On the correlation of the angular and lateral deflections of electrons after multiple scattering allowing for energy losses M. Giller, R. Legumina and A. Smiałkowski

University of Łódź, Poland

Abstract

In the model of multiple small angle scattering the correlation coefficient of a fast particle angle and its lateral deflection from the initial direction is large : $\rho = 0.87$. For electrons in EAS it is much smaller : $\rho \sim 0.5$. This paper explains why the difference is so large.

Model 1: Multiple scattering (Coulomb) of electron by small angles, electron energy E = const.

Electron makes N steps Δz being scattered by a small angle ϕ

Definition: Correlation coefficient $\stackrel{\phi}{\rho} \longrightarrow \rho = \frac{\langle \eta * x \rangle}{\sqrt{\langle \eta^2 \rangle * \langle x^2 \rangle}}$. between final angle η and lateral deflection x.

Model 2 : Heitler-like model of electromagnetic cascade – electrons and photons, *E= const.*

After each step Δz electron emits a photon, photon creates two electrons (e- e+). Let $\eta_e(z)$ be the angle of an electron at level z and $\eta_{ee}(z) (\eta_{ey}(z))$ - the angle of an electron at z, the parent of which at $z \cdot \Delta z$ is an electron (photon). We have:

 $n_e(z) = 2n_{\chi}(z), \langle \eta_{ee}^2(z) \rangle = \langle \eta_e^2(z - \Delta z) \rangle + \langle \varphi^2(z) \rangle$, and

Energy losses for Bremsstrahlung only a). $E(z) = E_0 e^{-z/X_0} \qquad u = E/E_0$ $\rho_{br} = \frac{1}{\sqrt{2}} \frac{1 - u^2 + 2 u^2 \ln u}{\sqrt{(1 - u^2) * (1 - u^2 + 2 u^2 (1 - \ln u) \ln u)}}$ (Fig.1).

b) Ionisation only $E(z) = E_0 - \beta z / X_0 \quad ,$ $\rho_{ion} = \left[\ln(1/u) + u - 1 \right] / \sqrt{(1/u - 1)(1 - u^2 + 2u \ln u)}$ (**Fig.1**)

c). Bremsstrahlung and ionisation

 $E(z) = (E_0 + \beta) \exp(-z/X_0) - \beta$

 β - the critical energy of the medium, X_o - the radiation unit. Only $\langle \eta^2(z) \rangle$ can be calculated analytically, so that the correlation coefficient ρ has to be computed numerically (Fig.2)

So, why is the correlation for electrons in **EAS** much smaller, as seen in Fig.3 below?

Looking for the reason of the difference :

To study the possible effect of photons in the framework of some more realistic models we consider two of them:

Model 4. Multiple scattering of a single electron in steps

At each step electron energy is diminished by a constant factor k < 1, so that $E_i = E_0 k^i$ and $\langle \varphi_i^2 \rangle = U_0 k^{-2i}$. We obtain : $\langle \eta_N^2 \rangle = U_0 (k^{-2N} - 1)(1 - k^2)^{-1},$ $\langle x_N^2 \rangle = U_0 (\Delta z)^2 k^{-2N} \Sigma_{j=1}^{N-1} j^2 k^{2j},$

Model 5. Heitler-like model of electromagnetic cascade – ~ electrons and photons, as Model 2 but $E_i = E_o (1/2)^i$ Note: electron energy decrease in each step is the same in both *Model 4* and *Model 5*. \mathbf{N}

For
$$N \to \infty$$
 we obtain $\langle \eta_N^2 \rangle \approx 1.184 U_0 4^N$,

Fig.3. Comparison of the correlation coefficient ρ in EAS (green points), as function of final electron energy E, (in units of the critical energy β) with ρ for single electron with average energy losses (red line -the same as that in Fig.2). Blue points - MC simulations for single electron with fluctuations in energy losses.

No effect of fluctuations is seen. For electrons in EAS ρ is considerably smaller.

 $\langle \eta_N x_N \rangle = U_0 \Delta z k^{-2N} \Sigma_{i=1}^{N-1} j k^{2j}$ and the correlation coefficient for $N \rightarrow \infty$ equals $\rho(k) = k^2 / \sqrt{(1-k^2)^3} \Sigma_{j=1}^{\infty} j^2 k^{2j}$

For $k = \frac{1}{2}$ $\rho = 0.447$. Thus, even if the energy - loss "process" considered here is similar to bremsstrahlung we obtain a much smaller value as when continuous, mean bremsstrahlung losses were assumed leading to $\rho = 0.707$. Also:

MC simulations of electron propagation were done where emission of high-energy photons was chosen randomly. No mean effect on ρ was found (Fig.3).

Conclusion:

Weak correlation of electron angles and their lateral deflections in EAS, when compared with multiple scattering models, is caused by electron energy losses – mainly those for ionisation and by the parent photons.

 $\langle x_N^2 \rangle \approx 0.448 U_0 (\Delta z)^2 4^N$, $\langle \eta_N x_N \rangle \approx 0.217 U_0 \Delta z 4^N$

so that $\rho = 0.30$ independently of N.

Thus, going from *Model 4* (single electron) to *Model 5* (cascade with photons) decreases correlation by factor $\sim 0.30/0.447 = 0.67$.

By analogy, we may expect that going from multiple scattering *Model 3* (single electron) to EAS (cascade) would decrease ρ by roughly the same factor: at $E/\beta = 1$ this ratio is ~ 0.73 (Fig.3), - what we consider as a reasonable agreement.