waves whose phase velocity
is the sound speed, vfm ' 1000 km/s. Particles can interact with fast-mode waves through transit-
time damping (TTD), a process that does not have specific resonance scales. One consequence
is that thermal particles will efficiently damp all waves except those that propagate parallel or
perpendicular to the local magnetic field [18]. Equating the rates of damping and cascading yields
an angle-dependent wavelength, λc, down to which the fast-mode turbulence can cascade. Using a
step function, Θ,the fast-mode turbulence can hence be expected to follow a 3D-spectrum [19]

W (k,Ωk) =W0 k−3.5
Θ

(
k− 2π

λmax

)
Θ

(
2π

λc
− k
)

. (2.5)
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Figure 1: Schematic representation of
the scenario. In a region of thickness
zd behind the forward shock (FS) turbu-
lence can reaccelerate electrons. Figure
taken from [10], reproduced with per-
mission, c©ESO.

We calculate the momentum diffusion coefficient for an isotropic distribution of electrons as

Dp =
∫

dµ
p2
⊥ v2
⊥

8B2
0

∫
dk k2

∮
dΩk k2

‖W (k,Ωk)R(k,Ωk) , (2.6)

where ⊥ and ‖ refer to projections perpendicular and parallel to the local mean magnetic field, B0,
and µ = cosθ reflects the pitch angle relative to it [20]. The resonance function R(k,Ωk) includes
the effects of orbit perturbations [21]. The corresponding time scale of stochastic acceleration
is independent of momentum. It does rely on the isotropy of the particle distribution function,
though. Calculating the isotropization time scale is beyond the scope of this paper, but we know
that isotropization becomes slower at high particle energies, and therefore our derivation should be
realistic only for low-energy particles.

Reaccelerating energetic particles is another damping process for fast-mode turbulence that
we have not yet considered. The cosmic-ray induced damping of the waves must be slower than
cascading, otherwise the fast-mode cascade would terminate. Using the associated wavelength
limit we find as realistic estimate of the acceleration timescale

τacc,rev '
λmax

4π cs

UthUcr,acc

U2
fm

' (8 ·107 s)
(

λmax

1016 cm

) (
cs

103 km/s

)−1 UthUcr,acc

10U2
fm

, (2.7)

where Ucr,acc denotes the energy density in cosmic rays that experience acceleration, Uth is the
thermal energy density, Ufm that in fast-mode waves, and λmax is their driving scale. The true
acceleration time is thus a few years, and stochastic reacceleration will operate for only a few
acceleration times. As the turbulence is driven at the shock and then advects downstream, we must
expect that strong fast-mode turbulence exists only in a thin layer of a few λmax in thickness.

3. Calculation of electron spectra

The spatial transport of relativistic electrons behind the forward shock of SNR is provided
by both advection and diffusion. We concern ourselves with GeV-scale electrons whose spatial-
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Figure 2: Averaged electron number
density, Nave, plotted for various power
indices of the momentum diffusion co-
efficient, m, but fixed T = 0.5. Figure
taken from [10], reproduced with per-
mission, c©ESO.

diffusion coefficient is most likely very small inside SNR. The situation can then be described in
the local shock rest frame, i.e. with spatial coordinate z = rsh(t)− r.

Figure 1 summarizes the scenario: In a thin layer of thickness zd , determined by cascading and
damping of the turbulence behind the forward shock, turbulence subjects electrons to stochastic re-
acceleration. On account of the dominance of advection over diffusion, shock acceleration at z = 0
provides accelerated electrons that are fed into the orange-shaded region of re-acceleration and
leave it after time t = zd/vadv. Electrons follow an z-t characteristic, and therefore the entire spatial
dependence of the electron density is given by the time evolution of the spectrum. The continuity
equation then collapses to an initial-value problem of spectral evolution of N(p, t), where

4π r2 N(r, p, t) = N(p, t)δ (z− vadv t) , (3.1)

and
∂N(p, t)

∂ t
=

∂

∂ p

(
Dp(p) p2 ∂

∂ p

(
N(p, t)

p2

))
. (3.2)

Here, Dp(p) is the diffusion coefficient in momentum space. We established that only transit-time
damping of fast-mode waves may be fast enough to modify particle spectra inside SNR. Assuming
isotropy of the particle distribution function, we found the acceleration time, τacc, independent
of momentum. Expecting that this assumption breaks down for particles of higher energy, we
introduce a dimensionless function, f (p), to set

Dp(p) =
p2

τacc
f (p) with f (p) =

{
1 for p≤ p0( p

p0

)−m for p≥ p0 .
(3.3)

The form of the momentum diffusion coefficient (Eq. 3.3) permits rewriting the reduced continuity
equation (3.2) in dimensionless coordinates,

∂N
∂x

=
∂

∂ p̃

(
f (p̃)p̃4 ∂

∂ p̃
N
p̃2

)
with x =

t
τacc

and p̃ =
p
p0

. (3.4)

