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1. Introduction

The spectrum of cosmic rays (CR) in the local interstellar medium (within about 1 kpc from
the Sun) is of interest as a complement to direct measurements and as a probe of solar modulation
which affects particles below a few GeV.γ-rays from CR protons and heavier nuclei interacting
with interstellar gas are an ideal probe of local CR; bremsstrahlung from CR electrons and positrons
is also important at low energies and must be accounted for too. In (1; 2) we presented preliminary
results based on earlier emissivity data (3). (4) addressesother aspects of this topic, also using
those emissivities.

Recently a new and precise determination of the localγ-ray emissivity usingFermi-LAT data
has been made (5), studying regions at Galactic latitudes out of the plane; in particular the contri-
butions from atomic, molecular and ionized hydrogen were separated, and the emissivity of atomic
gas traced by the 21-cm line can be used as the most reliable data for analysis. (5) also provided
an extensive analysis of the emissivities to derive the interstellar proton spectum. Here we pursue
this project with the new emissivities, with various innovations including new cross-sections and
analysis techniques.

2. Emissivity matrix representation

2.1 Response Matrices

The observed emissivity is the sum of hadronic (pion-production) and leptonic (bremsstrahlung)
contributions:qtot(Eγ) = qhad(Eγ)+ qlep(Eγ). The gamma-ray emissivity predicted for the input
CR spectra can be written in matrix formε pred

k = ΣprocessΣ jM jkI j(~θ ). whereεk is the emissivity in
the k’th energy bin, andI j(~θ ) is the j’th momentum sample point of the CR spectrum model with
parameters~θ . The processes run over hadronic and leptonic components, with I j(~θ ) including CR
protons, helium, electrons and positrons.M jk can include the dispersion in theFermi-LAT γ-ray
energy measurements. The matrixM jk is pre-computed for a given binning of data and model, so
that the response can be computed very fast for a large numberof model parameters. The method is
general and can be extended to include cosmic-ray direct measurements, synchrotron emissivities
etc. Once the matrices and data are defined, the problem is a purely mathematical one.

2.2 Energy dispersion

The Fermi-LAT energy measurement has a precision of about 15%, becoming worse at low
energies. Accounting for the energy dispersion is especially important below 200 MeV, where pho-
tons are both lost from the measured range and gained from higher and lower energies, depending
on the input spectrum. The energy dispersion is defined asp(Emeas|Etrue), whereEtrue,Emeasare
the true and measuredγ-ray energies respectively.p(Emeas|Etrue) is obtained in matrix form using
theFermi-LAT Science Tools, for the same event selection and response as used to derive the emis-
sivities. The approximation is made that the response averaged over the full sky is appropriate; the
variations are small and average out making this a good approximation. The measured spectrum
is also weighted by theFermi-LAT effective area which is a function of energy, varying rapidly
at low energies. The full transfer function from the model proton and helium spectra to measured

2



P
o
S
(
I
C
R
C
2
0
1
5
)
5
0
6

Local interstellar cosmic-ray spectra A. W. Strong

emissivities in energy bands can be expressed as a single matrix, allowing fast computation for
statistical analysis.

3. Bayesian analysis

The likelihood function isL(data|~θ ) = exp(−Σk(ε
pred(~θ )
k − εobs

k )2/2σ2
k ) whereεobs

k is the ob-
served emissivity andσk is the error estimate for the k’th energy bin. By Bayes theorem the

posterior probability of the model isP(~θ |data) = P(~θ)L(data|~θ )
P(data) whereP(~θ ) is the prior probabil-

ity for the parameters~θ defining the model, andP(data) is a normalizing factor (known as the
evidence) such that

∫

P(~θ |data)dN~θ = 1. Given the joint probability distribution of the param-
eters, we can marginalize to obtain the distribution of any subset, including single parameters:
P(θi) =

∫

θ 6=θi
P(~θ |data)dN−1~θ . Mean and standard deviations areθ̄i =

∫

θ 6=θi
θiP(~θ |data)dN−1~θ ,

σ(θi) =
√

(
∫

θ 6=θi
(θi − θ̄i)

2P(~θ |data)dN−1~θ ). Since we are actually more interested in the CR
spectrum than in a particular set of parameters, which are anyway highly correlated, it is useful
also to compute the mean and standard deviation of the gridded CR spectran j = n(p j):

n̄ j =
∫

n j(~θ )P(~θ |data)dN~θ , σ(n j) =
√

(
∫

(n j(~θ )− n̄ j)
2P(~θ |data)dN~θ ). This defines a band

containing the range of CR spectra. This method is thereforea deconvolution using a basis of
parameterized spectra1. The range of emissivities corresponding to this range can then be computed
(for each process) for comparison with the observed values,to illustrate the uncertainties.

In our previous analysis (1; 2) we used an explicit parameterscan, which was limiting due to
the large number of parameters. The new analysis uses the MultiNest software2 (6), an advanced
Bayesian package for multi-parameter fitting; among its advantages are that it does not require
specification of a step-size, has handling of multi-modal posteriors, and allow computation of the
statistics of functions of the parameters. We found it fast and reliable for the problem at hand. The
ranges of the parameters have to be specified. As described below, we fit to eq.(6.1), and there are
a total of 10 parameters to be fitted. The parameters in this application have rather limited ranges
of reasonable values, and a flat prior over a prescribed rangeis sufficient for the present purpose;
more complex priors are straightforward to include if required. MultiNest outputs full parameter
chains, mean and standard deviations of each parameter, andmean and standard deviations of user-
defined functions of the parameters, here chosen to be the formula representing the CR spectrum
as specified above.

4. γ-ray production functions

Recent reviews of hadronicγ-ray production can be found in (7; 1; 2; 4; 8). Here we use the
QGSJET-II-04 model (9; 7). In addition to photon productionin proton-proton collisions, we have
to account for the contribution to the photon yield by proton-helium, helium-proton, and helium-
helium interactions. Since QGSJET-II includes nuclei-nuclei interactions, the parametrization of
(7) can be used directly for all four reaction channels abovethe transition energy. ForA > 4 we

1An alternative method, in principle preferable, would be toperform a parameter-free deconvolution of the CR
spectra, with some regularizing prior; the present method is an intermediate approach.

2available at http://ccpforge.cse.rl.ac.uk/gf/project/multinest
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apply a nuclear enhancement factor following (8). For proton energies below 20 GeV we use the
γ-ray production functions described in (1; 2) ; these are forproton-proton collisions only, so we
again apply the factor given in (8) for p-He, He-p, He-He and heavier nuclei. The helium abundance
of interstellar gas is 0.1 by number, and the interstellar gas composition for heavier nuclei uses (10).
CR helium is taken into account explicitly, and the CR composition for heavier nuclei is based on
ACE and CREAM. The contribution from CR and ISM with A>4 is about 10% relative to A≤4,
and is dominated by CR, much less coming from heavy gas nuclei.

Bremsstrahlung from CR leptons is computed using the corresponding GALPROP routine.

5. Synchrotron and direct constraints on electrons

Synchrotron emission from electrons and positrons in the interstellar magnetic field provides
essential constraints on interstellar leptons, independent of solar modulation. For a survey of ex-
perimental data and theoretical arguments see (11; 12; 13).We are not concerned here with the
injection spectrum of electrons, or how the interstellar spectrum is affected by propagation, but
just the observational information on the interstellar spectrum. As found in (11) the synchrotron
brightness temperature spectral indexβ changes from about 2.5 to 3 in the range from 100 MHz to
several GHz. The relation ofβ to the electron indexα is β = 2+(α −1)/2, so this corresponds to
a steepening of the interstellar electron spectrum from index 2 to 3 at a few GeV electron energy. At
high energies and frequencies, this is consistent with the Fermi-LAT direct measurements of elec-
trons + positrons, which give an index 3.08±0.05 (14) and for electrons an index 3.19±0.07 (15),
the electrons fully dominating at low energies where bremsstrahlung is important; this is also con-
sistent with microwave synchrotron emission measured withPlanck(16). Here solar modulation is
negligible so that this consistency is a requirement, assuming the local measurement is typical of
the interstellar medium near the solar position in the Galaxy. At low energies, only synchrotron is
a reliable tracer of the interstellar electron spectrum, due to the very large solar modulation (factor
or 10 or more). The relation of synchrotron to the electron spectrum is a complicated function (11),
but it is useful to write a simplified version to illustrate the nature of the constraints on the energy
of the electron spectral index break. We use the formula fromsec 2.1.1 and 2.3 of (11) and the
synchrotron data from that paper. We have for the synchrotron peak frequency for a electron en-
ergy E:νmax= 0.29νc = 0.29 B