Solutions are sought for 0 ≤ x ≤ T = zd/vadv/τacc, where T is the total available time in units of
the acceleration time, previously estimated to be at most a few. The spatial variation of the radio
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Figure 3: Averaged electron number
density, Nave, normalized by the initial
distribution, N(t0) = N0 p−s, plotted for
different initial indices, s. Figure taken
from [10], reproduced with permission,
c©ESO.

spectrum will probably not be resolvable by current radio observatories. Hence, it may suffice to
calculate the average spectrum with the region of strong turbulence (colored orange in Figure 1),
for which we need to integrate the particle number density over time:

Nave(p̃,T ) =
1
T

∫ T

0
N(p̃,x)dx . (3.5)

In the following we set N0 = 1 and initially N(p, t = 0) = N0 p−2. In Figure 2 we present the
integrated particle number density, Nave, for various m and fixed time T = 0.5. To be noted is that
a spectral bump appears near p0 that has a high-energy tail that extends over more than 2 decades
in momentum. To the outside observer that would appear as a concave spectrum.

The question arises to what degree the spectral modifications imposed by stochastic reacceler-
ation depend on the initial spectrum produced at the shock. As test for that we plot in figure 3 the
modification factor Nave/N(p, t = 0). For ease of exposition, the initial spectrum is assumed to fol-
low a power law, N(t0) = N0 p−s, where we vary the index s. The form of the momentum diffusion
coefficient is as in Equation 3.3 with fixed m. We observe that the choice of initial spectral index
determines mainly the amplitude of the spectral bump, whereas its shape is weakly affected. There
is some degeneracy between the parameters m and T . The initial conditions and the details of dif-
fusive acceleration at the shock are thus largely irrelevant for the spectral characteristics provided
by stochastic reacceleration in SNR.

Let us now discuss the radio synchrotron spectrum. In a strongly turbulent magnetic field
with δB & B0 the standard synchrotron emissivity is not applicable. We instead use an analytical
approximation to the synchrotron emissivity for a turbulent field with Gaussian distribution of
amplitudes of scale Brms and characteristic frequency νc = ν0(Brms),

Peff 'C Brms

√
2
π

(
ν

νc

)1/3

exp

(
−3

2

(
ν

νc

)2/3
)(

1+1.65
(

ν

νc

)0.42
)0.53

. (3.6)

Having established that the choice of initial particle spectrum plays a minor role and can be
compensated with adjustments in the dimensionless time, we calculate radio spectra only for
N(p, t = 0) = N0 p−2, i.e. the high-frequency spectral index is α = −0.5. As we use a dimen-
sionless momentum coordinate, the synchrotron frequency is also dimensionless and normalized to
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the synchrotron frequency νx of electrons of momentum p0 in a magnetic field of amplitude Brms,

νx = ν0(Brms, p0) =
3e

4π m3
e c3 Brms p2

0 . (3.7)

The radio spectral index of the inner region, shaded yellow in Figure 1, must be calculated with
N(p̃,x = T ) and is shown in Figure 4. Note that it is at the same time the radio spectrum at the
inner edge of the region of reacceleration, and so it reflects the final state of the electron spectrum
after experiencing momentum diffusion for a time x = T = zd/vadv/τacc. Vis-à-vis we present the
radio spectral index of the region in which we expect substantial momentum diffusion (shaded red
in Figure 1), i.e. computed using the average electron spectrum Nave.
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Figure 4: Left panel: Radio spectral index of the far downstream region of an SNR, plotted for different
times T and 2 choices of m. Right panel: Radio spectral index of the shell where reacceleration occurs,
plotted for different times T and 2 choices of m. Figures taken from [10], reproduced with permission,
c©ESO.

4. Summary and conclusions

We have investigated the role of stochastic reacceleration in SNR with a view to probe whether
or not it can account for the wide range of radio spectral indices observed among the more than
200 galactic SNR [3]. The momentum-diffusion coefficient is calculated for 3 types of turbulence,
among which only transit-time damping of fast-mode waves operates on timescales of one or a
few years. We numerically solved a reduced transport equation and found that cosmic-ray spectra
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develop a bump whose shape is largely independent of the initial spectrum assumed at the forward
shock. Finally, synchrotron spectra are derived using an emissivity appropriate for a turbulent mag-
netic field with Gaussian distribution of amplitudes. Our findings can be summarized as follows:

1) Less than one acceleration time is needed to soften the radio spectrum to α ' −0.65. As
the thickness of the acceleration region is zd = vadv T τacc, for a reacceleration time of a few years
and an advection speed of 1000 km/s we find that a thickness of zd ≈ 3 ·10−3 pc is sufficient which
in most cases is not resolvable.

2) If the increase of the reacceleration timescale with momentum is slow, i.e. m is small (cf.
Eq. 3.3), soft radio spectra with very little curvature can be maintained over 3 decades in frequency.
In contrast, for m = 0.6 spectral curvature is much stronger and should be detectable, in particular
from the far-downstream region.

3) The softest spectra are observed at a few hundred to a thousand νx (cf. Eq. 3.7). For soft
radio spectra from SNR it is therefore sufficient, if νx≈ 10 MHz, corresponding to p0≈ 150 MeV/c
for Brms ≈ 25 µG.
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