7.5 µG [ E
GeV]2×240 MHz. soE =

√

( νmax
240 MHz/

0.29B
7.5 µG) GeV. Note that

E depends on
√

νmax and
√

B so is robust against uncertainties in these quantities. Theobserved
breakν is in the range 500–5000 MHz, B is between 5 and 10µG, using a broad conservative
range. Hence taking extremes ofν/B, 2 < Ebreak< 10 GeV. A narrower range is also reasonable:
ν = 500− 2000 MHz,B = 5− 8 µG, giving 2.6 < Ebreak < 6.6 GeV. The upper limit is consis-
tent with Fermi-LAT electrons which show no break down to 7 GeV. However other experiments
(AMS01, PAMELA) show the break must be below 3 GeV, since there is no break observed above
this energy and solar modulation has the effect of enhancingthe break in the directly measured
spectrum. Hence the adopted break energy constraint from synchrotron and direct measurements is
1–2.5 GeV. The synchrotron constraint is essential for the low end and the index below the break.
Since we use a smooth function for the break, the relation between the break parameter and the
actual spectrum is not exact. We use theFermi-LAT electron spectrum as measured for the spec-
trum above the break, including the Fermi-LAT normalization at 100 GeV and index range 3.1-3.2.
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Below the break, the experimental range ofβ is 2.4 to 2.6, so from the above formula we use the
rangeα = 1.8−2.2 as the constraint from synchrotron.

6. Parameterization of spectra

As explained in (1; 2) we use a spectrum in the form of density per unit momentumn(p),
since this is expected to have a power-law shape in the theoryof diffusive shock acceleration, and
hence serves as a suitable basis form on which propagation and other effects are superimposed.
The local emissivities require a turnover in the proton spectrum towards low energies. A possible
parameterization of CR spectra has a single sharp break in the spectral index, and this is often used;
it was used in for example in (1; 2). However this is unphysical, and a smoother function is more
appropriate. Hence smooth breaks in protons, helium and electrons are modelled; the functional
form used isn(p) ∝ 1 / [( p

pbr
)α1/δ + ( p

pbr
)α2/δ ]δ whereα1,α2 are the indices below and above the

break respectively forα1 < α2, and the spectrum breaks around a momentum centred onpbr; the
parameterδ controls the sharpness of the break: smallerδ produces a sharper break, typical values
areδ =0.5 – 1.5. It converges to the given power-laws at low and highp, with a smooth transition.
This is the same form as used for CR in supernova remnants in (17), written in a symmetrical form
in the indices for clarity. This function has one more parameter (δ ) than for a perfectly sharp break;
it simply makes the break smoother in a controlled way. Givena reference valuenre f at pre f the
normalized spectrum is:

n(p) = nre f × [(
pre f

pbr
)α1/δ + (

pre f

pbr
)α2/δ ]δ / [(

p
pbr

)α1/δ + (
p

pbr
)α2/δ ]δ (6.1)

The normalizationnre f (pre f ) is treated as a free parameter; there are thus 5 parameters each
for protons and leptons, making 10 parameters in total. Since gamma rays cannot distinguish an
origin in CR protons from CR helium, some assumptions have tobe made to break the degeneracy.
The ratio of protons and helium is fixed to that measured by PAMELA at 100 GeV, where solar
modulation is absent while the experimental error is small.We take a reference proton momentum
of 100 GeV, with a wide prior range since the normalization isto be determined from the gamma-
ray data only. The lepton (electron + positron) spectrum is only marginally constrained by gamma
rays, so we rely on direct measurements for the normalization and high-energy spectral index,
allowing a range with uniform prior. We use theFermi-LAT lepton flux at 20 GeV (14). For the
low-energy (below about 1 GeV) spectral index we rely on synchrotron radiation constraints as
described later. The prior range for the break position is based on both synchrotron and direct
measurements.

7. Results and Discussion

We illustrate the results using the raw emissivities accounting for energy dispersion; using
the corrected values without applying dispersion leads to very similar results. The fit results are
given in Table 1 and Fig 1. The parameters are highly correlated so the individual values are just
indicative, while the resulting spectrum error band (Fig 1)uses the full posterior in all parameters.

The proton spectrum spectral index above the break is recovered in good agreement with direct
measurements (beyond the effects of solar modulation); note that it has been determined from the
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Table 1: Summary of model fits to equation 6.1. Entries are prior range, posterior mean and standard
deviation. The proton parameters are constrained by theγ-ray emissivities, while the lepton parameters re-
flect mainly the prior from synchrotron and direct measurements. The parameters are highly correlated and
degenerate, so the resulting spectrum derived from the fullposterior (Fig 1) is preferred to the individual pa-
rameters. The CR densitynre f is multiplied by(c/4π) to give a flux in the usual units quoted in experiments.
pre f = 105 MeV for protons, 2×104 MeV for leptons.

Parameter range: min max mean std units

Protons

(c/4π)nre f 1×10−9 20×10−9 6.4×10−9 0.3×10−9 cm−2 sr−1 s−1 MeV−1

α1 2.2 2.7 2.37 0.09
α2 2.6 3.5 2.82 0.05
δ 0.05 1.0 0.5 0.1
pbr 1000 10000 5870 2200 MeV

Leptons

(c/4π)nre f 1×10−9 3×10−9 2.2×10−9 0.5×10−9 cm−2 sr−1 s−1 MeV−1

α1 1.8 2.2 2.0 0.1
α2 3.1 3.2 3.15 0.03
δ 0.05 1 0.47 0.25
pbr 500 2000 1130 4067 MeV

gamma-ray data alone. The spectral break is significant, theindex being smaller by∼ 0.5 below the
break; this is where solar modulation affects the direct measurements, as can clearly be seen in the
difference between PAMELA, AMS01 and the interstellar spectrum. Note that we address a break
in themomentumspectrum, not kinetic energy; the latter representation isnot appropriate, see (1;
2). The overall normalization of the proton spectrum is about 30% larger than direct measurements,
even in the high-energy region free from modulation. This can be a real physical effect since there
is no guarantee that the direct measurements represent the average in the local region within one
kpc probed by the gamma rays. There are spectral variations between the local region and the
rest of the Galaxy (18; 19), and the region probed by the emissivity analysis might be not so
“local” in this sense. However there are sufficient uncertainties in the analysis to make such an
interpretation premature at this stage: hadronic cross-sections have still significant uncertainties
especially for CR and target nuclei withA> 1. Uncertainties in the gas column densities including
gas not traced by HI or CO are still significant, even though the emissivity derivation is for atomic
hydrogen well traced by the 21-cm line, correlations between the gas phases does not allow full
separation of the components. Ionized hydrogen is accounted for in the analysis, but again cannot
necessarily be fully separated from the other components. We note that (5) implicitly finds a similar
trend in the normalization: that analysis included proton and helium direct measurements in the
fitting so is more constrained to agree with those. In fact their proton spectrum is slightly above
direct measurements, and their predicted emissivities areslightly below the measurements; so to
reproduce the emissivities the proton spectrum would have to be increased further relative to direct
measurements, in accord to what we find here. Different cross-sections and analysis techniques (see
below) can account for any remaining differences. One important use of the interstellar spectrum is
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PRELIMINARY

Figure 1: Cosmic-ray and emissivity spectra derived from model fitting. Yellow band shows model range.
Model ranges are 1 standard deviation on the parameterized synthetic spectra. Upper: Measured and derived
cosmic-ray proton spectra. Data are AMS01 (asterisks) and PAMELA (diamonds). Spectra are multiplied
by p2, and also timesp2.8 to better show the break. Lower left: Measured and derived cosmic-ray electron
spectra. Data are AMS01 (asterisks), PAMELA (diamonds), and Fermi-LAT (squares). The CR densityn(p)

is multiplied by(c/4π) to give a flux at high momenta in the usual units quoted in experiments. Lower right:
Fermi-LAT emissivity data (vertical bars) and model, with red andgreen curves showing the hadronic and
leptonic bremsstrahlung contributions; the yellow band shows the total.

for solar modulation studies; in this case it would be appropriate to use the spectral shape, which is
well determined, but renormalize the spectrum to agree withdirect measurements at high energies.
This would attribute all the normalization difference to the factors mentioned above.

The interpretation of the curvature in the proton spectrum is beyond the present work, but it
is generally consistent with expectation based on CR propagation implied by the B/C ratio, which
peaks at a few GeV, implying either a break in the diffusion coefficient, effects of diffusive reaccel-
eration, or convective transport. Any of these effects willcause a low-energy break in the primary
spectra including that of protons, superimposed on a power-law injection spectrum (20). Note the
apparent difference in index between the local proton spectrum and the large-scale Galaxy (18; 19);
the latter spectrum is evidently harder. The origin of the difference is not clear at present, but it
is interesting that the index from local gamma rays and localdirect measurements are consistent.
There are further suggestions of local CR spectral variations (21).
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8. Comparison of analyses

The present analysis differs from that of (5) (Cas15) in various ways; both approaches are valid
and are complementary, emphasizing different aspects of the subject. The main differences can be
summarized as follows: Cas15 performs an iterative correction for energy dispersion, we include it
in the response to the raw emissivities. Cas15 includes direct measurements of protons and helium
in the fit, combined with the emissivities. We use onlyγ-ray data for the hadronic contribution, and
adopt a He/p ratio from direct measurements, assuming equalspectral shapes for p and He. Cas15
uses a velocity term to obtain the low-energy turnover in theproton spectrum; we use a smoothly
broken power law for more flexibility. Cas15 uses a flux spectrum in kinetic energy, we use a
density spectrum in momentum. Cas15 uses cross-sections from Kamae; we use a combination
from Dermer and QGSJET-II. Cas15 uses a lepton spectrum fromdirect measurements combined
with the γ-ray emissivities, we combine direct measurements with constraints from synchrotron.
Cas15 uses Minuit for the fitting, we use a Bayesian scheme with MultiNest.
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